Quantum Key Distribution Protocols: a Survey / Pp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CLEO/Europe-EQEC 2021 Advance Programme
2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference Advance Programme Virtual Meeting CEST time zone 21 - 25 June 2021 www.cleoeurope.org Sponsored by • European Physical Society / Quantum Electronics and Optics Division • IEEE Photonics Society • The Optical Society 25th International Congress on Photonics in Europe Collocated with Laser World of Photonics Industry Days https://world-of-photonics.com/en/ 10th EPS-QEOD Europhoton Conference EUROPHOTON SOLID-STATE, FIBRE, AND WAVEGUIDE COHERENT LIGHT SOURCES 28 August – 02 September 2022 Hannover, Germany www.europhoton.org Fotos: © HMTG - Lars Gerhardts Fotos: © HMTG Table of contents TABLE OF CONTENTS Welcome and Foreword 02 Days at a Glance 04 Sessions at a Glance 14 How to Read the Session Codes? 15 How to Find the Room? 17 Topics 20 General Information 24 Technical Programme 28 01 Welcome and foreword Welcome to the 2021 Conference CLEO®/Europe will showcase the latest Particular highlights of the 2021 programme 2021 Conference on Lasers and on Lasers and Electro-Optics developments in a wide range of laser and will be a series of symposia: Electro-Optics Europe & European Europe & European Quantum photonics areas including solid-state lasers, Nanophononics, High-Field THz Genera- Quantum Electronics Conference Electronics Conference (hereafter semiconductor lasers, terahertz sources and tion and Applications, Attochemistry, Deep CLEO®/Europe-EQEC) at the World applications, applications of nonlinear op- learning in Photonics and Flexible Photonics. CLEO®/Europe - EQEC 2021 of Photonics Congress 2021 tics, optical materials, optical fabrication and Additionally, two joint sessions (EC- characterization, ultrafast optical technologies, BO-CLEO®/Europe and LiM-CLEO®/Europe) Virtual Meeting high-field laser and attosecond science, optical will be held. -
Reconfigurable Optical Implementation of Quantum Complex Networks J Nokkala, F
Reconfigurable optical implementation of quantum complex networks J Nokkala, F. Arzani, F Galve, R Zambrini, S Maniscalco, J Piilo, Nicolas Treps, V Parigi To cite this version: J Nokkala, F. Arzani, F Galve, R Zambrini, S Maniscalco, et al.. Reconfigurable optical implemen- tation of quantum complex networks. New Journal of Physics, Institute of Physics: Open Access Journals, 2018, 20, pp.053024. 10.1088/1367-2630/aabc77. hal-01798144 HAL Id: hal-01798144 https://hal.sorbonne-universite.fr/hal-01798144 Submitted on 23 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PAPER • OPEN ACCESS Related content - An Introduction to the Formalism of Reconfigurable optical implementation of quantum Quantum Information with Continuous Variables: Quantum information with continuous variables complex networks C Navarrete-Benlloch - Spacetime replication of continuous To cite this article: J Nokkala et al 2018 New J. Phys. 20 053024 variable quantum information Patrick Hayden, Sepehr Nezami, Grant Salton et al. - Coupled harmonic systems as quantum buses in thermal environments View the article online for updates and enhancements. F Nicacio and F L Semião This content was downloaded from IP address 134.157.80.157 on 23/05/2018 at 09:58 New J. -
Security of Quantum Key Distribution with Multiphoton Components
Security of quantum key distribution with multiphoton components 1,2, 1,2, 1,2 1,2 Hua-Lei Yin ∗, Yao Fu ∗, Yingqiu Mao & Zeng-Bing Chen 1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 2The CAS Center for Excellence in QIQP and the Synergetic Innovation Center for QIQP, Uni- versity of Science and Technology of China, Hefei, Anhui 230026, China ∗ These authors contributed equally to this work. Correspondence and requests for materials should be addressed to H.-L.Y. (email: [email protected]) or Z.-B.C. (email: [email protected]) Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin- Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be ex- tracted from the two-photon component by modifying the classical post-processing proce- dure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four arXiv:1607.02366v1 [quant-ph] 8 Jul 2016 photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three- photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. -
Quantum Key Distribution Protocols and Applications
