Graph Minor from Wikipedia, the Free Encyclopedia Contents

Total Page:16

File Type:pdf, Size:1020Kb

Graph Minor from Wikipedia, the Free Encyclopedia Contents Graph minor From Wikipedia, the free encyclopedia Contents 1 2 × 2 real matrices 1 1.1 Profile ................................................. 1 1.2 Equi-areal mapping .......................................... 2 1.3 Functions of 2 × 2 real matrices .................................... 2 1.4 2 × 2 real matrices as complex numbers ............................... 3 1.5 References ............................................... 4 2 Abelian group 5 2.1 Definition ............................................... 5 2.2 Facts ................................................. 5 2.2.1 Notation ........................................... 5 2.2.2 Multiplication table ...................................... 6 2.3 Examples ............................................... 6 2.4 Historical remarks .......................................... 6 2.5 Properties ............................................... 6 2.6 Finite abelian groups ......................................... 7 2.6.1 Classification ......................................... 7 2.6.2 Automorphisms ....................................... 7 2.7 Infinite abelian groups ........................................ 8 2.7.1 Torsion groups ........................................ 9 2.7.2 Torsion-free and mixed groups ................................ 9 2.7.3 Invariants and classification .................................. 9 2.7.4 Additive groups of rings ................................... 9 2.8 Relation to other mathematical topics ................................. 10 2.9 A note on the typography ....................................... 10 2.10 See also ................................................ 10 2.11 Notes ................................................. 11 2.12 References .............................................. 11 2.13 External links ............................................. 11 3 Associative algebra 12 3.1 Formal definition ........................................... 12 3.1.1 From R-modules ....................................... 12 i ii CONTENTS 3.1.2 From rings .......................................... 13 3.2 Algebra homomorphisms ....................................... 13 3.3 Examples ............................................... 13 3.4 Constructions ............................................. 14 3.5 Associativity and the multiplication mapping ............................. 15 3.6 Coalgebras ............................................... 15 3.7 Representations ............................................ 15 3.7.1 Motivation for a Hopf algebra ................................. 16 3.7.2 Motivation for a Lie algebra .................................. 16 3.8 See also ................................................ 17 3.9 References ............................................... 17 4 Bijection 18 4.1 Definition ............................................... 19 4.2 Examples ............................................... 19 4.2.1 Batting line-up of a baseball team ............................... 19 4.2.2 Seats and students of a classroom ............................... 19 4.3 More mathematical examples and some non-examples ........................ 20 4.4 Inverses ................................................ 20 4.5 Composition .............................................. 20 4.6 Bijections and cardinality ....................................... 20 4.7 Properties ............................................... 21 4.8 Bijections and category theory ..................................... 21 4.9 Generalization to partial functions ................................... 22 4.10 Contrast with ............................................. 22 4.11 See also ................................................ 22 4.12 Notes ................................................. 22 4.13 References ............................................... 23 4.14 External links ............................................. 23 5 Category (mathematics) 24 5.1 Definition ............................................... 25 5.2 History ................................................. 25 5.3 Small and large categories ....................................... 26 5.4 Examples ............................................... 26 5.5 Construction of new categories .................................... 26 5.5.1 Dual category ......................................... 26 5.5.2 Product categories ...................................... 27 5.6 Types of morphisms .......................................... 27 5.7 Types of categories .......................................... 28 5.8 See also ................................................ 28 5.9 Notes ................................................. 28 CONTENTS iii 5.10 References ............................................... 28 6 Complete bipartite graph 30 6.1 Definition ............................................... 30 6.2 Examples ............................................... 30 6.3 Properties ............................................... 31 6.4 See also ................................................ 32 6.5 References ............................................... 32 7 Complete graph 33 7.1 Properties ............................................... 33 7.2 Geometry and topology ........................................ 33 7.3 Examples ............................................... 34 7.4 See also ................................................ 34 7.5 References ............................................... 34 7.6 External links ............................................. 34 8 Complete metric space 35 8.1 Examples ............................................... 