Towards a Novel Environment for Simulation of Quantum Computing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CLEO/Europe-EQEC 2021 Advance Programme
2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference Advance Programme Virtual Meeting CEST time zone 21 - 25 June 2021 www.cleoeurope.org Sponsored by • European Physical Society / Quantum Electronics and Optics Division • IEEE Photonics Society • The Optical Society 25th International Congress on Photonics in Europe Collocated with Laser World of Photonics Industry Days https://world-of-photonics.com/en/ 10th EPS-QEOD Europhoton Conference EUROPHOTON SOLID-STATE, FIBRE, AND WAVEGUIDE COHERENT LIGHT SOURCES 28 August – 02 September 2022 Hannover, Germany www.europhoton.org Fotos: © HMTG - Lars Gerhardts Fotos: © HMTG Table of contents TABLE OF CONTENTS Welcome and Foreword 02 Days at a Glance 04 Sessions at a Glance 14 How to Read the Session Codes? 15 How to Find the Room? 17 Topics 20 General Information 24 Technical Programme 28 01 Welcome and foreword Welcome to the 2021 Conference CLEO®/Europe will showcase the latest Particular highlights of the 2021 programme 2021 Conference on Lasers and on Lasers and Electro-Optics developments in a wide range of laser and will be a series of symposia: Electro-Optics Europe & European Europe & European Quantum photonics areas including solid-state lasers, Nanophononics, High-Field THz Genera- Quantum Electronics Conference Electronics Conference (hereafter semiconductor lasers, terahertz sources and tion and Applications, Attochemistry, Deep CLEO®/Europe-EQEC) at the World applications, applications of nonlinear op- learning in Photonics and Flexible Photonics. CLEO®/Europe - EQEC 2021 of Photonics Congress 2021 tics, optical materials, optical fabrication and Additionally, two joint sessions (EC- characterization, ultrafast optical technologies, BO-CLEO®/Europe and LiM-CLEO®/Europe) Virtual Meeting high-field laser and attosecond science, optical will be held. -
Simulating Quantum Field Theory with a Quantum Computer
Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers. -
A Scanning Transmon Qubit for Strong Coupling Circuit Quantum Electrodynamics
ARTICLE Received 8 Mar 2013 | Accepted 10 May 2013 | Published 7 Jun 2013 DOI: 10.1038/ncomms2991 A scanning transmon qubit for strong coupling circuit quantum electrodynamics W. E. Shanks1, D. L. Underwood1 & A. A. Houck1 Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modelling of quantum systems that is computationally intractable with a classical computer. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study, with qubits coupled to the resonators producing effective photon–photon interactions. Such a system promises insight into the non-equilibrium physics of interacting bosons, but new tools are needed to understand this complex behaviour. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area. 1 Department of Electrical Engineering, Princeton University, Olden Street, Princeton 08550, New Jersey, USA. Correspondence and requests for materials should be addressed to W.E.S. (email: [email protected]). NATURE COMMUNICATIONS | 4:1991 | DOI: 10.1038/ncomms2991 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2991 ver the past decade, the study of quantum physics using In this work, we describe a scanning superconducting superconducting circuits has seen rapid advances in qubit and demonstrate its coupling to a superconducting CPWR Osample design and measurement techniques1–3. -
Reconfigurable Optical Implementation of Quantum Complex Networks J Nokkala, F
Reconfigurable optical implementation of quantum complex networks J Nokkala, F. Arzani, F Galve, R Zambrini, S Maniscalco, J Piilo, Nicolas Treps, V Parigi To cite this version: J Nokkala, F. Arzani, F Galve, R Zambrini, S Maniscalco, et al.. Reconfigurable optical implemen- tation of quantum complex networks. New Journal of Physics, Institute of Physics: Open Access Journals, 2018, 20, pp.053024. 10.1088/1367-2630/aabc77. hal-01798144 HAL Id: hal-01798144 https://hal.sorbonne-universite.fr/hal-01798144 Submitted on 23 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PAPER • OPEN ACCESS Related content - An Introduction to the Formalism of Reconfigurable optical implementation of quantum Quantum Information with Continuous Variables: Quantum information with continuous variables complex networks C Navarrete-Benlloch - Spacetime replication of continuous To cite this article: J Nokkala et al 2018 New J. Phys. 20 053024 variable quantum information Patrick Hayden, Sepehr Nezami, Grant Salton et al. - Coupled harmonic systems as quantum buses in thermal environments View the article online for updates and enhancements. F Nicacio and F L Semião This content was downloaded from IP address 134.157.80.157 on 23/05/2018 at 09:58 New J. -
