Star Coloring Outerplanar Bipartite Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
K-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees
k-Outerplanar Graphs, Planar Duality, and Low Stretch Spanning Trees Yuval Emek∗ Abstract Low distortion probabilistic embedding of graphs into approximating trees is an extensively studied topic. Of particular interest is the case where the approximating trees are required to be (subgraph) spanning trees of the given graph (or multigraph), in which case, the focus is usually on the equivalent problem of finding a (single) tree with low average stretch. Among the classes of graphs that received special attention in this context are k-outerplanar graphs (for a fixed k): Chekuri, Gupta, Newman, Rabinovich, and Sinclair show that every k-outerplanar graph can be probabilistically embedded into approximating trees with constant distortion regardless of the size of the graph. The approximating trees in the technique of Chekuri et al. are not necessarily spanning trees, though. In this paper it is shown that every k-outerplanar multigraph admits a spanning tree with constant average stretch. This immediately translates to a constant bound on the distortion of probabilistically embedding k-outerplanar graphs into their spanning trees. Moreover, an efficient randomized algorithm is presented for constructing such a low average stretch spanning tree. This algorithm relies on some new insights regarding the connection between low average stretch spanning trees and planar duality. Keywords: planar graphs, outerplanarity, average stretch, planar dual. ∗Microsoft Israel R&D Center, Herzelia, Israel and School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel. E-mail: [email protected]. Supported in part by the Israel Science Foundation, grants 221/07 and 664/05. 1 Introduction The problem. -
Characterizations of Restricted Pairs of Planar Graphs Allowing Simultaneous Embedding with Fixed Edges
Characterizations of Restricted Pairs of Planar Graphs Allowing Simultaneous Embedding with Fixed Edges J. Joseph Fowler1, Michael J¨unger2, Stephen Kobourov1, and Michael Schulz2 1 University of Arizona, USA {jfowler,kobourov}@cs.arizona.edu ⋆ 2 University of Cologne, Germany {mjuenger,schulz}@informatik.uni-koeln.de ⋆⋆ Abstract. A set of planar graphs share a simultaneous embedding if they can be drawn on the same vertex set V in the Euclidean plane without crossings between edges of the same graph. Fixed edges are common edges between graphs that share the same simple curve in the simultaneous drawing. Determining in polynomial time which pairs of graphs share a simultaneous embedding with fixed edges (SEFE) has been open. We give a necessary and sufficient condition for when a pair of graphs whose union is homeomorphic to K5 or K3,3 can have an SEFE. This allows us to determine which (outer)planar graphs always an SEFE with any other (outer)planar graphs. In both cases, we provide efficient al- gorithms to compute the simultaneous drawings. Finally, we provide an linear-time decision algorithm for deciding whether a pair of biconnected outerplanar graphs has an SEFE. 1 Introduction In many practical applications including the visualization of large graphs and very-large-scale integration (VLSI) of circuits on the same chip, edge crossings are undesirable. A single vertex set can be used with multiple edge sets that each correspond to different edge colors or circuit layers. While the pairwise union of all edge sets may be nonplanar, a planar drawing of each layer may be possible, as crossings between edges of distinct edge sets are permitted. -
A Note on Soenergy of Stars, Bi-Stars and Double Star Graphs
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 6(2016), 105-113 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p) A NOTE ON soENERGY OF STARS, BISTAR AND DOUBLE STAR GRAPHS S. P. Jeyakokila and P. Sumathi Abstract. Let G be a finite non trivial connected graph.In the earlier paper idegree, odegree, oidegree of a minimal dominating set of G were introduced, oEnergy of a graph with respect to the minimal dominating set was calculated in terms of idegree and odegree. Algorithm to get the soEnergy was also introduced and soEnergy was calculated for some standard graphs in the earlier papers. In this paper soEnergy of stars, bistars and double stars with respect to the given dominating set are found out. 1. INTRODUCTION Let G = (V; E) be a finite non trivial connected graph. A set D ⊂ V is a dominating set of G if every vertex in V − D is adjacent to some vertex in D.A dominating set D of G is called a minimal dominating set if no proper subset of D is a dominating set. Star graph is a tree consisting of one vertex adjacent to all the others. Bistar is a graph obtained from K2 by joining n pendent edges to both the ends of K2. Double star is the graph obtained from K2 by joining m pendent edges to one end and n pendent edges to the other end of K2. -
