Minor-Closed Graph Classes with Bounded Layered Pathwidth

Total Page:16

File Type:pdf, Size:1020Kb

Minor-Closed Graph Classes with Bounded Layered Pathwidth Minor-Closed Graph Classes with Bounded Layered Pathwidth Vida Dujmovi´c z David Eppstein y Gwena¨elJoret x Pat Morin ∗ David R. Wood { 19th October 2018; revised 4th June 2020 Abstract We prove that a minor-closed class of graphs has bounded layered pathwidth if and only if some apex-forest is not in the class. This generalises a theorem of Robertson and Seymour, which says that a minor-closed class of graphs has bounded pathwidth if and only if some forest is not in the class. 1 Introduction Pathwidth and treewidth are graph parameters that respectively measure how similar a given graph is to a path or a tree. These parameters are of fundamental importance in structural graph theory, especially in Roberston and Seymour's graph minors series. They also have numerous applications in algorithmic graph theory. Indeed, many NP-complete problems are solvable in polynomial time on graphs of bounded treewidth [23]. Recently, Dujmovi´c,Morin, and Wood [19] introduced the notion of layered treewidth. Loosely speaking, a graph has bounded layered treewidth if it has a tree decomposition and a layering such that each bag of the tree decomposition contains a bounded number of vertices in each layer (defined formally below). This definition is interesting since several natural graph classes, such as planar graphs, that have unbounded treewidth have bounded layered treewidth. Bannister, Devanny, Dujmovi´c,Eppstein, and Wood [1] introduced layered pathwidth, which is analogous to layered treewidth where the tree decomposition is arXiv:1810.08314v2 [math.CO] 4 Jun 2020 required to be a path decomposition. zSchool of Computer Science and Electrical Engineering, University of Ottawa, Ottawa, Canada (vida.dujmovic@uottawa.ca). Research supported by NSERC and the Ontario Ministry of Research and Innovation. xD´epartement d'Informatique, Universit´eLibre de Bruxelles, Brussels, Belgium (gjoret@ulb.ac.be). Supported by an ARC grant from the Wallonia-Brussels Federation of Belgium. yDepartment of Computer Science, University of California, Irvine, California, USA (eppstein@uci.edu). Supported in part by NSF grants CCF-1618301 and CCF-1616248. ∗School of Computer Science, Carleton University, Ottawa, Canada (morin@scs.carleton.ca). Research supported by NSERC. {School of Mathematics, Monash University, Melbourne, Australia (david.wood@monash.edu). Research supported by the Australian Research Council. 1 The purpose of this paper is to characterise the minor-closed graph classes with bounded layered pathwidth. 1.1 Definitions Before continuing, we define the above notions. A tree decomposition of a graph G is a collection (Bx ⊆ V (G): x 2 V (T )) of subsets of V (G) (called bags) indexed by the nodes of a tree T , such that: (i) for every edge uv of G, some bag Bx contains both u and v, and (ii) for every vertex v of G, the set fx 2 V (T ): v 2 Bxg induces a non-empty connected subtree of T . The width of a tree decomposition is the size of the largest bag minus 1. The treewidth of a graph G, denoted by tw(G), is the minimum width of a tree decomposition of G. A path decomposition is a tree decomposition in which the underlying tree is a path. We denote a path decomposition by the corresponding sequence of bags (B1;:::;Bn). The pathwidth of G, denoted by pw(G), is the minimum width of a path decomposition of G. A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. A class of graphs G is minor-closed if for every G 2 G, every minor of G is in G. A layering of a graph G is a partition (V0;V1;:::;Vt) of V (G) such that for every edge vw 2 E(G), if v 2 Vi and w 2 Vj then ji − jj 6 1. Each set Vi is called a layer. For example, for a vertex r of a connected graph G, if Vi is the set of vertices at distance i from r, then (V0;V1;::: ) is a layering of G, called the bfs layering of G starting from r. Dujmovi´cet al. [19] introduced the following definition. The layered width of a tree decomposition (Bx : x 2 V (T )) of a graph G is the minimum integer ` such that, for some layering (V0;V1;:::;Vt) of G, each bag Bx contains at most ` vertices in each layer Vi. The layered treewidth of a graph G, denoted by ltw(G), is the minimum layered width of a tree decomposition of G. Bannister et al. [1] defined the layered pathwidth of a graph G, denoted by lpw(G), to be the minimum layered width of a path decomposition of G. For a graph parameter f (such as treewidth, pathwidth, layered treewidth or layered pathwidth), a