35 8.2 Some theorems ............................................ 36 8.3 Completion .............................................. 36 8.4 Topologically complete spaces ..................................... 37 8.5 Alternatives and generalizations .................................... 37 8.6 See also ................................................ 37 8.7 Notes ................................................. 38 8.8 References ............................................... 38 9 Conjugacy class 39 9.1 Definition ............................................... 39 9.2 Examples ............................................... 39 9.3 Properties ............................................... 40 9.4 Conjugacy class equation ....................................... 40 9.4.1 Example ............................................ 41 9.5 Conjugacy of subgroups and general subsets ............................. 41 9.6 Conjugacy as group action ....................................... 41 9.7 Geometric interpretation ....................................... 41 9.8 See also ................................................ 42 9.9 References ............................................... 42 10 Connected space 43 10.1 Formal definition ........................................... 44 10.1.1 Connected components .................................... 44 10.1.2 Disconnected spaces ..................................... 44 iv CONTENTS 10.2 Examples ............................................... 44 10.3 Path connectedness .......................................... 45 10.4 Arc connectedness .......................................... 46 10.5 Local connectedness ......................................... 46 10.6 Set operations ............................................. 46 10.7 Theorems ............................................... 49 10.8 Graphs ................................................. 49 10.9 Stronger forms of connectedness ................................... 50 10.10See also ................................................ 50 10.11References ............................................... 50 10.11.1 Notes ............................................. 50 10.11.2 General references ...................................... 50 11 Connectivity (graph theory) 51 11.1 Connected graph ............................................ 52 11.2 Definitions of components, cuts and connectivity ........................... 52 11.3 Menger’s theorem ........................................... 53 11.4 Computational aspects ......................................... 54 11.5 Examples ............................................... 54 11.6 Bounds on connectivity ........................................ 54 11.7 Other properties ............................................ 54 11.8 See also ................................................ 55 11.9 References ............................................... 55 12 Continuous function 56 12.1 History ................................................ 56 12.2 Real-valued continuous functions ................................... 56 12.2.1 Definition ........................................... 56 12.2.2 Examples ........................................... 59 12.2.3 Non-examples ......................................... 62 12.2.4 Properties ........................................... 63 12.2.5 Directional and semi-continuity ................................ 64 12.3 Continuous functions between metric spaces ............................. 65 12.3.1 Uniform, Hölder and Lipschitz continuity .......................... 66 12.4 Continuous functions between topological spaces ........................... 66 12.4.1 Alternative definitions ..................................... 68 12.4.2 Properties ........................................... 69 12.4.3 Homeomorphisms ....................................... 70 12.4.4 Defining topologies via continuous functions ......................... 70 12.5 Related notions ...........................................
Recommended publications
  • Diagonal Cauchy Spaces D.C
    BULL. AUSTRAL. MATH. SOC. 54E15, 54D10, 54D35, 54A20 VOL. 54 (1996) [255-265] DIAGONAL CAUCHY SPACES D.C. KENT AND G.D. RICHARDSON A diagonal condition is defined which internally characterises those Cauchy spaces which have topological completions. The T? diagonal Cauchy spaces allow both a finest and a coarsest T2 diagonal completion. The former is a completion functor, while the latter preserves uniformisability and has an extension property relative to ^-continuous maps. INTRODUCTION In 1954, Kowalsky [2] defined a diagonal axiom for convergence spaces subject to which every pretopological space is topological. In 1967, Cook and Fischer [1] gave a stronger version of the Kowalsky axiom relative to which a larger class of convergence spaces was shown to be topological. In [4], we showed that any convergence space satisfying the Cook-Fischer diagonal axiom is topological. In this paper, we introduce a diagonal axiom for Cauchy spaces which reduces to the Cook-Fischer axiom when the Cauchy space is complete. A diagonal Cauchy space is one which satisfies this axiom. We show that a Cauchy space is diagonal if and only if every Cauchy equivalence class contains a smallest Cauchy filter, and this smallest Cauchy filter has a base of open sets. Equivalently, a Cauchy space is diagonal if and only if it allows a diagonal (that is, topological) completion. The category of diagoaal Cauchy spaces and Cauchy continuous maps is shown to be a topological category. It is shown that a Ti diagonal Cauchy space has both a finest and a coarsest T2 diagonal completion. The "fine diagonal completion" determines a completion functor on the category of T2, diagonal Cauchy spaces.