Simulating Quantum Field Theory with a Quantum Computer
Simulating quantum field theory with a quantum computer John Preskill Bethe Lecture, Cornell 12 April 2019 Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Opportunities in quantum simulation of quantum field theory Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Collaborators: Stephen Jordan, Keith Lee, Hari Krovi arXiv: 1111.3633, 1112.4833, 1404.7115, 1703.00454, 1811.10085 Work in progress: Alex Buser, Junyu Liu, Burak Sahinoglu ??? Quantum Supremacy! Quantum computing in the NISQ Era The (noisy) 50-100 qubit quantum computer is coming soon. (NISQ = noisy intermediate-scale quantum .) NISQ devices cannot be simulated by brute force using the most powerful currently existing supercomputers. Noise limits the computational power of NISQ-era technology. -
Quantum Key Distribution Protocols and Applications
Quantum Key Distribution Protocols and Applications Sheila Cobourne Technical Report RHUL{MA{2011{05 8th March 2011 Department of Mathematics Royal Holloway, University of London Egham, Surrey TW20 0EX, England http://www.rhul.ac.uk/mathematics/techreports Title: Quantum Key Distribution – Protocols and Applications Name: Sheila Cobourne Student Number: 100627811 Supervisor: Carlos Cid Submitted as part of the requirements for the award of the MSc in Information Security at Royal Holloway, University of London. I declare that this assignment is all my own work and that I have acknowledged all quotations from the published or unpublished works of other people. I declare that I have also read the statements on plagiarism in Section 1 of the Regulations Governing Examination and Assessment Offences and in accordance with it I submit this project report as my own work. Signature: Date: Acknowledgements I would like to thank Carlos Cid for his helpful suggestions and guidance during this project. Also, I would like to express my appreciation to the lecturers at Royal Holloway who have increased my understanding of Information Security immensely over the course of the MSc, without which this project would not have been possible. Contents Table of Figures ................................................................................................... 6 Executive Summary ............................................................................................. 7 Chapter 1 Introduction ................................................................................... -
Quantum Simulation Using Photons
Quantum Simulation Using Photons Philip Walther Faculty of Physics Enrico Fermi Summer School University of Vienna Varenna, Italy Austria 24-25 July 2016 Lecture I: Quantum Photonics Experimental Groups doing Quantum Computation & Simulation QuantumComputing@UniWien . Atoms (Harvard, MIT, MPQ, Hamburg,…) : single atoms in optical lattices transition superfluid → Mott insulator . Trapped Ions (Innsbruck, NIST, JQI Maryland, Ulm…): quantum magnets Dirac’s Zitterbewegung frustrated spin systems open quantum systems . NMR (Rio, SaoPaulo, Waterloo, MIT, Hefei,…): simulation of quantum dynamics ground state simulation of few (2-3) qubits . Superconducting Circuits (ETH, Yale, Santa Barbara,…): phase qudits for measuring Berry phase gate operations . Single Photons (Queensland, Rome, Bristol, Vienna,…) simulation of H2 potential (Nat.Chem 2, 106 (2009)) quantum random walks (PRL 104, 153602 (2010)) spin frustration Architecture race for quantum computers QuantumComputing@UniWien • UK: 270 M₤ • Netherlands: 135 M€ Why Photons ? QuantumComputing@UniWien . only weak interaction with environment (good coherence) . high-speed (c), low-loss transmission (‘flying qubits”) . good single-qubit control with standard optical components (waveplates, beamsplitters, mirrors,…) . feasible hardware requirements (no vaccuum etc.) . disadvantage: weak two-photon interactions (requires non-linear medium -> two-qubit gates are hard) Outlook of the Course QuantumComputing@UniWien (1) Quantum Photonics Concepts and Technology (2) Quantum Simulation (3) Photonic Quantum Simulation Examples . Analog Quantum Simulator . Digital Quantum Simulator . Intermediate Quantum Computation (4) Schemes based on superposition of gate orders Basic Elements in Photonic Quantum Computing and Quantum Simulation Literature Suggestion QuantumComputing@UniWien (1) Five Lectures on Optical Quantum Computing (P. Kok) http://arxiv.org/abs/0705.4193v1 (2007) (2) Linear optical quantum computing with photonic qubits Rev. -