graph class G has bounded f is there exists a constant c such that f(G) 6 c for every graph G 2 G. 1.2 Examples and Applications Several interesting graph classes have bounded layered treewidth (despite having unbounded treewidth). For example, Dujmovi´cet al. [19] proved that every planar graph has layered treewidth at most 3, and more generally that every graph with Euler genus g has layered treewidth at most 2g + 3. Note that layered treewidth and layered pathwidth are not minor-closed parameters (unlike treewidth and pathwidth). In fact, several graph classes 2 that contain arbitrarily large clique minors have bounded layered treewidth or bounded layered pathwidth. For example, Dujmovi´c,Eppstein, and Wood [15] proved that every graph that can be drawn on a surface of Euler genus g with at most k crossings per edge has layered treewidth at most 2(2g + 3)(k + 1). Even with g = 0 and k = 1, this family includes graphs with arbitrarily large clique minors. Map graphs have similar behaviour [15]. Bannister et al. [1] identified the following natural graph classes1 that have bounded layered pathwidth (despite having unbounded pathwidth): every squaregraph has layered pathwidth 1; every bipartite outerplanar graph has layered pathwidth 1; every outerplanar graph has layered pathwidth at most 2; every Halin graph has layered pathwidth at most 2; and every unit disc graph with clique number k has layered pathwidth at most 4k. Part of the motivation for studying graphs with bounded layered treewidth or pathwidth is that such graphs have several desirable properties. For example, Norin proved that every p n-vertex graph with layered treewidth k has treewidth less than 2 kn (see [19]). This leads to a very simple proof of the Lipton-Tarjan separator theorem. A standard trick leads to an p upper bound of 11 kn on the pathwidth (see [15]). Another application is to stack layouts (or book embeddings), queue layouts and track layouts. Dujmovi´cet al. [19] proved that every n-vertex graph with layered treewidth k has track- and queue-number O(k log n). This leads to the best known bounds on the track- and queue-number of several natural graph classes2. For graphs with bounded layered pathwidth, the dependence on n can be eliminated: Bannister et al. [1] proved that every graph with layered pathwidth k has track- and queue-number at most 3k. Similarly, Dujmovi´c,Morin, and Yelle [20] proved that every graph with layered pathwidth k has stack-number at most 4k. Graph colouring is another application area for layered treewidth. Esperet and Joret [22] proved that every graph with maximum degree ∆ and Euler genus g is (improperly) 3- colourable with bounded clustering, which means that each monochromatic component has size bounded by some function of ∆ and g. This resolved an old open problem even in the planar case (g = 0). The clustering function proved by Esperet and Joret [22] is roughly O(∆32∆ 2g ). While Esperet and Joret [22] made no effort to reduce this function, their method will not lead to a sub-exponential clustering bound. On the other hand, Liu and Wood [30] proved that every graph with layered treewidth k and maximum degree ∆ is 3-colourable with clustering O(k19∆37), which was recently improved to O(k3∆2) by Dujmovi´c,Esperet, Morin, Walczak, and Wood [16]. In particular, every graph with Euler genus g and maximum degree ∆ is 3-colorable with clustering O(g3∆2). This greatly improves upon the clustering bound of Esperet and Joret [22]. Moreover, the proofs in [16, 30] are relatively simple, avoiding many technicalities that arise when dealing with graph embeddings. These results highlight the utility of layered treewidth as a general tool. 1A squaregraph is a graph that has an embedding in the plane in which each bounded face is a 4-cycle and each vertex either belongs to the unbounded face or has degree at least 4. A Halin graph is a planar graph obtained from a tree T with at least four vertices and with no vertices of degree 2 by adding a cycle through the leaves of T in the clockwise order determined by a plane embedding of T . For a set P of points in the plane, the unit disc graph G of P has vertex set P , where vw 2 E(G) if and only if dist(v; w) 6 1. 2Subsequent to the submission of this paper, improved bounds on the queue-number have been obtained [17]. Still it is open whether graphs of bounded layered treewidth have bounded queue-number. 3 1.3 Characterisations We now turn to the question of characterising those minor-closed classes that have bounded treewidth. The key example is the n×n grid graph, which has treewidth n.