    [Show full text]
  • $ G $-Metrizable Spaces and the Images of Semi-Metric Spaces
    Czechoslovak Mathematical Journal Ying Ge; Shou Lin g-metrizable spaces and the images of semi-metric spaces Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 4, 1141–1149 Persistent URL: http://dml.cz/dmlcz/128231 Terms of use: © Institute of Mathematics AS CR, 2007 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 57 (132) (2007), 1141–1149 g-METRIZABLE SPACES AND THE IMAGES OF SEMI-METRIC SPACES Ying Ge, Jiangsu, Shou Lin, Fujian (Received November 8, 2005) Abstract. In this paper, we prove that a space X is a g-metrizable space if and only if X is a weak-open, π and σ-image of a semi-metric space, if and only if X is a strong sequence-covering, quotient, π and mssc-image of a semi-metric space, where “semi-metric” can not be replaced by “metric”. Keywords: g-metrizable spaces, sn-metrizable spaces, weak-open mappings, strong sequence-covering mappings, quotient mappings, π-mappings, σ-mappings, mssc-mappings MSC 2000 : 54C10, 54D55, 54E25, 54E35, 54E40 1. Introduction g-metrizable spaces as a generalization of metric spaces have many important properties [17]. To characterize g-metrizable spaces as certain images of metric spaces is an interesting question in the theory of generalized metric spaces, and many “nice” characterizations of g-metrizable spaces have been obtained ([6], [8], [7], [13], [18], [19]).
    [Show full text]
  • On Treewidth and Graph Minors
    On Treewidth and Graph Minors Daniel John Harvey Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Department of Mathematics and Statistics The University of Melbourne Produced on archival quality paper ii Abstract Both treewidth and the Hadwiger number are key graph parameters in structural and al- gorithmic graph theory, especially in the theory of graph minors. For example, treewidth demarcates the two major cases of the Robertson and Seymour proof of Wagner's Con- jecture. Also, the Hadwiger number is the key measure of the structural complexity of a graph. In this thesis, we shall investigate these parameters on some interesting classes of graphs. The treewidth of a graph defines, in some sense, how \tree-like" the graph is. Treewidth is a key parameter in the algorithmic field of fixed-parameter tractability. In particular, on classes of bounded treewidth, certain NP-Hard problems can be solved in polynomial time. In structural graph theory, treewidth is of key interest due to its part in the stronger form of Robertson and Seymour's Graph Minor Structure Theorem. A key fact is that the treewidth of a graph is tied to the size of its largest grid minor. In fact, treewidth is tied to a large number of other graph structural parameters, which this thesis thoroughly investigates. In doing so, some of the tying functions between these results are improved. This thesis also determines exactly the treewidth of the line graph of a complete graph. This is a critical example in a recent paper of Marx, and improves on a recent result by Grohe and Marx.
    [Show full text]
  • A Law and Order Question
    ALawandorder Relation preserving maps. Symmetric relations, asymmetric relations, and antisymmetry. The Cartesian product and the Venn diagram. Euler circles, power sets, partitioning or fibering. A-1 Law and order: Cartesian product, power sets In daily life, we make comparisons of type ... is higher than ... is smarter than ... is faster than .... Indeed, we are dealing with order. Mathematically speaking, order is a binary relation of type −1 xR1y : x<y (smaller than) , xR3y : x>y (larger than, R3 = R ) , 1 (A.1) ≤ ≥ −1 xR2y : x y (smaller-equal) , xR4y : x y (larger-equal, R4 = R2 ) . Example A.1 (Real numbers). x and y, for instance, can be real numbers: x, y ∈ R. End of Example. Question: “What is a relation?” Answer: “Let us explain the term relation in the frame of the following example.” Question. Example A.2 (Cartesian product). Define the left set A = {a1,a2,a3} as the set of balls in a left basket, and {a1,a2,a3} = {red,green,blue}. In contrast, the right set B = {b1,b2} as the set of balls in a right basket, and {b1,b2} = {yellow,pink}. Sequentically, we take a ball from the left basket as well as from the right basket such that we are led to the combinations A × B = (a1,b1) , (a1,b2) , (a2,b1) , (a2,b2) , (a3,b1) , (a3,b2) , (A.2) A × B = (red,yellow) , (red,pink) , (green,yellow) , (green,pink) , (blue,yellow) , (green,pink) . (A.3) End of Example. Definition A.1 (Reflexive partial order). Let M be a non-empty set. The binary relation R2 on M is called reflexive partial order if for all x, y, z ∈ M the following three conditions are fulfilled: (i) x ≤ x (reflexivity) , (ii) if x ≤ y and y ≤ x,thenx = y (antisymmetry) , (A.4) (iii) if x ≤ y and y ≤ z,thenx ≤ z (transitivity) .