Total Chromatic Number of Star and Bistargraphs 1D
International Journal of Pure and Applied Mathematics Volume 117 No. 21 2017, 699-708 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu Total Chromatic Number of Star and BistarGraphs 1D. Muthuramakrishnanand 2G. Jayaraman 1Department of Mathematics, National College, Trichy, Tamil Nadu, India. [email protected] 2Research Scholar, National College, Trichy, Tamil Nadu, India. [email protected] Abstract A total coloring of a graph G is an assignment of colors to both the vertices and edges of G, such that no two adjacent or incident vertices and edges of G are assigned the same colors. In this paper, we have discussed 2 the total coloring of 푀 퐾1,푛 , 푇 퐾1,푛 , 퐿 퐾1,푛 and 퐵푛,푛and we obtained the 2 total chromatic number of 푀 퐾1,푛 , 푇 퐾1,푛 , 퐿 퐾1,푛 and 퐵푛,푛. AMS Subject Classification: 05C15 Keywords and Phrases:Middle graph, line graph, total graph, star graph, square graph, total coloring and total chromatic number. 699 International Journal of Pure and Applied Mathematics Special Issue 1. Introduction In this paper, we have chosen finite, simple and undirected graphs. Let퐺 = (푉 퐺 , 퐸 퐺 ) be a graph with the vertex set 푉(퐺) and the edge set E(퐺), respectively. In 1965, the concept of total coloring was introduced by Behzad [1] and in 1967 he [2] came out new ideology that, the total chromatic number of complete graph and complete bi-partite graph. A total coloring of퐺, is a function 푓: 푆 → 퐶, where 푆 = 푉 퐺 ∪ 퐸 퐺 and C is a set of colors to satisfies the given conditions. -
A Survey of Graph Coloring - Its Types, Methods and Applications
FOUNDATIONS OF COMPUTING AND DECISION SCIENCES Vol. 37 (2012) No. 3 DOI: 10.2478/v10209-011-0012-y A SURVEY OF GRAPH COLORING - ITS TYPES, METHODS AND APPLICATIONS Piotr FORMANOWICZ1;2, Krzysztof TANA1 Abstract. Graph coloring is one of the best known, popular and extensively researched subject in the eld of graph theory, having many applications and con- jectures, which are still open and studied by various mathematicians and computer scientists along the world. In this paper we present a survey of graph coloring as an important subeld of graph theory, describing various methods of the coloring, and a list of problems and conjectures associated with them. Lastly, we turn our attention to cubic graphs, a class of graphs, which has been found to be very interesting to study and color. A brief review of graph coloring methods (in Polish) was given by Kubale in [32] and a more detailed one in a book by the same author. We extend this review and explore the eld of graph coloring further, describing various results obtained by other authors and show some interesting applications of this eld of graph theory. Keywords: graph coloring, vertex coloring, edge coloring, complexity, algorithms 1 Introduction Graph coloring is one of the most important, well-known and studied subelds of graph theory. An evidence of this can be found in various papers and books, in which the coloring is studied, and the problems and conjectures associated with this eld of research are being described and solved. Good examples of such works are [27] and [28]. In the following sections of this paper, we describe a brief history of graph coloring and give a tour through types of coloring, problems and conjectures associated with them, and applications. -
Minor-Closed Graph Classes with Bounded Layered Pathwidth
Minor-Closed Graph Classes with Bounded Layered Pathwidth Vida Dujmovi´c z David Eppstein y Gwena¨elJoret x Pat Morin ∗ David R. Wood { 19th October 2018; revised 4th June 2020 Abstract We prove that a minor-closed class of graphs has bounded layered pathwidth if and only if some apex-forest is not in the class. This generalises a theorem of Robertson and Seymour, which says that a minor-closed class of graphs has bounded pathwidth if and only if some forest is not in the class. 1 Introduction Pathwidth and treewidth are graph parameters that respectively measure how similar a given graph is to a path or a tree. These parameters are of fundamental importance in structural graph theory, especially in Roberston and Seymour's graph minors series. They also have numerous applications in algorithmic graph theory. Indeed, many NP-complete problems are solvable in polynomial time on graphs of bounded treewidth [23]. Recently, Dujmovi´c,Morin, and Wood [19] introduced the notion of layered treewidth. Loosely speaking, a graph has bounded layered treewidth if it has a tree decomposition and a layering such that each bag of the tree decomposition contains a bounded number of vertices in each layer (defined formally below). This definition is interesting since several natural graph classes, such as planar graphs, that have unbounded treewidth have bounded layered treewidth. Bannister, Devanny, Dujmovi´c,Eppstein, and Wood [1] introduced layered pathwidth, which is analogous to layered treewidth where the tree decomposition is arXiv:1810.08314v2 [math.CO] 4 Jun 2020 required to be a path decomposition. -