Quantum Key Distribution Protocols and Applications Sheila Cobourne Technical Report RHUL{MA{2011{05 8th March 2011 Department of Mathematics Royal Holloway, University of London Egham, Surrey TW20 0EX, England http://www.rhul.ac.uk/mathematics/techreports Title: Quantum Key Distribution – Protocols and Applications Name: Sheila Cobourne Student Number: 100627811 Supervisor: Carlos Cid Submitted as part of the requirements for the award of the MSc in Information Security at Royal Holloway, University of London. I declare that this assignment is all my own work and that I have acknowledged all quotations from the published or unpublished works of other people. I declare that I have also read the statements on plagiarism in Section 1 of the Regulations Governing Examination and Assessment Offences and in accordance with it I submit this project report as my own work. Signature: Date: Acknowledgements I would like to thank Carlos Cid for his helpful suggestions and guidance during this project. Also, I would like to express my appreciation to the lecturers at Royal Holloway who have increased my understanding of Information Security immensely over the course of the MSc, without which this project would not have been possible. Contents Table of Figures ................................................................................................... 6 Executive Summary ............................................................................................. 7 Chapter 1 Introduction ................................................................................... -
Book of Abstracts
LANET 2017 Puebla (Mexico), September 25-29, 2017 1ST LATIN AMERICAN CONFERENCE ON COMPLEX NETWORKS AND LANET SCHOOL ON FUNDAMENTALS AND APPLICATIONS OF NETWORK SCIENCE LANET 2017 25-29 SEPTEMBER 2017 PUEBLA MEXICO BOOK OF ABSTRACTS ORGANIZED BY BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA Benemérita Universidad Autónoma de Puebla LANET 2017 Puebla (Mexico), September 25-29, 2017 BENEMÉRITA UNIVERSIDAD DE PUEBLA LANET BOARD Rector Nuno Araujo (Universidade de Lisboa, Portugal) Dr. J. Alfonso Esparza Ortiz Pablo Balenzuela (Universidad de Buenos Aires, Argentina) Secretario General Javier M. Buldú (URJC & CTB, Spain) Dr. René Valdiviezo Sandoval Lidia Braunstein (CONICET-UNMdP, Argentina) Vicerrector de Investigación Mario Chávez (CNRS, Hospital Pitié-Salpetriere, France) Dr. Ygnacio Martínez Laguna Hilda Cerdeira (IFT-UNESP, Brazil) Directora del Instituto de Física Luciano da Fontoura (University of Sao Paulo, Brazil) Dra. Ma. Eugenia Mendoza Álvarez Bruno Gonçalves (New York University, USA) Rafael Germán Hurtado (Universidad Nacional de Colombia, Bogota) Ernesto Estrada (University of Strathclyde, UK) LOCAL ORGANIZING COMMITTEE Jesús Gómez-Gardeñes (Universidad de Zaragoza, Spain) José Antonio Méndez-Bermúdez Marta C. González (MIT, USA) (BUAP, Puebla, Mexico) Rafael Gutiérrez (Universidad Antonio Nariño, Colombia) Ygnacio Martínez Laguna Cesar Hidalgo (MIT Media Lab, USA) (BUAP, Puebla, Mexico) Gustavo Martínez-Mekler (UNAM, Mexico) Pedro Hugo Hernández Tejeda Johann H. Martínez (INSERM, France) (BUAP, Puebla, Mexico) Cristina Masoller (Universitat Politècnica de Catalunya, Spain) Javier M. Buldú José Luis Mateos (Instituto de Física, UNAM, Mexico) (URJC & CTB, Spain) José F. Mendes (University of Aveiro, Portugal) Jesús Gómez-Gardeñes José Antonio Méndez-Bermúdez (BUAP, Puebla Mexico) (Universidad de Zaragoza, Spain) Ronaldo Menezes (Florida Institute of Technology, USA) Johann H. -
Basic Probability Theory A
Basic Probability Theory A In order to follow many of the arguments in these notes, especially when talking about entropies, it is necessary to have some basic knowledge of probability theory. Therefore, we review here the most important tools of probability theory that are used. One of the basic notions of probability theory that also frequently appears throughout these notes is that of a discrete random variable. A random variable X can take one of several values, the so-called realizations x,givenbythealphabet X. The probability that a certain realization x ∈ X occurs is given by the probability distribution pX(x). We usually use upper case letters to denote the random variable, lower case letters to denote realizations thereof, and calligraphic letters to denote the alphabet. Suppose we have two random variables X and Y , which may depend on each other. We can then define the joint probability distribution pX,Y (x, y) of X and Y that tells you the probability that Y = y and X = x. This notion (and the following definition) can be expanded to n random variables, but we restrict ourselves to the case of pairs X, Y here to keep the notation simple. Given the joint probability distribution of the pair X, Y , we can derive the marginal distribution PX(x) by pX(x) = pX,Y (x, y) ∀ x ∈ X (A.1) y∈Y and analogously for PY (y). The two random variables X and Y are said to be independent if pX,Y (x, y) = pX(x)pY (y). (A.2) © The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 219 R. -
Intercept-Resend Attack on SARG04 Protocol: an Extended Work
