Programming As a Second Language
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Installing Visual Flagship for MS-Windows
First Steps with Visual FlagShip 8 for MS-Windows 1. Requirements This instruction applies for FlagShip port using Microsoft Visual Studio 2017 (any edition, also the free Community), or the Visual Studio 2015. The minimal requirements are: • Microsoft Windows 32bit or 64bit operating system like Windows-10 • 2 GB RAM (more is recommended for performance) • 300 MB free hard disk space • Installed Microsoft MS-Visual Studio 2017 or 2015 (see step 2). It is re- quired for compiling .c sources and to link with corresponding FlagShip library. This FlagShip version will create 32bit or 64bit objects and native executables (.exe files) applicable for MS-Windows 10 and newer. 2. Install Microsoft Visual Studio 2017 or 2015 If not available yet, download and install Microsoft Visual Studio, see this link for details FlagShip will use only the C/C++ (MS-VC) compiler and linker from Visual Studio 2017 (or 2015) to create 64-bit and/or 32- bit objects and executables from your sources. Optionally, check the availability and the correct version of MS-VC compiler in CMD window (StartRuncmd) by invoking C:\> cd "C:\Program Files (x86)\Microsoft Visual Studio\ 2017\Community\VC\Tools\MSVC\14.10.25017\bin\HostX64\x64" C:\> CL.exe should display: Microsoft (R) C/C++ Optimizing Compiler Version 19.10.25019 for x64 Don’t worry if you can invoke CL.EXE only directly with the path, FlagShip’s Setup will set the proper path for you. Page 1 3. Download FlagShip In your preferred Web-Browser, open http://www.fship.com/windows.html and download the Visual FlagShip setup media using MS-VisualStudio and save it to any folder of your choice. -
Functional Languages
Functional Programming Languages (FPL) 1. Definitions................................................................... 2 2. Applications ................................................................ 2 3. Examples..................................................................... 3 4. FPL Characteristics:.................................................... 3 5. Lambda calculus (LC)................................................. 4 6. Functions in FPLs ....................................................... 7 7. Modern functional languages...................................... 9 8. Scheme overview...................................................... 11 8.1. Get your own Scheme from MIT...................... 11 8.2. General overview.............................................. 11 8.3. Data Typing ...................................................... 12 8.4. Comments ......................................................... 12 8.5. Recursion Instead of Iteration........................... 13 8.6. Evaluation ......................................................... 14 8.7. Storing and using Scheme code ........................ 14 8.8. Variables ........................................................... 15 8.9. Data types.......................................................... 16 8.10. Arithmetic functions ......................................... 17 8.11. Selection functions............................................ 18 8.12. Iteration............................................................. 23 8.13. Defining functions ........................................... -
Introduction for Position ID Senior C++ Developer 11611
Introduction for position Senior C++ Developer ID 11611 CURRICULUM VITAE Place of Residence Stockholm Profile A C++ programming expert with consistent success on difficult tasks. Expert in practical use of C++ (25+ years), C++11, C++14, C++17 integration with C#, Solid Windows, Linux, Minimal SQL. Dated experience with other languages, including assemblers. Worked in a number of domains, including finance, business and industrial automation, software development tools. Skills & Competences - Expert with consistent success on difficult tasks, dedicated and team lead in various projects. - Problems solving quickly, sometimes instantly; - Manage how to work under pressure. Application Software - Excellent command of the following software: Solid Windows, Linux. Minimal SQL. - Use of C++ (25+ years), C++11, C++14, C++17 integration with C#. Education High School Work experience Sep 2018 – Present Expert C++ Programmer – Personal Project Your tasks/responsibilities - Continuing personal project: writing a parser for C++ language, see motivation in this CV after the Saxo Bank job. - Changed implementation language from Scheme to C++. Implemented a C++ preprocessor of decent quality, extractor of compiler options from a MS Visual Studio projects. - Generated the formal part of the parser from a publicly available grammar. - Implemented “pack rat” optimization for the (recursive descent) parser. - Implementing a parsing context data structure efficient for recursive descent approach; the C++ name lookup algorithm.- Implementing a parsing context data structure efficient for recursive descent approach; the C++ name lookup algorithm. May 2015 – Sep 2018 C++ Programmer - Stockholm Your tasks/responsibilities - Provided C++ expertise to an ambitious company developing a fast database engine and a business software platform. -