Achromatic Coloring on Double Star Graph Families
International J.Math. Combin. Vol.3 (2009), 71-81 Achromatic Coloring on Double Star Graph Families Vernold Vivin J. Department of Mathematics, Sri Shakthi Institute of Engineering and Technology, Coimbatore - 641 062, Tamil Nadu, India. E-mail: vernold [email protected], [email protected] Venkatachalam M. Department of Mathematics, SSK College of Engineering and Technology, Coimbatore - 641 105, Tamil Nadu, India. E-mail: [email protected] Akbar Ali M.M. Department of Mathematics, Sri Shakthi Institute of Engineering and Technology, Coimbatore - 641 062, Tamil Nadu, India. E-mail: um [email protected] Abstract: The purpose of this article is to find the achromatic number, i.e., Smarandachely achromatic 1-coloring for the central graph, middle graph, total graph and line graph of double star graph K1,n,n denoted by C(K1,n,n), M(K1,n,n), T (K1,n,n) and L(K1,n,n) re- spectively. Keywords: Smarandachely achromatic k-coloring, Smarandachely achromatic number, central graph, middle graph, total graph, line graph and achromatic coloring. AMS(2000): 05C15 §1. Preliminaries For a given graph G = (V, E) we do an operation on G, by subdividing each edge exactly once and joining all the non adjacent vertices of G. The graph obtained by this process is called central graph [10] of G denoted by C(G). Let G be a graph with vertex set V (G) and edge set E(G). The middle graph [4] of G, denoted by M(G) is defined as follows. The vertex set of M(G) is V (G) E(G). Two vertices ∪ x, y in the vertex set of M(G) are adjacent in M(G) in case one of the following holds: (i) x, y are in E(G) and x, y are adjacent in G. -
Even Star Decomposition of Complete Bipartite Graphs
Journal of Mathematics Research; Vol. 8, No. 5; October 2016 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education Even Star Decomposition of Complete Bipartite Graphs E. Ebin Raja Merly1 & J. Suthiesh Goldy2 1 Nesamony Memorial Christian college, Marthandam, KanyakumarI District, Tamilnadu-629165, India 2 Research scholar, Nesamony Memorial Christian college, Marthandam, Kanyakumari District, Tamilnadu-629165, India Correspondence: J. Suthiesh Goldy, Research Scholar, Nesamony Memorial Christian college, Marthandam, KanyakumarI District, Tamilnadu-629165, India. Email: [email protected] Received: August 24, 2016 Accepted: September 5, 2016 Online Published: September 27, 2016 doi:10.5539/jmr.v8n5p101 URL: http://dx.doi.org/10.5539/jmr.v8n5p101 Abstract A decomposition (G1, G2, G3, , Gn) of a graph G is an Arithmetic Decomposition(AD) if |E(G i)| = a + (i – 1)d for all i = 1, 2, , n and a, d Z+. Clearly q = n [2a + (n – 1)d]. The AD is a CMD if a = 1 and d = 1. In this paper we 2 introduced the new concept Even Decomposition of graphs. If a = 2 and d = 2 in AD, then q = n(n + 1). That is, the number of edges of G is the sum of first n even numbers 2, 4, 6, , 2n. Thus we call the AD with a = 2 and d = 2 as Even Decomposition. Since the number of edges of each subgraph of G is even, we denote the Even Decomposition as (G2, G4, , G2n). Keywords: Continuous Monotonic Decomposition, Decomposition of graph, Even Decomposition, Even Star Decomposition (ESD) 1. Introduction All basic terminologies from Graph Theory are used in this paper in the sense of Frank Harary. -
NP-Completeness of List Coloring and Precoloring Extension on the Edges of Planar Graphs
NP-completeness of list coloring and precoloring extension on the edges of planar graphs D´aniel Marx∗ 17th October 2004 Abstract In the edge precoloring extension problem we are given a graph with some of the edges having a preassigned color and it has to be decided whether this coloring can be extended to a proper k-edge-coloring of the graph. In list edge coloring every edge has a list of admissible colors, and the question is whether there is a proper edge coloring where every edge receives a color from its list. We show that both problems are NP-complete on (a) planar 3-regular bipartite graphs, (b) bipartite outerplanar graphs, and (c) bipartite series-parallel graphs. This improves previous results of Easton and Parker [6], and Fiala [8]. 1 Introduction In graph vertex coloring we have to assign colors to the vertices such that neighboring vertices receive different colors. Starting with [7] and [28], a gener- alization of coloring was investigated: in the list coloring problem each vertex can receive a color only from its prescribed list of admissible colors. In the pre- coloring extension problem a subset W of the vertices have preassigned colors and we have to extend this precoloring to a proper coloring of the whole graph, using only colors from a given color set C. It can be viewed as a special case of list coloring: the list of a precolored vertex consists of a single color, while the list of every other vertex is C. A thorough survey on list coloring, precoloring extension, and list chromatic number can be found in [26, 1, 12, 13]. -