    [Show full text]
  • Some Results on Fuzzy Hyperconnected Spaces
    Songklanakarin J. Sci. Technol. 39 (5), 619-624, Sep - Oct. 2017 http://www.sjst.psu.ac.th Original Article Some results on fuzzy hyperconnected spaces Jayasree Chakraborty*, Baby Bhattacharya, and Arnab Paul Department of Mathematics, NIT Agartala, Tripura, 799046 India Received: 29 April 2016; Revised: 8 August 2016; Accepted: 15 August 2016 Abstract This paper is a prolongation of the study of fuzzy hyperconnectedness. After studying the characteristic of fuzzy hyperconnectedness concerned with different concepts we ascertain an extension of one essential result of Park et al. (2003). In particular, we obtain one result based on fuzzy hyperconnectedness which points out a comparison between the fuzzy topological spaces and the general topological spaces. A necessary and sufficient condition for a fuzzy semicontinuous function to be a fuzzy almost continuous function is established while the said two continuities are independent to each other shown by Azad (1981). Keywords: fuzzy hyperconnected space, fuzzy regular open set, fuzzy nowhere dense set, fuzzy semicontinuity, fuzzy almost continuity 1. Introduction 2. Preliminariesd The concept of hyperconnectedness in topological Throughout this paper, simply by X and Y we shall spaces has been introduced by Steen and Seebach (1978). denote fts’s (,)X and (,)Y respectively and f : X Y Then Ajmal et al. (1992) have studied some of the charac- will mean that f is a function from a fts (,)X to another fts (,)Y . For a fuzzy set of X, cl , int() and 1 terizations and basic properties of hyperconnected space. X Thereafter several authors have devoted their work to (or c ) will denote the closure of , the interior of and the investigate the various properties of hyperconnectedness in complement of respectively, whereas the constant fuzzy sets taking on the values 0 and 1 on are denoted by 0 and general topology.
    [Show full text]
  • Lectures on Some Fixed Point Theorems of Functional Analysis
    Lectures On Some Fixed Point Theorems Of Functional Analysis By F.F. Bonsall Tata Institute Of Fundamental Research, Bombay 1962 Lectures On Some Fixed Point Theorems Of Functional Analysis By F.F. Bonsall Notes by K.B. Vedak No part of this book may be reproduced in any form by print, microfilm or any other means with- out written permission from the Tata Institute of Fundamental Research, Colaba, Bombay 5 Tata Institute of Fundamental Research Bombay 1962 Introduction These lectures do not constitute a systematic account of fixed point the- orems. I have said nothing about these theorems where the interest is essentially topological, and in particular have nowhere introduced the important concept of mapping degree. The lectures have been con- cerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite di- mensional spaces. A wide choice of techniques is available for linear problems, and I have usually chosen to use those that give something more than existence theorems, or at least a promise of something more. That is, I have been interested not merely in existence theorems, but also in the construction of eigenvectors and eigenvalues. For this reason, I have chosen elementary rather than elegant methods. I would like to draw special attention to the Appendix in which I give the solution due to B. V. Singbal of a problem that I raised in the course of the lectures. I am grateful to Miss K. B. Vedak for preparing these notes and seeing to their publication.