Recommended publications
  • On Treewidth and Graph Minors
    On Treewidth and Graph Minors Daniel John Harvey Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Department of Mathematics and Statistics The University of Melbourne Produced on archival quality paper ii Abstract Both treewidth and the Hadwiger number are key graph parameters in structural and al- gorithmic graph theory, especially in the theory of graph minors. For example, treewidth demarcates the two major cases of the Robertson and Seymour proof of Wagner's Con- jecture. Also, the Hadwiger number is the key measure of the structural complexity of a graph. In this thesis, we shall investigate these parameters on some interesting classes of graphs. The treewidth of a graph defines, in some sense, how \tree-like" the graph is. Treewidth is a key parameter in the algorithmic field of fixed-parameter tractability. In particular, on classes of bounded treewidth, certain NP-Hard problems can be solved in polynomial time. In structural graph theory, treewidth is of key interest due to its part in the stronger form of Robertson and Seymour's Graph Minor Structure Theorem. A key fact is that the treewidth of a graph is tied to the size of its largest grid minor. In fact, treewidth is tied to a large number of other graph structural parameters, which this thesis thoroughly investigates. In doing so, some of the tying functions between these results are improved. This thesis also determines exactly the treewidth of the line graph of a complete graph. This is a critical example in a recent paper of Marx, and improves on a recent result by Grohe and Marx.
    [Show full text]
  • Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-Connected Graphs with Bounded Maximum Degrees
    Georgia State University ScholarWorks @ Georgia State University Mathematics Dissertations Department of Mathematics and Statistics 5-11-2015 Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees Songling Shan Follow this and additional works at: https://scholarworks.gsu.edu/math_diss Recommended Citation Shan, Songling, "Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees." Dissertation, Georgia State University, 2015. https://scholarworks.gsu.edu/math_diss/23 This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu. Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees by Songling Shan Under the Direction of Guantao Chen, PhD ABSTRACT A tree T with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT) and if T is spanning in a graph, then T is called a homeomorphically irreducible spanning tree (HIST). Albertson, Berman, Hutchinson and Thomassen asked if every triangulation of at least 4 vertices has a HIST and if every connected graph with each edge in at least two triangles contains a HIST. These two questions were restated as two conjectures by Archdeacon in 2009. The first part of this dissertation gives a proof for each of the two conjectures. The second part focuses on some problems about Halin graphs, which is a class of graphs closely related to HITs and HISTs.
