GRACEFUL and PRIME LABELINGS -Algorithms, Embeddings and Conjectures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Analysis of Primality Testing and Its Use in Cryptographic Applications
An Analysis of Primality Testing and Its Use in Cryptographic Applications Jake Massimo Thesis submitted to the University of London for the degree of Doctor of Philosophy Information Security Group Department of Information Security Royal Holloway, University of London 2020 Declaration These doctoral studies were conducted under the supervision of Prof. Kenneth G. Paterson. The work presented in this thesis is the result of original research carried out by myself, in collaboration with others, whilst enrolled in the Department of Mathe- matics as a candidate for the degree of Doctor of Philosophy. This work has not been submitted for any other degree or award in any other university or educational establishment. Jake Massimo April, 2020 2 Abstract Due to their fundamental utility within cryptography, prime numbers must be easy to both recognise and generate. For this, we depend upon primality testing. Both used as a tool to validate prime parameters, or as part of the algorithm used to generate random prime numbers, primality tests are found near universally within a cryptographer's tool-kit. In this thesis, we study in depth primality tests and their use in cryptographic applications. We first provide a systematic analysis of the implementation landscape of primality testing within cryptographic libraries and mathematical software. We then demon- strate how these tests perform under adversarial conditions, where the numbers being tested are not generated randomly, but instead by a possibly malicious party. We show that many of the libraries studied provide primality tests that are not pre- pared for testing on adversarial input, and therefore can declare composite numbers as being prime with a high probability. -
Graceful Labeling for Bipartite Graceful Graphs and Related Graphs Chunfeng Liua, Xiuyingwangb ,Guozhu Liub
Graceful Labeling For bipartite graceful Graphs and related Graphs a b b Chunfeng Liu , XiuyingWang ,Guozhu Liu a ( College of Science, Liaoning University of Technology, Liaoning,Jinzhou,121013) ( bCollege of Information Science and Technology,Qingdao University of Science and Technology, Shandong, Qingdao 266000) Abstract: The concept of graceful labels was proposed by Rosa, scholars began to study graceful labels of various graphs and obtained relevant results.In this paper,let G is a bipartite graceful graph, we proved that t ★ S(t·G), Pn (tn·G), C(t·G) and G are graceful labelings. Key words: Graceful labeling, Bipartite graceful Graphs, Open star of graphs, Cycle of a graph, Path union of a graph 1. INTRODUCTION AND LEMMEL The graceful labeling was introduced by A Rosa [1] in 1967. Golomb [2] proved that the complete bipartite graph is graceful. Barrientos [3] proved that union of complete bipartite graphs is also graceful. Vaidya [4] introduced a star of cycle. Kaneria and Makadia [5] proved that star of a cycle is graceful. Kaneria [6] proved that join sum of path union and star are graceful graphs. The detail survey of graph labeling refer Gallian [7]. t Let G is a bipartite graceful graph, In this paper, we proved that S(t·G), Pn (tn·G), C(t·G) and G★ are graceful graphs. We assume G is a simple undirected, finite graph, with vertices and edges. For all terminology and notations we follow Harary [8]. We shall give brief summary of definitions which are useful in this paper. Definition1.1 A function f is called graceful labeling of a (p, q)-graph G if f: V(G) → {0,1,2,…,q}is injective and induced function f *: E(G)→{0,1,2,…,q} defined as f (e)=│f(u)−f(v)│ is bijective for every edge e=uv. -
MATH 404: ARITHMETIC 1. Divisibility and Factorization After Learning To
MATH 404: ARITHMETIC S. PAUL SMITH 1. Divisibility and Factorization After learning to count, add, and subtract, children learn to multiply and divide. The notion of division makes sense in any ring and much of the initial impetus for the development of abstract algebra arose from problems of division√ and factoriza- tion, especially in rings closely related to the integers such as Z[ d]. In the next several chapters we will follow this historical development by studying arithmetic in these and similar rings. √ To see that there are some serious issues to be addressed notice that in Z[ −5] the number 6 factorizes as a product of irreducibles in two different ways, namely √ √ 6 = 2.3 = (1 + −5)(1 − −5). 1 It isn’t hard to show these factors are irreducible but we postpone√ that for now . The key point for the moment is to note that this implies that Z[ −5] is not a unique factorization domain. This is in stark contrast to the integers. Since our teenage years we have taken for granted the fact that every integer can be written as a product of primes, which in Z are the same things as irreducibles, in a unique way. To emphasize the fact that there are questions to be understood, let us mention that Z[i] is a UFD. Even so, there is the question which primes in Z remain prime in Z[i]? This is a question with a long history: Fermat proved in ??? that a prime p in Z remains prime in Z[i] if and only if it is ≡ 3(mod 4).√ It is then natural to ask for each integer d, which primes in Z remain prime in Z[ d]? These and closely related questions lie behind much of the material we cover in the next 30 or so pages. -