    [Show full text]
  • Publication List, Dated 2010
    References [1] V. A. Voevodski˘ı. Galois group Gal(Q¯ =Q) and Teihmuller modular groups. In Proc. Conf. Constr. Methods and Alg. Number Theory, Minsk, 1989. [2] V. A. Voevodski˘ıand G. B. Shabat. Equilateral triangulations of Riemann surfaces, and curves over algebraic number fields. Dokl. Akad. Nauk SSSR, 304(2):265{268, 1989. [3] G. B. Shabat and V. A. Voevodsky. Drawing curves over number fields. In The Grothendieck Festschrift, Vol. III, volume 88 of Progr. Math., pages 199{227. Birkh¨auser Boston, Boston, MA, 1990. [4] V. A. Voevodski˘ı. Etale´ topologies of schemes over fields of finite type over Q. Izv. Akad. Nauk SSSR Ser. Mat., 54(6):1155{1167, 1990. [5] V. A. Voevodski˘ı. Flags and Grothendieck cartographical group in higher dimensions. CSTARCI Math. Preprints, (05-90), 1990. [6] V. A. Voevodski˘ı.Triangulations of oriented manifolds and ramified coverings of sphere (in Russian). In Proc. Conf. of Young Scientists. Moscow Univ. Press, 1990. [7] V. A. Voevodski˘ı and M. M. Kapranov. 1-groupoids as a model for a homotopy category. Uspekhi Mat. Nauk, 45(5(275)):183{184, 1990. [8] V. A. Voevodski˘ıand M. M. Kapranov. Multidimensional categories (in Russian). In Proc. Conf. of Young Scientists. Moscow Univ. Press, 1990. [9] V. A. Voevodski˘ıand G. B. Shabat. Piece-wise euclidean approximation of Jacobians of algebraic curves. CSTARCI Math. Preprints, (01-90), 1990. [10] M. M. Kapranov and V. A. Voevodsky. Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results). Cahiers Topologie G´eom.Diff´erentielle Cat´eg., 32(1):11{27, 1991.
    [Show full text]
  • Graceful Labeling for Bipartite Graceful Graphs and Related Graphs Chunfeng Liua, Xiuyingwangb ,Guozhu Liub 
    Graceful Labeling For bipartite graceful Graphs and related Graphs a b b Chunfeng Liu , XiuyingWang ,Guozhu Liu a ( College of Science, Liaoning University of Technology, Liaoning,Jinzhou,121013) ( bCollege of Information Science and Technology,Qingdao University of Science and Technology, Shandong, Qingdao 266000) Abstract: The concept of graceful labels was proposed by Rosa, scholars began to study graceful labels of various graphs and obtained relevant results.In this paper,let G is a bipartite graceful graph, we proved that t ★ S(t·G), Pn (tn·G), C(t·G) and G are graceful labelings. Key words: Graceful labeling, Bipartite graceful Graphs, Open star of graphs, Cycle of a graph, Path union of a graph 1. INTRODUCTION AND LEMMEL The graceful labeling was introduced by A Rosa [1] in 1967. Golomb [2] proved that the complete bipartite graph is graceful. Barrientos [3] proved that union of complete bipartite graphs is also graceful. Vaidya [4] introduced a star of cycle. Kaneria and Makadia [5] proved that star of a cycle is graceful. Kaneria [6] proved that join sum of path union and star are graceful graphs. The detail survey of graph labeling refer Gallian [7]. t Let G is a bipartite graceful graph, In this paper, we proved that S(t·G), Pn (tn·G), C(t·G) and G★ are graceful graphs. We assume G is a simple undirected, finite graph, with vertices and edges. For all terminology and notations we follow Harary [8]. We shall give brief summary of definitions which are useful in this paper. Definition1.1 A function f is called graceful labeling of a (p, q)-graph G if f: V(G) → {0,1,2,…,q}is injective and induced function f *: E(G)→{0,1,2,…,q} defined as f (e)=│f(u)−f(v)│ is bijective for every edge e=uv.