(Pdf) of from Push/Enter to Eval/Apply by Program Transformation
From Push/Enter to Eval/Apply by Program Transformation MaciejPir´og JeremyGibbons Department of Computer Science University of Oxford [email protected] [email protected] Push/enter and eval/apply are two calling conventions used in implementations of functional lan- guages. In this paper, we explore the following observation: when considering functions with mul- tiple arguments, the stack under the push/enter and eval/apply conventions behaves similarly to two particular implementations of the list datatype: the regular cons-list and a form of lists with lazy concatenation respectively. Along the lines of Danvy et al.’s functional correspondence between def- initional interpreters and abstract machines, we use this observation to transform an abstract machine that implements push/enter into an abstract machine that implements eval/apply. We show that our method is flexible enough to transform the push/enter Spineless Tagless G-machine (which is the semantic core of the GHC Haskell compiler) into its eval/apply variant. 1 Introduction There are two standard calling conventions used to efficiently compile curried multi-argument functions in higher-order languages: push/enter (PE) and eval/apply (EA). With the PE convention, the caller pushes the arguments on the stack, and jumps to the function body. It is the responsibility of the function to find its arguments, when they are needed, on the stack. With the EA convention, the caller first evaluates the function to a normal form, from which it can read the number and kinds of arguments the function expects, and then it calls the function body with the right arguments. -
Arabic Articles: Assessment: Curricula: Books
Arabic Articles: Ayari, S. Connecting language and content in Arabic as a foreign language programs. (Arabic Manuscript: for the article, contact Dr. Ayari: ayari‐[email protected]). Assessment: ACTFL Arabic Oral Proficiency Interview (OPI). http://www.actfl.org/i4a/pages/index.cfm?pageid=3642#speaking. Curricula: Berbeco Curriculum. http://arabicatprovohigh.blogspot.com/2009/10/steven‐berbecos‐ marhaba‐curriculum.html. Dearborn High School Arabic curriculum. http://dearbornschools.org/schools/curriculum‐a‐programs/173. Glastonbury curricula. https://www.glastonburyus.org/curriculum/foreignlanguage/Pages/default.aspx /contact.htm. Michigan State University. (Contact Dr. Wafa Hassan for curriculum sample: [email protected]) Books: Wahba, K. Taha, Z., England, L. (2006). Handbook for Arabic Language Teaching Professionals in the 21st Century. Lawrence Erlbaum Associates, Inc. Alosh, M. (1997). Learner Text and Context in Foreign Language Acquisition: An Arabic Perspective. Ohio State University: National Foreign Language Center. Al‐Batal, M. (Ed.) (1995). The Teaching of Arabic as a Foreign Language: Issues and Directions. Al‐Arabiyya Monograph Series, Number 2. Utah: American Association of Teachers of Arabic. American Council for Teaching Foreign Languages. (2000). Arabic version of ACTFL standards for 21st Century. Alexandria, VA: ACTFL. Reports: Textbooks: Multimedia (Software, Technology, Films, DVDs, CDs): Authentic Materials: Websites: Culture and Society: Al‐Waraq. www.alwaraq.net. (An online library of books, authors, and history of classical Arabic literature and heritage) Alimbaratur. http://www.alimbaratur.com/StartPage.htm. (A website of ancient and modern Arabic poetry) Arabic Caligraphy. http://www.arabiccalligraphy.com/ac/. Arabic Literature, Columbia University Library. http://www.columbia.edu/cu/lweb/indiv/mideast/cuvlm/arabic_lit.html. (Columbia University’s website on Arabic literature and poets) Arabic Literature, Cornell University Library. -
Making a Faster Curry with Extensional Types
Making a Faster Curry with Extensional Types Paul Downen Simon Peyton Jones Zachary Sullivan Microsoft Research Zena M. Ariola Cambridge, UK University of Oregon [email protected] Eugene, Oregon, USA [email protected] [email protected] [email protected] Abstract 1 Introduction Curried functions apparently take one argument at a time, Consider these two function definitions: which is slow. So optimizing compilers for higher-order lan- guages invariably have some mechanism for working around f1 = λx: let z = h x x in λy:e y z currying by passing several arguments at once, as many as f = λx:λy: let z = h x x in e y z the function can handle, which is known as its arity. But 2 such mechanisms are often ad-hoc, and do not work at all in higher-order functions. We show how extensional, call- It is highly desirable for an optimizing compiler to η ex- by-name functions have the correct behavior for directly pand f1 into f2. The function f1 takes only a single argu- expressing the arity of curried functions. And these exten- ment before returning a heap-allocated function closure; sional functions can stand side-by-side with functions native then that closure must subsequently be called by passing the to practical programming languages, which do not use call- second argument. In contrast, f2 can take both arguments by-name evaluation. Integrating call-by-name with other at once, without constructing an intermediate closure, and evaluation strategies in the same intermediate language ex- this can make a huge difference to run-time performance in presses the arity of a function in its type and gives a princi- practice [Marlow and Peyton Jones 2004]. -