Decompositions and Graceful Labelings (Supplemental Material for Intro to Graph Theory)
Decompositions and Graceful Labelings (Supplemental Material for Intro to Graph Theory) Robert A. Beeler∗ December 17, 2015 1 Introduction A graph decomposition is a particular problem in the field of combinatorial designs (see Wallis [22] for more information on design theory). A graph decomposition of a graph H is a partition of the edge set of H. In this case, the graph H is called the host for the decomposition. Most graph decomposition problems are concerned with the case where every part of the partition is isomorphic to a single graph G. In this case, we refer to the graph G as the prototype for the decomposition. Further, we refer to the parts of the partition as blocks. As an example, consider the host graph Q3 as shown in Figure 1. In this case, we want to find a decomposition of Q3 into isomorphic copies of the path on three vertices, P3. We label the vertices of P3 as an ordered triple (a, b, c). where ab and bc are the edges of P3. The required blocks in the decompositions are (0, 2, 4), (1, 0, 6), (1, 3, 2), (1, 7, 5), (3, 5, 4), and (4, 6, 7). Usually, the goal of a combinatorial design is to determine whether the particular design is possible. The same is true for graph decompositions. Namely, given a host graph H and a prototype G, determine whether there exist a decomposition of H into isomorphic copies of G. Often, this is a difficult problem. In fact, there are entire books written on the subject (for ∗Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614-1700 USA email: [email protected] 1 2 0 1 2 3 4 5 6 7 Figure 1: A P3-decomposition of a Q3 example, see Bos´ak [1] and Diestel [5]). -
13 Lectures on Fermat's Last Theorem
I Paulo Ribenboim 13 Lectures on Fermat's Last Theorem Pierre de Fermat 1608-1665 Springer-Verlag New York Heidelberg Berlin Paulo Ribenboim Department of Mathematics and Statistics Jeffery Hall Queen's University Kingston Canada K7L 3N6 Hommage a AndrC Weil pour sa Leqon: goat, rigueur et pCnCtration. AMS Subiect Classifications (1980): 10-03, 12-03, 12Axx Library of Congress Cataloguing in Publication Data Ribenboim, Paulo. 13 lectures on Fermat's last theorem. Includes bibliographies and indexes. 1. Fermat's theorem. I. Title. QA244.R5 512'.74 79-14874 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag. @ 1979 by Springer-Verlag New York Inc. Printed in the United States of America. 987654321 ISBN 0-387-90432-8 Springer-Verlag New York ISBN 3-540-90432-8 Springer-Verlag Berlin Heidelberg Preface Fermat's problem, also called Fermat's last theorem, has attracted the attention of mathematicians for more than three centuries. Many clever methods have been devised to attack the problem, and many beautiful theories have been created with the aim of proving the theorem. Yet, despite all the attempts, the question remains unanswered. The topic is presented in the form of lectures, where I survey the main lines of work on the problem. In the first two lectures, there is a very brief description of the early history, as well as a selection of a few of the more representative recent results. In the lectures which follow, I examine in suc- cession the main theories connected with the problem. -
Graceful Labeling of Graphs
GRACEFUL LABELING OF GRAPHS Rodrigo Ming Zhou Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia de Sistemas e Computação, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia de Sistemas e Computação. Orientadores: Celina Miraglia Herrera de Figueiredo Vinícius Gusmão Pereira de Sá Rio de Janeiro Dezembro de 2016 GRACEFUL LABELING OF GRAPHS Rodrigo Ming Zhou DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO. Examinada por: Prof. Celina Miraglia Herrera de Figueiredo, D.Sc. Prof. Vinícius Gusmão Pereira de Sá, D.Sc. Prof. Rosiane de Freitas Rodrigues, D.Sc. Prof. Raphael Carlos Santos Machado, D.Sc. RIO DE JANEIRO, RJ – BRASIL DEZEMBRO DE 2016 Zhou, Rodrigo Ming Graceful Labeling of Graphs/Rodrigo Ming Zhou. – Rio de Janeiro: UFRJ/COPPE, 2016. IX, 40 p.: il.; 29; 7cm. Orientadores: Celina Miraglia Herrera de Figueiredo Vinícius Gusmão Pereira de Sá Dissertação (mestrado) – UFRJ/COPPE/Programa de Engenharia de Sistemas e Computação, 2016. Bibliography: p. 38 – 40. 1. graceful labeling. 2. computational proofs. 3. graphs. I. de Figueiredo, Celina Miraglia Herrera et al. II. Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia de Sistemas e Computação. III. Título. iii Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.) GRACEFUL LABELING OF GRAPHS Rodrigo Ming Zhou Dezembro/2016 Orientadores: Celina Miraglia Herrera de Figueiredo Vinícius Gusmão Pereira de Sá Programa: Engenharia de Sistemas e Computação Em 1966, A. -