    [Show full text]
  • Randomly Coloring Graphs of Logarithmically Bounded Pathwidth Shai Vardi
    Randomly coloring graphs of logarithmically bounded pathwidth Shai Vardi To cite this version: Shai Vardi. Randomly coloring graphs of logarithmically bounded pathwidth. 2018. hal-01832102 HAL Id: hal-01832102 https://hal.archives-ouvertes.fr/hal-01832102 Preprint submitted on 6 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Randomly coloring graphs of logarithmically bounded pathwidth Shai Vardi∗ Abstract We consider the problem of sampling a proper k-coloring of a graph of maximal degree ∆ uniformly at random. We describe a new Markov chain for sampling colorings, and show that it mixes rapidly on graphs of logarithmically bounded pathwidth if k ≥ (1 + )∆, for any > 0, using a new hybrid paths argument. ∗California Institute of Technology, Pasadena, CA, 91125, USA. E-mail: svardi@caltech.edu. 1 Introduction A (proper) k-coloring of a graph G = (V; E) is an assignment σ : V ! f1; : : : ; kg such that neighboring vertices have different colors. We consider the problem of sampling (almost) uniformly at random from the space of all k-colorings of a graph.1 The problem has received considerable attention from the computer science community in recent years, e.g., [12, 17, 24, 26, 33, 44, 45].
    [Show full text]
  • K-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees
    k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees Yuval Emek∗ Abstract Low distortion probabilistic embedding of graphs into approximating trees is an extensively studied topic. Of particular interest is the case where the approximating trees are required to be (subgraph) spanning trees of the given graph (or multigraph), in which case, the focus is usually on the equivalent problem of finding a (single) tree with low average stretch. Among the classes of graphs that received special attention in this context are k-outerplanar graphs (for a fixed k): Chekuri, Gupta, Newman, Rabinovich, and Sinclair show that every k-outerplanar graph can be probabilistically embedded into approximating trees with constant distortion regardless of the size of the graph. The approximating trees in the technique of Chekuri et al. are not necessarily spanning trees, though. In this paper it is shown that every k-outerplanar multigraph admits a spanning tree with constant average stretch. This immediately translates to a constant bound on the distortion of probabilistically embedding k-outerplanar graphs into their spanning trees. Moreover, an efficient randomized algorithm is presented for constructing such a low average stretch spanning tree. This algorithm relies on some new insights regarding the connection between low average stretch spanning trees and planar duality. Keywords: planar graphs, outerplanarity, average stretch, planar dual. ∗Microsoft Israel R&D Center, Herzelia, Israel and School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel. E-mail: yuvale@eng.tau.ac.il. Supported in part by the Israel Science Foundation, grants 221/07 and 664/05. 1 Introduction The problem.
    [Show full text]
  • The Complexity of Two Graph Orientation Problems
    The Complexity of Two Graph Orientation Problems Nicole Eggemann∗ and Steven D. Noble† Department of Mathematical Sciences, Brunel University Kingston Lane Uxbridge UB8 3PH United Kingdom nicole.eggemann@brunel.ac.uk and steven.noble@brunel.ac.uk November 8, 2018 Abstract We consider two orientation problems in a graph, namely the mini- mization of the sum of all the shortest path lengths and the minimization of the diameter. We show that it is NP-complete to decide whether a graph has an orientation such that the sum of all the shortest paths lengths is at most an integer specified in the input. The proof is a short reduction from a result of Chv´atal and Thomassen showing that it is NP-complete to decide whether a graph can be oriented so that its diameter is at most 2. In contrast, for each positive integer k, we describe a linear-time algo- rithm that decides for a planar graph G whether there is an orientation for which the diameter is at most k. We also extend this result from planar graphs to any minor-closed family F not containing all apex graphs. 1 Introduction We consider two problems concerned with orienting the edges of an undirected graph in order to minimize two global measures of distance in the resulting directed graph. Our work is motivated by an application involving the design of arXiv:1004.2478v1 [math.CO] 14 Apr 2010 urban light rail networks of the sort described in [22]. In such an application, a number of stations are to be linked with unidirectional track in order to minimize some function of the travel times between stations and subject to constraints on cost, engineering and planning.