    [Show full text]
  • Minimal Acyclic Forbidden Minors for the Family of Graphs with Bounded Path-Width
    Discrete Mathematics 127 (1994) 293-304 293 North-Holland Minimal acyclic forbidden minors for the family of graphs with bounded path-width Atsushi Takahashi, Shuichi Ueno and Yoji Kajitani Department of Electrical and Electronic Engineering, Tokyo Institute of Technology. Tokyo, 152. Japan Received 27 November 1990 Revised 12 February 1992 Abstract The graphs with bounded path-width, introduced by Robertson and Seymour, and the graphs with bounded proper-path-width, introduced in this paper, are investigated. These families of graphs are minor-closed. We characterize the minimal acyclic forbidden minors for these families of graphs. We also give estimates for the numbers of minimal forbidden minors and for the numbers of vertices of the largest minimal forbidden minors for these families of graphs. 1. Introduction Graphs we consider are finite and undirected, but may have loops and multiple edges unless otherwise specified. A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a subgraph of G by contracting edges. A family 9 of graphs is said to be minor-closed if the following condition holds: If GEB and H is a minor of G then H EF. A graph G is a minimal forbidden minor for a minor-closed family F of graphs if G#8 and any proper minor of G is in 9. Robertson and Seymour proved the following deep theorems. Theorem 1.1 (Robertson and Seymour [15]). Every minor-closed family of graphs has a finite number of minimal forbidden minors. Theorem 1.2 (Robertson and Seymour [14]).
    [Show full text]
  • Generalized Solutions of Systems of Nonlinear Partial Differential Equations
    Generalized solutions of systems of nonlinear partial differential equations by Jan Harm van der Walt Submitted in partial fulfilment of the requirements of the degree Philosophiae Doctor in the Department of Mathematics and Applied Mathematics in the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria February 2009 © University of Pretoria i DECLARATION I, the undersigned, hereby declare that the thesis submitted herewith for the degree Philosophiae Doctor to the University of Pretoria contains my own, independent work and has not been submitted for any degree at any other university. Name: Jan Harm van der Walt Date: February 2009 ii Title Generalized solutions of systems of nonlinear partial differential equations Name Jan Harm van der Walt Supervisor Prof E E Rosinger Co-supervisor Prof R Anguelov Department Mathematics and Applied Mathematics Degree Philosophiae Doctor Summary In this thesis, we establish a general and type independent theory for the existence and regularity of generalized solutions of large classes of systems of nonlinear partial differential equations (PDEs). In this regard, our point of departure is the Order Completion Method. The spaces of generalized functions to which the solutions of such systems of PDEs belong are constructed as the completions of suitable uniform convergence spaces of normal lower semi-continuous functions. It is shown that large classes of systems of nonlinear PDEs admit generalized solutions in the mentioned spaces of generalized functions. Furthermore, the gener- alized solutions that we construct satisfy a blanket regularity property, in the sense that such solutions may be assimilated with usual normal lower semi-continuous functions. These fundamental existence and regularity results are obtain as applica- tions of basic topological processes, namely, the completion of uniform convergence spaces, and elementary properties of real valued continuous functions.
    [Show full text]
  • Chapter 3 the Contraction Mapping Principle
    Chapter 3 The Contraction Mapping Principle The notion of a complete space is introduced in Section 1 where it is shown that every metric space can be enlarged to a complete one without further condition. The importance of complete metric spaces partly lies on the Contraction Mapping Principle, which is proved in Section 2. Two major applications of the Contraction Mapping Principle are subsequently given, first a proof of the Inverse Function Theorem in Section 3 and, second, a proof of the fundamental existence and uniqueness theorem for the initial value problem of differential equations in Section 4. 3.1 Complete Metric Space In Rn a basic property is that every Cauchy sequence converges. This property is called the completeness of the Euclidean space. The notion of a Cauchy sequence is well-defined in a metric space. Indeed, a sequence fxng in (X; d) is a Cauchy sequence if for every " > 0, there exists some n0 such that d(xn; xm) < ", for all n; m ≥ n0. A metric space (X; d) is complete if every Cauchy sequence in it converges. A subset E is complete if (E; d E×E) is complete, or, equivalently, every Cauchy sequence in E converges with limit in E. Proposition 3.1. Let (X; d) be a metric space. (a) Every complete set in X is closed. (b) Every closed set in a complete metric space is complete. In particular, this proposition shows that every subset in a complete metric space is complete if and only if it is closed. 1 2 CHAPTER 3. THE CONTRACTION MAPPING PRINCIPLE Proof.
    [Show full text]
  • Connes on the Role of Hyperreals in Mathematics
    Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V.
    [Show full text]