A Guide to the Graph Labeling Zoo
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector DISCRETE APPLIED MATHEMATICS ELSBVIER Discrete Applied Mathematics 49 (1994) 213-229 A guide to the graph labeling zoo Joseph A. Gallian Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812. USA Received 12 June 1991: revised 10 December 1991 Abstract In this paper we survey many of the variations of graceful and harmonious labeling methods that have been introduced and summarize much of what is known about each kind. 1. Introduction A vertex labeling, valuation or numbering of a graph G is an assignment f of labels to the vertices of G that induces for each edge xy a label depending on the vertex labels f(x) and f(y). Most graph labeling methods trace their origin to one introduced by Rosa [Ga66]’ in 1967, or one given by Graham and Sloane [Ga36] in 1980. Rosa [Ga66] called a functionfa p-valuation of a graph G with 4 edges iffis an injection from the vertices of G to the set (0,1, . , q} such that, when each edge xy is assigned the label IS(x) -f(y) 1, the resulting edge labels are distinct. (Golomb [Ga32] sub- sequently called such labelings grac@ and this term is now the popular one.) Rosa introduced /?-valuations as well as a number of other valuations as tools for decompo- sing the complete graph into isomorphic subgraphs. In particular, /&valuations originated as a means of attacking the conjecture of Ringel [Ga64] that K2,,+ 1 can be decomposed into 2n + 1 subgraphs that are all isomorphic to a given tree with n edges. -
Matching-Type Image-Labelings of Trees
mathematics Article Matching-Type Image-Labelings of Trees Jing Su 1,†, Hongyu Wang 2,† and Bing Yao 3,*,† 1 School of Electronics Engineering and Computer Science, Peking University, No. 5 Yiheyuan Road, Haidian Distruct, Beijing 100871, China; [email protected] 2 National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China; [email protected] 3 College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China * Correspondence: [email protected]; Tel.: +86-1335-942-8694 † These authors contributed equally to this work. Abstract: A variety of labelings on trees have emerged in order to attack the Graceful Tree Conjecture, but lack showing the connections between two labelings. In this paper, we propose two new labelings: vertex image-labeling and edge image-labeling, and combine new labelings to form matching-type image-labeling with multiple restrictions. The research starts from the set-ordered graceful labeling of the trees, and we give several generation methods and relationships for well-known labelings and two new labelings on trees. Keywords: graph labeling; tree; image-labeling; graceful labeling 1. Introduction and Preliminary 1.1. A Simple Introduction Citation: Su, J.; Wang, H.; Yao, B. A graph labeling is an assignment of non-negative integers to the vertices and edges Matching-Type Image-Labelings of of a graph subject to certain conditions. The problem of graph labeling can be traced to a Trees. Mathematics 2021, 9, 1393. well-known Ringel–Kotzig Decomposition Conjecture in popularization [1]: “A complete https://doi.org/10.3390/ graph K2n+1 can be decomposed into 2n + 1 subgraphs that are all isomorphic with a given tree math9121393 of n edges”. -
Common Techniques in Graceful Tree Labeling with a New Computational Approach Michael Guyer
Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Spring 2016 Common Techniques in Graceful Tree Labeling with a New Computational Approach Michael Guyer Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Guyer, M. (2016). Common Techniques in Graceful Tree Labeling with a New Computational Approach (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/609 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. COMMON TECHNIQUES IN GRACEFUL TREE LABELING WITH A NEW COMPUTATIONAL APPROACH A Thesis Submitted to the McAnulty College & Graduate School of Liberal Arts Duquesne University In partial fulfillment of the requirements for the degree of Master of Science By Michael Guyer May 2016 Copyright by Michael Guyer 2016 COMMON TECHNIQUES IN GRACEFUL TREE LABELING WITH A NEW COMPUTATIONAL APPROACH By Michael Guyer Approved April 1, 2016 Dr. Karl Wimmer Dr. John Kern Associate Professor of Mathematics Associate Professor of Statistics (Committee Chair) (Department Chair) Dr. Rachael Neilan Dr. James Swindal Assistant Professor of Mathematics Dean, McAnulty College and Graduate (Committee Member) School of Liberal Arts Professor of Philosophy iii ABSTRACT COMMON TECHNIQUES IN GRACEFUL TREE LABELING WITH A NEW COMPUTATIONAL APPROACH By Michael Guyer May 2016 Thesis supervised by Dr. Karl Wimmer. The graceful tree conjecture was first introduced over 50 years ago, and to this day it remains largely unresolved. Ideas for how to label arbitrary trees have been sparse, and so most work in this area focuses on demonstrating that particular classes of trees are graceful. -