    [Show full text]
  • Zadání Bakalářské Práce
    ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ZADÁNÍ BAKALÁŘSKÉ PRÁCE Název: Rekurzivně konstruovatelné grafy Student: Anežka Štěpánková Vedoucí: RNDr. Jiřina Scholtzová, Ph.D. Studijní program: Informatika Studijní obor: Teoretická informatika Katedra: Katedra teoretické informatiky Platnost zadání: Do konce letního semestru 2016/17 Pokyny pro vypracování Souvislé rekurentně zadané grafy jsou souvislé grafy, pro které existuje postup, jak ze zadaného grafu odvodit graf nový. V předmětu BI-GRA jste se s jednoduchými rekurentními grafy setkali, vždy šly popsat lineárními rekurentními rovnicemi s konstantními koeficienty. Existuje klasifikace, která definuje třídu rekurzivně konstruovatelných grafů [1]. Podobně jako u grafů v BI-GRA zjistěte, zda lze některé z kategorií rekurzivně konstruovatelných grafů popsat rekurentními rovnicemi. 1. Seznamte se s rekurentně zadanými grafy. 2. Seznamte se s rekurzivně konstruovatelnými grafy a nastudujte články o nich. 3. Vyberte si některé z kategorií rekurzivně konstruovatelných grafů [1]. 4. Pro vybrané kategorie najděte způsob, jak je popsat využitím rekurentních rovnic. Seznam odborné literatury [1] Gross, Jonathan L., Jay Yellen, Ping Zhang. Handbook of Graph Theory, 2nd ed, Boca Raton: CRC, 2013. ISBN: 978-1-4398-8018-0 doc. Ing. Jan Janoušek, Ph.D. prof. Ing. Pavel Tvrdík, CSc. vedoucí katedry děkan V Praze dne 18. února 2016 České vysoké učení technické v Praze Fakulta informačních technologií Katedra Teoretické informatiky Bakalářská práce Rekurzivně konstruovatelné grafy Anežka Štěpánková Vedoucí práce: RNDr. Jiřina Scholtzová Ph.D. 12. května 2017 Poděkování Děkuji vedoucí práce RNDr. Jiřině Scholtzové Ph.D., která mi ochotně vyšla vstříc s volbou tématu a v průběhu tvorby práce vždy dobře poradila a na- směrovala mne správným směrem.
    [Show full text]
  • Arxiv:2104.09976V2 [Cs.CG] 2 Jun 2021
    Finding Geometric Representations of Apex Graphs is NP-Hard Dibyayan Chakraborty* and Kshitij Gajjar† June 3, 2021 Abstract Planar graphs can be represented as intersection graphs of different types of geometric objects in the plane, e.g., circles (Koebe, 1936), line segments (Chalopin & Gonc¸alves, 2009), L-shapes (Gonc¸alves et al., 2018). For general graphs, however, even deciding whether such representations exist is often NP-hard. We consider apex graphs, i.e., graphs that can be made planar by removing one vertex from them. We show, somewhat surprisingly, that deciding whether geometric representations exist for apex graphs is NP-hard. More precisely, we show that for every positive integer k, recognizing every graph class G which satisfies PURE-2-DIR ⊆ G ⊆ 1-STRING is NP-hard, even when the input graphs are apex graphs of girth at least k. Here, PURE-2-DIR is the class of intersection graphs of axis-parallel line segments (where intersections are allowed only between horizontal and vertical segments) and 1-STRING is the class of intersection graphs of simple curves (where two curves share at most one point) in the plane. This partially answers an open question raised by Kratochv´ıl & Pergel (2007). Most known NP-hardness reductions for these problems are from variants of 3-SAT. We reduce from the PLANAR HAMILTONIAN PATH COMPLETION problem, which uses the more intuitive notion of planarity. As a result, our proof is much simpler and encapsulates several classes of geometric graphs. Keywords: Planar graphs, apex graphs, NP-hard, Hamiltonian path completion, recognition problems, geometric intersection graphs, 1-STRING, PURE-2-DIR.
