Official Press

Total Page:16

File Type:pdf, Size:1020Kb

Official Press The world’s first purpose-built commercial spaceport SPACEPORT AMERICA FACTS Spaceport America is home Our 18,000-acre spaceport to a 12,000-foot x 200-foot is home to four permanent concrete runway. tenants. We have launched over 300 Spaceport America is rockets from Spaceport approximately 4,600 feet America. Spaceport America above sea level compared to provides horizontal launch coastal space launch facilities. and vertical launch areas This gives customers a with amenities not available one-mile head start towards anywhere else in the world. reaching space. Spaceport America has Spaceport America takes full access to 6,000 sq. miles advantage of its 340 days of of restricted airspace. This sunshine and low humidity to allows our customers to launch into clear skies! launch without air traffic restrictions. Spaceport America is managed by the New Mexico Spaceport •Promote educational involvement in spaceport activities Authority. The Mission of the New Mexico Spaceport Authority and education and training of the workforce to develop is stipulated in the Spaceport Development Act [New Mexico the skills needed for spaceport operations Statutes Annotated 1978 §58-31-1 et seq., Laws of 2005]: The New Mexico Spaceport Authority began its operations as a •Encourage and foster development of the state and its State Government Agency on July 1, 2006. The first rocket launch cities and counties by developing spaceport facilities in at Spaceport America occurred on September 25, 2006. The first New Mexico; phase of Spaceport construction was completed in FY16. •Actively promote and assist public and private sector The FAA’s Office of Commercial Space Transportation issued the infrastructure development to attract new industries and license to the Spaceport Authority for vertical and horizontal businesses, thereby creating new job opportunities in the State. launches from the Spaceport in December 2008, and a groundbreaking ceremony took place on June 19, 2009. •Create the statutory framework that will enable the state to design, finance, construct, equip and operate spaceport facilities necessary to ensure the timely, planned, and efficient development of a southwest regional spaceport; and FAQ Who owns Spaceport America? Spaceport America was designed, built and is owned and operated by the State of New Mexico. What is the relationship between Spaceport America and Virgin Galactic? Virgin Galactic is the anchor tenant at Spaceport America, and holds a 20 year lease agreement for the use of the Gateway to Space and the horizontal launch area. In addition, Spaceport America has other tenants and customers. What is the difference between Spaceport America and the New Mexico Spaceport Authority? The New Mexico Spaceport Authority (NMSA) manages Spaceport America. NMSA coordinates all the airspace, manages all facilities across the 18,000 acres, security, fire and EMT support. All facilities at Spaceport America are paid for by New Mexico taxpayers. What companies operate at Spaceport America? Virgin Galactic is the largest employer. Other tenants with long-term leases at Spaceport America include AeroVironment/ HAPSMobile, UP Aerospace and SpinLaunch. Boeing, Swift Engineering, Stratodynamics, C6 Launch Systems and White Sands Research and Developers are among the many short-term customers at Spaceport America. When will you launch to space from Spaceport America? Spaceport America has been launching vehicles to space (as defined by the US Air Force space as 50 miles above the Earth’s surface/ approximately 80kms) since 2007. The highest altitude of a launch from Spaceport America was achieved by UP Aerospace on their SL-9 mission in 2014.The radar-verified apogee was 407,862 ft = 77.25 miles = 124.32 km! Why is Spaceport America in this location? Spaceport America is in a remote unpopulated area with great weather for launch. It is adjacent to White Sands in Missile Range, which provides access to 6,000 square miles of restricted airspace, and can provide services like telemetry, radar, optical tracking, and weather forecasting. Is Spaceport America available as an event venue? Spaceport America has served as a venue for special events, photo-shoots, films and more. For more details, visit SpaceportAmerica.com For any media inquiries contact: Alice Carruth Public Relations Coordinator New Mexico Spaceport Authority 4605 Research Park Circle Suite A Las Cruces, NM 88001 Email - [email protected] Desk phone – 575-267-8528 Mobile phone – 575-528-8227 THE SPACE TO BE....
Recommended publications
  • Built Commercial Spaceport in the World. the FAA-Licensed Launch Complex Is Situated on 18,000 Acres Adjacent to the U.S