Polytechnic Journal. 2020. 10(1): 88-92 ISSN: 2313-5727 http://journals.epu.edu.iq/index.php/polytechnic RESEARCH ARTICLE Intercept-Resend Attack on SARG04 Protocol: An Extended Work Ali H. Yousif*, Omar S. Mustafa, Dana F. Abdulqadir, Farah S. Khoshaba Department of Information System Engineering, Erbil Technical Engineering College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq *Correspondence author: ABSTRACT Ali H. Yousif, Department of Information In this paper, intercept/resend eavesdropper attack over SARG04 quantum key distribution protocol is System Engineering, investigated by bounding the information of an eavesdropper; then, the attack has been analyzed. In Erbil Technical Engineering 2019, simulation and enhancement of the performance of SARG04 protocol have been done by the College, Erbil Polytechnic same research group in terms of error correction stage using multiparity rather than single parity (Omar, University, Erbil, Kurdistan 2019). The probability of detecting the case in the random secret key by eavesdropper is estimated. Region, Iraq, The results of intercept/resend eavesdropper attack proved that the attack has a significant impact E-mail: [email protected] on the operation of the SARG04 protocol in terms of the final key length. Received: 28 October 2019 Keywords: Eavesdropper; Intercept-resend; IR; Quantum; SARG04 Accepted: 05 February 2020 Published: 30 June 2020 DOI 10.25156/ptj.v10n1y2020.pp88-92 INTRODUCTION promises to revolutionize secure communication using the key distribution. Nowadays, the information security is the most important concern of people and entity. One of the main issues Quantum key distribution (QKD) enables two parties to of practical quantum communication is the information establish a secure random secret key depending on the security under the impact of disturbances or quantum principles of quantum mechanics. -
Gr Qkd 003 V2.1.1 (2018-03)
ETSI GR QKD 003 V2.1.1 (2018-03) GROUP REPORT Quantum Key Distribution (QKD); Components and Internal Interfaces Disclaimer The present document has been produced and approved by the Group Quantum Key Distribution (QKD) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership. 2 ETSI GR QKD 003 V2.1.1 (2018-03) Reference RGR/QKD-003ed2 Keywords interface, quantum key distribution ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. -
ETSI White Paper on Implementation Security of Quantum Cryptography
ETSI White Paper No. 27 Implementation Security of Quantum Cryptography Introduction, challenges, solutions First edition – July 2018 ISBN No. 979-10-92620-21-4 Authors: Marco Lucamarini, Andrew Shields, Romain Alléaume, Christopher Chunnilall, Ivo Pietro Degiovanni, Marco Gramegna, Atilla Hasekioglu, Bruno Huttner, Rupesh Kumar, Andrew Lord, Norbert Lütkenhaus, Vadim Makarov, Vicente Martin, Alan Mink, Momtchil Peev, Masahide Sasaki, Alastair Sinclair, Tim Spiller, Martin Ward, Catherine White, Zhiliang Yuan ETSI 06921 Sophia Antipolis CEDEX, France Tel +33 4 92 94 42 00 [email protected] www.etsi.org About the authors Marco Lucamarini Senior Researcher, Toshiba Research Europe Limited, Cambridge, UK Marco Lucamarini works on the implementation security of real quantum key distribution (QKD) systems. He has authored more than 50 papers related to protocols, methods and systems for quantum communications. He is a regular contributor to the ETSI Industry Specification Group (ISG) on QKD. Andrew Shields FREng, FInstP Assistant Managing Director, Toshiba Research Europe Limited, Cambridge, UK Andrew Shields leads R&D on quantum technologies at TREL. He was a co-founder of the ETSI ISG on QKD and serves currently as its Chair. He has published over 300 papers in the field of quantum photonics, which have been cited over 15000 times. Romain Alléaume Associate Professor, Telecom-ParisTech, Paris, France Romain Alléaume works on quantum cryptography and quantum information. He co-founded the start-up company SeQureNet in 2008, that brought to market the first commercial CV-QKD system in 2013. He has authored more than 40 papers in the field and is a regular contributor to the ETSI ISG QKD. -
Long Distance Free-Space Quantum Key Distribution