Book of Abstracts
LANET 2017 Puebla (Mexico), September 25-29, 2017 1ST LATIN AMERICAN CONFERENCE ON COMPLEX NETWORKS AND LANET SCHOOL ON FUNDAMENTALS AND APPLICATIONS OF NETWORK SCIENCE LANET 2017 25-29 SEPTEMBER 2017 PUEBLA MEXICO BOOK OF ABSTRACTS ORGANIZED BY BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA Benemérita Universidad Autónoma de Puebla LANET 2017 Puebla (Mexico), September 25-29, 2017 BENEMÉRITA UNIVERSIDAD DE PUEBLA LANET BOARD Rector Nuno Araujo (Universidade de Lisboa, Portugal) Dr. J. Alfonso Esparza Ortiz Pablo Balenzuela (Universidad de Buenos Aires, Argentina) Secretario General Javier M. Buldú (URJC & CTB, Spain) Dr. René Valdiviezo Sandoval Lidia Braunstein (CONICET-UNMdP, Argentina) Vicerrector de Investigación Mario Chávez (CNRS, Hospital Pitié-Salpetriere, France) Dr. Ygnacio Martínez Laguna Hilda Cerdeira (IFT-UNESP, Brazil) Directora del Instituto de Física Luciano da Fontoura (University of Sao Paulo, Brazil) Dra. Ma. Eugenia Mendoza Álvarez Bruno Gonçalves (New York University, USA) Rafael Germán Hurtado (Universidad Nacional de Colombia, Bogota) Ernesto Estrada (University of Strathclyde, UK) LOCAL ORGANIZING COMMITTEE Jesús Gómez-Gardeñes (Universidad de Zaragoza, Spain) José Antonio Méndez-Bermúdez Marta C. González (MIT, USA) (BUAP, Puebla, Mexico) Rafael Gutiérrez (Universidad Antonio Nariño, Colombia) Ygnacio Martínez Laguna Cesar Hidalgo (MIT Media Lab, USA) (BUAP, Puebla, Mexico) Gustavo Martínez-Mekler (UNAM, Mexico) Pedro Hugo Hernández Tejeda Johann H. Martínez (INSERM, France) (BUAP, Puebla, Mexico) Cristina Masoller (Universitat Politècnica de Catalunya, Spain) Javier M. Buldú José Luis Mateos (Instituto de Física, UNAM, Mexico) (URJC & CTB, Spain) José F. Mendes (University of Aveiro, Portugal) Jesús Gómez-Gardeñes José Antonio Méndez-Bermúdez (BUAP, Puebla Mexico) (Universidad de Zaragoza, Spain) Ronaldo Menezes (Florida Institute of Technology, USA) Johann H. -
Graphical and Programming Support for Simulations of Quantum Computations
AGH University of Science and Technology in Kraków Faculty of Computer Science, Electronics and Telecommunications Institute of Computer Science Master of Science Thesis Graphical and programming support for simulations of quantum computations Joanna Patrzyk Supervisor: dr inż. Katarzyna Rycerz Kraków 2014 OŚWIADCZENIE AUTORA PRACY Oświadczam, świadoma odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą pracę dyplomową wykonałam osobiście i samodzielnie, i nie korzystałam ze źródeł innych niż wymienione w pracy. ................................... PODPIS Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Informatyki Praca Magisterska Graficzne i programowe wsparcie dla symulacji obliczeń kwantowych Joanna Patrzyk Opiekun: dr inż. Katarzyna Rycerz Kraków 2014 Acknowledgements I would like to express my sincere gratitude to my supervisor, Dr Katarzyna Rycerz, for the continuous support of my M.Sc. study, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me a lot during my research and writing of this thesis. I would also like to thank Dr Marian Bubak, for his suggestions and valuable advices, and for provision of the materials used in this study. I would also thank Dr Włodzimierz Funika and Dr Maciej Malawski for their support and constructive remarks concerning the QuIDE simulator. My special thank goes to Bartłomiej Patrzyk for the encouragement, suggestions, ideas and a great support during this study. Abstract The field of Quantum Computing is recently rapidly developing. However before it transits from the theory into practical solutions, there is a need for simulating the quantum computations, in order to analyze them and investigate their possible applications. Today, there are many software tools which simulate quantum computers. -
Simulating Quantum Field Theory with A