NOTE 18P. EDRS PRICE MF-$0.65 HC-$3.29 DESCRIPTORS
DOCUMENT RESUME ED 085 369 SP 007 545 TITLE Project Flagship. INSTITUTION State Univ. of New York, Buffalo. Coll. at Buffalo. PUB DATE 73 NOTE 18p. EDRS PRICE MF-$0.65 HC-$3.29 DESCRIPTORS Audiovisual Instruction; *Individualized Instruction; *Laboratory Procedures; *Performance Based Teacher Education; *Preservice Education; *Student Centered Curriculum; Teaching Methods IDENTIFIERS Distinguished Achievement Awards Entry ABSTRACT Project Flagship, the 1974 Distinguished Achievement Awards entry from State University College at Buffalo, New York, is a competency-based teacher education model using laboratory instruction. The special features of this model include a)stated objectives and criteria for evaluation, b) individualized instruction, c) individualized learning rates, d) laboratory instruction, and e)remediation. The following delivery systems are used to establish these features; a)a sequence of 10-minute video tapes; b)a 20-minute, narrated, 2x2 slide series; c)a self-instructional manual; d) scheduled live demonstrations; and e) scheduled lectures. Students have the option of using one or any combination of delivery systems. Evaluation of the project is achieved through pre- and post-assessment scores from two groups of students. The experimental group experiences Project Flagship while the control group has assigned courses and textbooks. Results reveal higher overall scores for the experimental group on preassessment tests. On postassessment tests, data show higher scores on psychomotor competencies for the experimental group.(The report presents graphs and modules.) (BRB) FILMED FROM BEST AVAILABLE COPY ABSTRACT/INFORMATION FORM- 1974 DAA PROGRAM (I.- DS DEPARTMENT OF HEALTH. Name of Program Submitted: Project Flagship EDUCATION IS WrLFARE .1; NATIONAL INSTITUTE OF r'rs, EDUCATION THIS DOCUMENT HAS SEEN REPRO (s-%, Tnstitution: State University College at Buffalo DUCED EXACTLY AS RECEIVED[RUM THE PERSON OR ORGANIZATION ORIGIN CXD A TINE IT POINTS Or VIEW OR OPINION STATED DO NOT NECESSARILY REPRE C23 President: Dr. -
Dr. Michael Metcalf Chinese Language Flagship Program at The
1 Chinese Language Flagship Program at The University of Mississippi Innovation in International Programming Through a National Initiative Michael F. Metcalf Associate Provost for International Affairs © The Language Flagship 2008 Innovation in International Programming Through a National Initiative The Problem: All too few Americans speak Chinese with professional proficiency and universities not meeting the national need. Innovation in International Programming Through a National Initiative The Solution Step 1: Build a national program at a few universities willing to teach Chinese in news ways designed to achieve high proficiency. Innovation in International Programming Through a National Initiative The Solution Step 2: Give those universities the space to innovate and the funding to succeed to demonstrate the power of proficiency- driven instruction. Innovation in International Programming Through a National Initiative The Solution Step 3: Disseminate the new and proven model(s) with additional national funding to “infect” more and more universities. Innovation in International Programming Through a National Initiative 2003 Chinese Language Flagships Brigham Young University The Ohio State University The University of Mississippi Innovation in International Programming Through a National Initiative 2008 Chinese Language Flagships Brigham Young University Arizona State University The Ohio State University Indiana University The University of Mississippi University of Rhode Island University of Oregon Innovation in International Programming -
Technical Support Engineer (Level 2)
Technical Support Engineer (Level 2) JOB SUMMARY Newsroom Solutions is seeking a support engineer to work from our Hollidaysburg, PA office, or telecommute on approval, to troubleshoot client issues with our software and hardware, and train new clients. Our platform includes a web-based application suite built on Linux, and a broadcast television graphics device on Windows XP/7. The successful candidate will have excellent communication skills, have used computers extensively, and be able to work with at least one scripting language (Perl, JavaScript, VBScript, or similar) to perform his/her duties. The candidate will be working with television stations and the result of his/her work will be seen on TV by millions of people. He/She will not just be answering questions but writing scripts that interact between the client’s database and graphic device, according to the client’s need. This position has no direct reports and usually works very independently on assigned cases. This position reports to the Manager of Client Services. ESSENTIAL DUTIES AND RESPONSIBILITIES Receive phone calls and emails from clients, determine the nature of their request, and enter it into the ticketing system. Process and solve support tickets utilizing your knowledge of our product and your existing knowledge in the IT field, working independently, and recognize and escalate difficult technical/business issues to facilitate resolution. You will use your own problem solving abilities to work through the issue and not simply follow a question and answer sheet. Write small scripts based on the Perl scripting language to control data flow from Newsroom's software to the client's television display. -