A Performant, Misuse-Resistant API for Primality Testing
A Performant, Misuse-Resistant API for Primality Testing Jake Massimo1 and Kenneth G. Paterson2 1 Information Security Group, Royal Holloway, University of London [email protected] 2 Department of Computer Science, ETH Zurich [email protected] Abstract. Primality testing is a basic cryptographic task. But developers today are faced with complex APIs for primality testing, along with documentation that fails to clearly state the reliability of the tests being performed. This leads to the APIs being incorrectly used in practice, with potentially disastrous consequences. In an effort to overcome this, we present a primality test having a simplest-possible API: the test accepts a number to be tested and returns a Boolean indicating whether the input was composite or probably prime. For all inputs, the output is guaranteed to be correct with probability at least 1 − 2−128. The test is performant: on random, odd, 1024-bit inputs, it is faster than the default test used in OpenSSL by 17%. We investigate the impact of our new test on the cost of random prime generation, a key use case for primality testing. The OpenSSL developers have adopted our suggestions in full; our new API and primality test are scheduled for release in OpenSSL 3.0. 1 Introduction Primality testing, and closely related tasks like random prime generation and testing of Diffie-Hellman parameters, are core cryptographic tasks. Primality testing is by now very well understood mathematically; there is a clear distinction between accuracy and running time of different tests in settings that are malicious (i.e. -
Fermat's Last Theorem for Regular Primes: Dinesh S. Thakur
Fermat's last theorem for regular primes Dinesh S. Thakur The so-called Fermat's last theorem (FLT for short) that `there are no integral solutions to xn + yn = zn, with n > 2 and xyz 6= 0 (a non-triviality condition)' is now proved by Wiles. The proof is outside the scope of this summer school, though we will sketch some ideas in the later lectures. Now we will prove the so-called `regular prime case' of FLT, following Kummer in essence, but connecting with later ideas and simplifications by other mathematicians. It may be advisable to first learn the proof for n = 3 from Hardy and Wright or from Ireland-Rosen pp. 285-286, which prove even stronger result, using only the basics of quadratic fields that we have seen. Since FLT for the exponent n implies FLT for multiples of n and since we proved it for n = 4, it is enough to prove FLT for n = p an odd prime. The basic strategy is the same as before: try to get an infinite descent and thus a contradiction starting with an assumed non-trivial solution. We have p Q i a factorization z = (x + ζpy) and we try to conclude that each factor (apart from GCD) is a p-th power. This conclusion is justified in the case of unique factorization domains. But since we only have unique factorization in ideals in general, we can conclude that each factor is a p-th power of an ideal, which can be further assumed to be principal, if p does not divide h, the class number of Q(ζp). -
A Note on Fuzzy Vertex Graceful Labeling on Double Fan Graph and Double Wheel Graph
International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 12, Number 3 (2017), pp. 729-736 © Research India Publications http://www.ripublication.com A Note on Fuzzy Vertex Graceful labeling on Double Fan Graph and Double Wheel Graph K.Ameenal Bibi 1 and M.Devi2 2,1 PG and Research Department of Mathematics, D.K.M College for Women (Autonomous), Vellore-632001, India. Abstract A labeling on a Graph G which can be gracefully numbered is called a graceful labeling. If a fuzzy graph G admits a graceful labeling and if all the vertex labelings are distinct then G is called a fuzzy vertex graceful graph. In this paper, we discussed fuzzy vertex graceful labeling on double Fan Graph and Double Wheel Graph. Keywords: Fuzzy labeling, Graceful labeling, Fuzzy graceful labeling, Fuzzy Double Fan graph, Fuzzy Double Wheel graph. AMS Mathematics Subject Classification: 05C, 94D 1. INTRODUCTION Fuzzy is a newly emerging mathematical framework to exempt the phenomenon of uncertainty in real life tribulations. It was introduced by Zadeh in 1965, and the concepts were pioneered by various independent researchers, namely Rosenfeld, Kauffmann, etc. A Fuzzy set is defined mathematically by assigning a value to each possible individual in the universe of discourse, representing its grade of membership which corresponds to the degree, to which that individual is similar or compatible with the concept represented the fuzzy set. Based on Zadeh’s Fuzzy relation the first definition of a fuzzy graph was introduced by Kauffmann in 1973. The concept of a graceful 730 K.Ameenal Bibi and M.Devi labeling has been introduced by Rosa in 1967.This note is a further contribution on fuzzy graceful labeling.