Simulating quantum field theory with a quantum computer PoS(LATTICE2018)024 John Preskill∗ Institute for Quantum Information and Matter Walter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena CA 91125, USA E-mail: [email protected] Forthcoming exascale digital computers will further advance our knowledge of quantum chromo- dynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic collisions, or the properties of hadronic matter at nonzero temperature and chemical potential. Digital computers may never be able to achieve accurate simulations of such phenomena in QCD and other strongly-coupled field theories; quantum computers will do so eventually, though I’m not sure when. Progress toward quantum simulation of quantum field theory will require the collaborative efforts of quantumists and field theorists, and though the physics payoff may still be far away, it’s worthwhile to get started now. Today’s research can hasten the arrival of a new era in which quantum simulation fuels rapid progress in fundamental physics. The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018 22-28 July, 2018 Michigan State University, East Lansing, Michigan, USA. ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Simulating quantum field theory with a quantum computer John Preskill 1. Introduction My talk at Lattice 2018 had two main parts. In the first part I commented on the near-term prospects for useful applications of quantum computing. -
QUANTUM COMPUTER and QUANTUM ALGORITHM for TRAVELLING SALESMAN PROBLEM Utpal Roy, Sanchita Pal Chawdhury, Susmita Nayek
ISSN: 0974-3308, VOL. 2, NO. 1, JUNE 2009 © SRIMCA 54 QUANTUM COMPUTER AND QUANTUM ALGORITHM FOR TRAVELLING SALESMAN PROBLEM Utpal Roy, Sanchita Pal Chawdhury, Susmita Nayek ABSTRACT Depending upon the extraordinary power of Quantum Computing Algorithms various branches like Quantum Cryptography, Quantum Information Technology, Quantum Teleportation have emerged [1-4]. It is thought that this power of Quantum Computing Algorithms can also be successfully applied to many combinatorial optimization problems. In this article, a class of combinatorial optimization problem is chosen as case study under Quantum Computing. These problems are widely believed to be unsolvable in polynomial time. Mostly it provides suboptimal solutions in finite time using best known classical algorithms. Travelling Salesman Problem (TSP) is one such problem to be studied here. A great deal of effort has already been devoted towards devising efficient algorithms that can solve the problem [5-18]. Moreover, the methods of finding solutions for the TSP with Artificial Neural Network and Genetic Algorithms [5-8] do not provide the exact solution to the problems for all the cases, excepting a few. A successful attempt has been made to have a deterministic solution for TSP by applying the power of Quantum Computing Algorithm. Keywords: Quantum Computing, Travelling Salesman Problem, Quantum algorithms. 1. INTRODUCTION A quantum computer is a device that can arbitrarily manipulate the quantum state of a part or itself. The field of quantum computation is largely a body of theoretical promises for some impressively fast algorithms which could be executed on quantum computers. The field of quantum computing has advanced remarkably in the past few years since Shor [1] presented his quantum mechanical algorithm for efficient prime factorization of very large numbers, potentially providing an exponential speedup over the fastness on known classical algorithm. -
Download the 3Rd Edition of the Book of Abstracts
Book of Abstracts 3rd BSC International Doctoral Symposium Editors Nia Alexandrov María José García Miraz Graphic and Cover Design: Cristian Opi Muro Laura Bermúdez Guerrero This is an open access book registered at UPC Commons (http://upcommons.upc.edu) under a Creative Commons license to protect its contents and increase its visibility. This book is available at http://www.bsc.es/doctoral-symposium-2016 published by: Barcelona Supercomputing Center supported by: The “Severo Ochoa Centres of Excellence" programme 3rd Edition, September 2016 Introduction ACKNOWLEDGEMENTS The BSC Education & Training team gratefully acknowledges all the PhD candidates, Postdoc researchers, experts and especially the Keynote Speaker Francisco J. Doblas-Reyes and the tutorial lecturers Vassil Alexandrov and Javier Espinosa, for contributing to this Book of Abstracts and participating in the 3rd BSC International Doctoral Symposium 2016. We also wish to expressly thank the volunteers that supported the organisation of the event: Carles Riera and Felipe Nathan De Oliveira. BSC Education & Training team [email protected] 5 Introduction 6 Introduction CONTENTS EDITORIAL COMMENT ................................................................................................ 11 WELCOME ADDRESS .................................................................................................. 13 PROGRAM .................................................................................................................... 15 KEYNOTE SPEAKER ...................................................................................................