    [Show full text]
  • Minimal Acyclic Forbidden Minors for the Family of Graphs with Bounded Path-Width
    Discrete Mathematics 127 (1994) 293-304 293 North-Holland Minimal acyclic forbidden minors for the family of graphs with bounded path-width Atsushi Takahashi, Shuichi Ueno and Yoji Kajitani Department of Electrical and Electronic Engineering, Tokyo Institute of Technology. Tokyo, 152. Japan Received 27 November 1990 Revised 12 February 1992 Abstract The graphs with bounded path-width, introduced by Robertson and Seymour, and the graphs with bounded proper-path-width, introduced in this paper, are investigated. These families of graphs are minor-closed. We characterize the minimal acyclic forbidden minors for these families of graphs. We also give estimates for the numbers of minimal forbidden minors and for the numbers of vertices of the largest minimal forbidden minors for these families of graphs. 1. Introduction Graphs we consider are finite and undirected, but may have loops and multiple edges unless otherwise specified. A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a subgraph of G by contracting edges. A family 9 of graphs is said to be minor-closed if the following condition holds: If GEB and H is a minor of G then H EF. A graph G is a minimal forbidden minor for a minor-closed family F of graphs if G#8 and any proper minor of G is in 9. Robertson and Seymour proved the following deep theorems. Theorem 1.1 (Robertson and Seymour [15]). Every minor-closed family of graphs has a finite number of minimal forbidden minors. Theorem 1.2 (Robertson and Seymour [14]).
    [Show full text]
  • Characterizations of Restricted Pairs of Planar Graphs Allowing Simultaneous Embedding with Fixed Edges
    Characterizations of Restricted Pairs of Planar Graphs Allowing Simultaneous Embedding with Fixed Edges J. Joseph Fowler1, Michael J¨unger2, Stephen Kobourov1, and Michael Schulz2 1 University of Arizona, USA {jfowler,kobourov}@cs.arizona.edu ⋆ 2 University of Cologne, Germany {mjuenger,schulz}@informatik.uni-koeln.de ⋆⋆ Abstract. A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the Euclidean plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same simple curve in the simultaneous drawing. Determining in polynomial time which pairs of graphs share a simultaneous embedding with fixed edges (SEFE) has been open. We give a necessary and sufficient condition for when a pair of graphs whose union is homeomorphic to K5 or K3,3 can have an SEFE. This allows us to determine which (outer)planar graphs always an SEFE with any other (outer)planar graphs. In both cases, we provide efficient al- gorithms to compute the simultaneous drawings. Finally, we provide an linear-time decision algorithm for deciding whether a pair of biconnected outerplanar graphs has an SEFE. 1 Introduction In many practical applications including the visualization of large graphs and very-large-scale integration (VLSI) of circuits on the same chip, edge crossings are undesirable. A single vertex set can be used with multiple edge sets that each correspond to different edge colors or circuit layers. While the pairwise union of all edge sets may be nonplanar, a planar drawing of each layer may be possible, as crossings between edges of distinct edge sets are permitted.
    [Show full text]
  • Characterizations of Graphs Without Certain Small Minors by J. Zachary
    Characterizations of Graphs Without Certain Small Minors By J. Zachary Gaslowitz Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Mathematics May 11, 2018 Nashville, Tennessee Approved: Mark Ellingham, Ph.D. Paul Edelman, Ph.D. Bruce Hughes, Ph.D. Mike Mihalik, Ph.D. Jerry Spinrad, Ph.D. Dong Ye, Ph.D. TABLE OF CONTENTS Page 1 Introduction . 2 2 Previous Work . 5 2.1 Planar Graphs . 5 2.2 Robertson and Seymour's Graph Minor Project . 7 2.2.1 Well-Quasi-Orderings . 7 2.2.2 Tree Decomposition and Treewidth . 8 2.2.3 Grids and Other Graphs with Large Treewidth . 10 2.2.4 The Structure Theorem and Graph Minor Theorem . 11 2.3 Graphs Without K2;t as a Minor . 15 2.3.1 Outerplanar and K2;3-Minor-Free Graphs . 15 2.3.2 Edge-Density for K2;t-Minor-Free Graphs . 16 2.3.3 On the Structure of K2;t-Minor-Free Graphs . 17 3 Algorithmic Aspects of Graph Minor Theory . 21 3.1 Theoretical Results . 21 3.2 Practical Graph Minor Containment . 22 4 Characterization and Enumeration of 4-Connected K2;5-Minor-Free Graphs 25 4.1 Preliminary Definitions . 25 4.2 Characterization . 30 4.3 Enumeration . 38 5 Characterization of Planar 4-Connected DW6-minor-free Graphs . 51 6 Future Directions . 91 BIBLIOGRAPHY . 93 1 Chapter 1 Introduction All graphs in this paper are finite and simple. Given a graph G, the vertex set of G is denoted V (G) and the edge set is denoted E(G).