Long distance free-space quantum key distribution Tobias Schmitt-Manderbach M¨unchen 2007 Long distance free-space quantum key distribution Tobias Schmitt-Manderbach Dissertation at the Faculty of Physics of the Ludwig–Maximilians–Universit¨at M¨unchen Tobias Schmitt-Manderbach born in M¨unchen, Germany M¨unchen, 16. Oktober 2007 Erstgutachter: Prof. Dr. Harald Weinfurter Zweitgutachter: Prof. Dr. Wolfgang Zinth Tag der m¨undlichen Pr¨ufung: 17. Dezember 2007 Zusammenfassung Im Zeitalter der Information und der Globalisierung nimmt die sichere Kommunikation und der Schutz von sensiblen Daten gegen unberechtigten Zugriff eine zentrale Stellung ein. Die Quantenkryptographie ist derzeit die einzige Methode, die den Austausch ei- nes geheimen Schl¨ussels zwischen zwei Parteien auf beweisbar sichere Weise erm¨oglicht. Mit der aktuellen Glasfaser- und Detektortechnologie ist die Quantenkrypographie auf- grund von Verlusten und Rauschen derzeit auf Entfernungen unterhalb einiger 100 km beschr¨ankt. Prinzipiell k¨onnten gr¨oßere Entfernungen in k¨urzere Abschnitte aufgeteilt werden, die daf¨ur ben¨otigten Quantenrepeater sind jedoch derzeit nicht realisierbar. Eine alternative L¨osung zur Uberwindung¨ gr¨oßerer Entfernungen stellt ein satellitenbasiertes System dar, das den Schl¨usselaustausch zwischen zwei beliebigen Punkten auf dem Glo- bus mittels freiraumoptischer Kommunikation erm¨oglichen w¨urde. Ziel des beschriebenen Experiments war es, die Realisierbarkeit satellitengest¨utzter globaler Quantenschl¨usselverteilung zu untersuchen. Dazu wurde ein freiraumoptisches Quantenkryptographie-Experimentuber ¨ eine Entfernung von 144 km durchgef¨uhrt. Sen- der und Empf¨anger befanden sich jeweils in ca. 2500 m H¨ohe auf den Kanarischen Inseln La Palma bzw. Teneriffa. Die kleine und leichte Sendeeinheit erzeugte abgeschw¨achte Laserpulse, die mittels eines 15-cm Teleskops zum Empf¨anger geschickt wurden. -
Practical Qkd for Both Bb84 and Sarg04 Protocols
IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 20, Issue 1, Ver. IV (Jan.- Feb. 2018), PP 37-47 www.iosrjournals.org Practical Qkd For Both Bb84 And Sarg04 Protocols Majdi Abdellatief 1,2 , Sellami Ali1, And Mohammed A Alanezi 1 1Faculty of Computer Science and Information Technology, Shaqra University Shaqra, Kingdom of Saudi Arabia 2Department of Computer Science, MTC College, Sudan Technological University Corresponding Author: Majdi Abdellatief Abstract: A decoy state method based on one decoy state protocol has been derived for both BB84 and SARG04. This method can give a different lower bound of the fraction of single-photon counts (y1 ) and the fraction of two-photon counts (y2 ) , the upper bound QBER of single-photon pulses( e1 ), the upper bound QBER of two-photon pulses( e2 ), and the lower bound of the key generation rate for both BB84 and SARG04. The estimations have demonstrated that a decoy state protocol with only one decoy state ( v 0 ) can approach the theoretical limit, and the estimations have provided an optimal key generation rate, which is the same as having an infinite number of decoy states for BB84 and SARG04.This finding has led to the introduction of the Vacuum Protocol. We have simulated an optical fiber-based QKD system using our decoy state method for both SARG04 and BB84. The simulation has shown that the fiber-based QKD systems using the proposed method for BB84 are able to achieve both a higher secret key rate and greater secure distance than those of SARG04. -
Cryptography from Quantum Mechanical Viewpoint
International Journal on Cryptography and Information Security (IJCIS), Vol. 4, No. 2, June 2014 CRYPTOGRAPHY FROM QUANTUM MECHANICAL VIEWPOINT Minal Lopes1 and Dr. Nisha Sarwade2 1Department of Electrical Engineering, VJTI, Mumbai, India 2Department of Electrical Engineering, VJTI, Mumbai, India ABSTRACT Cryptography is an art and science of secure communication. Here the sender and receiver are guaranteed the security through encryption of their data, with the help of a common key. Both the parties should agree on this key prior to communication. The cryptographic systems which perform these tasks are designed to keep the key secret while assuming that the algorithm used for encryption and decryption is public. Thus key exchange is a very sensitive issue. In modern cryptographic algorithms this security is based on the mathematical complexity of the algorithm. But quantum computation is expected to revolutionize computing paradigm in near future. This presents a challenge amongst the researchers to develop new cryptographic techniques that can survive the quantum computing era. This paper reviews the radical use of quantum mechanics for cryptography. KEYWORDS Quantum cryptography (QC), Quantum key Distribution (QKD), Quantum Mechanics, Bell’s Theorem 1. INTRODUCTION In 1984, Bennett (from IBM Research) and Brassard (from University of de Montreal) presented an idea of using quantum mechanics for cryptography (Quantum Cryptography). They proposed an algorithm (BB84) based on Heisenberg’s ‘uncertainty principle’ for exchanging the key (QKD) along with a classical one-time pad (OTP) for information exchange [1]. After BB84, almost a decade later in 1991, Ekert reconsidered QC but with another unique principle of quantum mechanics known as ‘Quantum Entanglement’ [2].