Q1 Where Do You Use C++? (Select All That Apply)
2021 Annual C++ Developer Survey "Lite" Q1 Where do you use C++? (select all that apply) Answered: 1,870 Skipped: 3 At work At school In personal time, for ho... 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ANSWER CHOICES RESPONSES At work 88.29% 1,651 At school 9.79% 183 In personal time, for hobby projects or to try new things 73.74% 1,379 Total Respondents: 1,870 1 / 35 2021 Annual C++ Developer Survey "Lite" Q2 How many years of programming experience do you have in C++ specifically? Answered: 1,869 Skipped: 4 1-2 years 3-5 years 6-10 years 10-20 years >20 years 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ANSWER CHOICES RESPONSES 1-2 years 7.60% 142 3-5 years 20.60% 385 6-10 years 20.71% 387 10-20 years 30.02% 561 >20 years 21.08% 394 TOTAL 1,869 2 / 35 2021 Annual C++ Developer Survey "Lite" Q3 How many years of programming experience do you have overall (all languages)? Answered: 1,865 Skipped: 8 1-2 years 3-5 years 6-10 years 10-20 years >20 years 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ANSWER CHOICES RESPONSES 1-2 years 1.02% 19 3-5 years 12.17% 227 6-10 years 22.68% 423 10-20 years 29.71% 554 >20 years 34.42% 642 TOTAL 1,865 3 / 35 2021 Annual C++ Developer Survey "Lite" Q4 What types of projects do you work on? (select all that apply) Answered: 1,861 Skipped: 12 Gaming (e.g., console and.. -
CSE 341 : Programming Languages
CSE 341 : Programming Languages Lecture 10 Closure Idioms Zach Tatlock Spring 2014 More idioms • We know the rule for lexical scope and function closures – Now what is it good for A partial but wide-ranging list: • Pass functions with private data to iterators: Done • Combine functions (e.g., composition) • Currying (multi-arg functions and partial application) • Callbacks (e.g., in reactive programming) • Implementing an ADT with a record of functions (optional) 2 Combine functions Canonical example is function composition: fun compose (f,g) = fn x => f (g x) • Creates a closure that “remembers” what f and g are bound to • Type ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) but the REPL prints something equivalent • ML standard library provides this as infix operator o • Example (third version best): fun sqrt_of_abs i = Math.sqrt(Real.fromInt(abs i)) fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i val sqrt_of_abs = Math.sqrt o Real.fromInt o abs 3 Left-to-right or right-to-left val sqrt_of_abs = Math.sqrt o Real.fromInt o abs As in math, function composition is “right to left” – “take absolute value, convert to real, and take square root” – “square root of the conversion to real of absolute value” “Pipelines” of functions are common in functional programming and many programmers prefer left-to-right – Can define our own infix operator – This one is very popular (and predefined) in F# infix |> fun x |> f = f x fun sqrt_of_abs i = i |> abs |> Real.fromInt |> Math.sqrt 4 Another example • “Backup function” fun backup1 (f,g) = fn x => case -
Specialising Dynamic Techniques for Implementing the Ruby Programming Language
SPECIALISING DYNAMIC TECHNIQUES FOR IMPLEMENTING THE RUBY PROGRAMMING LANGUAGE A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2015 By Chris Seaton School of Computer Science This published copy of the thesis contains a couple of minor typographical corrections from the version deposited in the University of Manchester Library. [email protected] chrisseaton.com/phd 2 Contents List of Listings7 List of Tables9 List of Figures 11 Abstract 15 Declaration 17 Copyright 19 Acknowledgements 21 1 Introduction 23 1.1 Dynamic Programming Languages.................. 23 1.2 Idiomatic Ruby............................ 25 1.3 Research Questions.......................... 27 1.4 Implementation Work......................... 27 1.5 Contributions............................. 28 1.6 Publications.............................. 29 1.7 Thesis Structure............................ 31 2 Characteristics of Dynamic Languages 35 2.1 Ruby.................................. 35 2.2 Ruby on Rails............................. 36 2.3 Case Study: Idiomatic Ruby..................... 37 2.4 Summary............................... 49 3 3 Implementation of Dynamic Languages 51 3.1 Foundational Techniques....................... 51 3.2 Applied Techniques.......................... 59 3.3 Implementations of Ruby....................... 65 3.4 Parallelism and Concurrency..................... 72 3.5 Summary............................... 73 4 Evaluation Methodology 75 4.1 Evaluation Philosophy