Star Arboricity
COMBINATORICA COMBINATORICA12 (4) (1992) 375-380 Akad~miai Kiadd - Springer-Verlag STAR ARBORICITY NOGA ALON, COLIN McDIARMID and BRUCE REED Received September 11, 1989 A star forest is a forest all of whose components are stars. The star arboricity, st(G) of a graph G is the minimum number of star forests whose union covers all the edges of G. The arboricity, A(G), of a graph G is the minimum number of forests whose union covers all the edges of G. Clearly st(G) > A(G). In fact, Algor and Alon have given examples which show that in some cases st(G) can be as large as A(G)+ f~(log/k) (where s is the maximum degree of a vertex in G). We show that for any graph G, st(G) <_A(G) + O(log ~). 1. Introduction All graphs considered here are finite and simple. For a graph H, let E(H) denote the set of its edges, and let V(H) denote the set of its vertices. A star is a tree with at most one vertex whose degree is not one. A star forest is a forest whose connected components are stars. The star arboricity of a graph G, denoted st(G), is the minimum number of star forests whose union covers all edges of G. The arboricity of G, denoted A(G) is the minimum number of forests needed to cover all edges of G. Clearly, st(G) > A(G) by definition. Furthermore, it is easy to see that any tree can be covered by two star forests. -
Surviving Rates of Trees and Outerplanar Graphs for the Firefighter Problem
Surviving rates of trees and outerplanar graphs for the ¯re¯ghter problem Leizhen Cai¤ Yongxi Chengy Elad Verbinz Yuan Zhouz Abstract The ¯re¯ghter problem is a discrete-time game on graphs introduced by Hartnell in an attempt to model the spread of ¯re, diseases, computer viruses and suchlike in a macro-control level. To measure the defence ability of a graph as a whole, Cai and Wang de¯ned the surviving rate of a graph G for the ¯re¯ghter problem to be the average percentage of vertices that can be saved when a ¯re starts randomly at one vertex of G. In this paper, we prove that the surviving rate of every n-vertex outerplanar graph log n is at least 1 ¡ £( n ), which is asymptotically tight. We also show that the greedy log n strategy of Hartnell and Li for trees saves at least 1 ¡ £( n ) percentage of vertices on average for an n-vertex tree. Key words: ¯re¯ghter problem, surviving rate, tree, outerplanar graph 1 Introduction The study of a discrete-time game, the ¯re¯ghter problem, was initiated by Hartnell [7] in 1995 in an attempt to model the spread of ¯re, diseases, computer viruses and suchlike in a macro-control level. At time 0, a ¯re breaks out at a vertex v of a graph G = (V; E). At each subsequent time, a ¯re¯ghter protects one vertex not yet on ¯re, and the ¯re then spreads from all burning vertices to all their unprotected neighbors. The process ends when the ¯re can no longer spread. -
Fractional and Circular Separation Dimension of Graphs
Fractional and Circular Separation Dimension of Graphs Sarah J. Loeb∗and Douglas B. West† Revised June 2017 Abstract The separation dimension of a graph G, written π(G), is the minimum number of linear orderings of V (G) such that every two nonincident edges are “separated” in some ordering, meaning that both endpoints of one edge appear before both endpoints of the other. We introduce the fractional separation dimension πf (G), which is the minimum of a/b such that some a linear orderings (repetition allowed) separate every two nonincident edges at least b times. In contrast to separation dimension, fractional separation dimension is bounded: always πf (G) 3, with equality if and only if G contains K4. There is no stronger ≤ 3m bound even for bipartite graphs, since πf (Km,m) = πf (Km+1,m) = m+1 . We also compute πf (G) for cycles and some complete tripartite graphs. We show that πf (G) < √2 when G is a tree and present a sequence of trees on which the value tends to 4/3. Finally, we consider analogous problems for circular orderings, where pairs of non- incident edges are separated unless their endpoints alternate. Let π◦(G) be the number of circular orderings needed to separate all pairs and πf◦(G) be the fractional version. Among our results: (1) π◦(G) = 1 if and only G is outerplanar. (2) π◦(G) 2 when 3 ≤ G is bipartite. (3) π◦(Kn) log2 log3(n 1). (4) πf◦(G) 2 for every graph G, with ≥ − 3m 3 ≤ equality if and only if K4 G.