    [Show full text]
  • Approximating the Maximum Clique Minor and Some Subgraph Homeomorphism Problems
    Approximating the maximum clique minor and some subgraph homeomorphism problems Noga Alon1, Andrzej Lingas2, and Martin Wahlen2 1 Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv. nogaa@tau.ac.il 2 Department of Computer Science, Lund University, 22100 Lund. Andrzej.Lingas@cs.lth.se, martin@cs.lth.se, Fax +46 46 13 10 21 Abstract. We consider the “minor” and “homeomorphic” analogues of the maximum clique problem, i.e., the problems of determining the largest h such that the input graph (on n vertices) has a minor isomorphic to Kh or a subgraph homeomorphic to Kh, respectively, as well as the problem of finding the corresponding subgraphs. We term them as the maximum clique minor problem and the maximum homeomorphic clique problem, respectively. We observe that a known result of Kostochka and √ Thomason supplies an O( n) bound on the approximation factor for the maximum clique minor problem achievable in polynomial time. We also provide an independent proof of nearly the same approximation factor with explicit polynomial-time estimation, by exploiting the minor separator theorem of Plotkin et al. Next, we show that another known result of Bollob´asand Thomason √ and of Koml´osand Szemer´ediprovides an O( n) bound on the ap- proximation factor for the maximum homeomorphic clique achievable in γ polynomial time. On the other hand, we show an Ω(n1/2−O(1/(log n) )) O(1) lower bound (for some constant γ, unless N P ⊆ ZPTIME(2(log n) )) on the best approximation factor achievable efficiently for the maximum homeomorphic clique problem, nearly matching our upper bound.
    [Show full text]
  • A Note on Max-Leaves Spanning Tree Problem in Halin Graphs
    AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 29 (2004), Pages 95–97 A note on max-leaves spanning tree problem in Halin graphs Dingjun Lou Huiquan Zhu Department of Computer Science Zhongshan University Guangzhou 510275 People’s Republic of China Abstract A Halin graph H is a planar graph obtained by drawing a tree T in the plane, where T has no vertex of degree 2, then drawing a cycle C through all leaves in the plane. We write H = T ∪ C,whereT is called the characteristic tree and C is called the accompanying cycle. The problem is to find a spanning tree with the maximum number of leaves in a Halin graph. In this paper, we prove that the characteristic tree in a Halin graph H is one of the spanning trees with maximum number of leaves in H, and we design a linear time algorithm to find such a tree in the Halin graph. All graphs in this paper are finite, undirected and simple. We follow the termi- nology and notation of [1] and [6]. A Halin graph H is a planar graph obtained by drawing a tree T in the plane, where T has no vertex of degree 2, then drawing a cycle through all leaves of T in the plane. We write H = T ∪ C,whereT is called the characteristic tree and C is called the accompanying cycle. In this paper, we deal with the problem of finding a spanning tree with maximum number of leaves in a Halin graph. The problem of finding a spanning tree with maximum number of leaves for arbitrary graphs is NP-complete (see [3], Problem [ND 2]).
    [Show full text]