    Spaceport America is the first purpose- built commercial spaceport in the world. The FAA-licensed launch complex is situated on 18,000 acres adjacent to the U.S. Army White Sands Missile Range in southern New Mexico. Some of the most respected companies in the commercial space industry are tenants at Spaceport America: Virgin Galactic, HAPS Mobile/ AeroVironment, UP Aerospace, and SpinLaunch. Spaceport America hosts the world’s largest intercollegiate rocket engineering conference and competition- the Spaceport America Cup- each June, hosting thousands of participants from 15+ countries. Spaceport America’s STEM outreach program plays an active role in enhancing New Mexico’s STEM education. NMSA Director of Aerospace Operations Dr. Bill shares his passion for science with students and encourages them to pursue careers in Science, Technology, Engineering and Mathematics (STEM). Spaceport America is influencing scientists of the future one school at a time. SPACEPORT AMERICA FACTS Spaceport America features a Our 18,000-acre spaceport 12,000-foot x 200- is home to four permanent foot concrete runway for tenants. customers to use for research, launches, and development. We have launched over 300 Spaceport America is rockets from Spaceport approximately 4,600 feet America. Spaceport America above sea level compared to provides horizontal launch coastal space launch facilities. and vertical launch areas This gives customers a with amenities not available one-mile head start towards anywhere else in the world. reaching space. Spaceport America has Spaceport America takes full access to 6,000 sq. miles advantage of its 340 days of of restricted airspace. This sunshine and low humidity to allows our customers to launch into clear skies! launch without air traffic restrictions.
    [Show full text]
  • The SKYLON Spaceplane
    The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration.
    [Show full text]
  • New Mexico Company Wins Major Space Contract Spaceport America Experience Key to Winning NASA Bid
    FOR IMMEDIATE RELEASE: Gov. Michelle Lujan Grisham Contact: Bruce Krasnow Cabinet Secretary Alicia J. Keyes Br​ [email protected] Deputy Secretary Jon Clark 505- 795-0119 Aug. 20, 2020 New Mexico Company Wins Major Space Contract Spaceport America Experience Key to Winning NASA Bid SANTA FE, N.M. – A New Mexico company with operational ties to Spaceport America has been awarded a major contract at NASA’s Jet Propulsion Laboratory (JPL), Cabinet Secretary Alicia J. Keyes announced today. Fiore Industries Inc. has secured the 10-year contract from JPL in Pasadena, CA. to provide campus-wide security and fire protection services. The newly awarded contract provides JPL with critical life safety support for all campus personnel and is worth $130 million over the next decade. Bill Miera, founder and CEO of Fiore Industries, is a New Mexico native who earned his bachelor's and master's degrees at the University of New Mexico. The JPL contract comes after Fiore gained experience with smaller contractual work at NASA White Sands and Spaceport America. Fiore will expand from 140 to 200 employees after the JPL contract transition on Oct. 1. Many of the operations and support positions will remain in Albuquerque with approximately 30 employees located at Spaceport America, as part of its obligations for security and protection of the 18,000-acre Spaceport, near Truth or Consequences, N.M. “We are a New Mexico company and we try to do all the support out of Albuquerque," Miera said. “We have all local vendors, hire engineers in Albuquerque, and even do our own manufacturing.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Minotaur I User's Guide
    This page left intentionally blank. Minotaur I User’s Guide Revision Summary TM-14025, Rev. D REVISION SUMMARY VERSION DOCUMENT DATE CHANGE PAGE 1.0 TM-14025 Mar 2002 Initial Release All 2.0 TM-14025A Oct 2004 Changes throughout. Major updates include All · Performance plots · Environments · Payload accommodations · Added 61 inch fairing option 3.0 TM-14025B Mar 2014 Extensively Revised All 3.1 TM-14025C Sep 2015 Updated to current Orbital ATK naming. All 3.2 TM-14025D Sep 2018 Branding update to Northrop Grumman. All 3.3 TM-14025D Sep 2020 Branding update. All Updated contact information. Release 3.3 September 2020 i Minotaur I User’s Guide Revision Summary TM-14025, Rev. D This page left intentionally blank. Release 3.3 September 2020 ii Minotaur I User’s Guide Preface TM-14025, Rev. D PREFACE This Minotaur I User's Guide is intended to familiarize potential space launch vehicle users with the Mino- taur I launch system, its capabilities and its associated services. All data provided herein is for reference purposes only and should not be used for mission specific analyses. Detailed analyses will be performed based on the requirements and characteristics of each specific mission. The launch services described herein are available for US Government sponsored missions via the United States Air Force (USAF) Space and Missile Systems Center (SMC), Advanced Systems and Development Directorate (SMC/AD), Rocket Systems Launch Program (SMC/ADSL). For technical information and additional copies of this User’s Guide, contact: Northrop Grumman
    [Show full text]
  • Spaceport Infrastructure Cost Trends
    AIAA 2014-4397 SPACE Conferences & Exposition 4-7 August 2014, San Diego, CA AIAA SPACE 2014 Conference and Exposition Spaceport Infrastructure Cost Trends Brian S. Gulliver, PE1, and G. Wayne Finger, PhD, PE2 RS&H, Inc. The total cost of employing a new or revised space launch system is critical to understanding its business potential, analyzing its business case and funding its development. The design, construction and activation of a commercial launch complex or spaceport can represent a significant portion of the non-recurring costs for a new launch system. While the historical cost trends for traditional launch site infrastructure are fairly well understood, significant changes in the approach to commercial launch systems in recent years have required a reevaluation of the cost of ground infrastructure. By understanding the factors which drive these costs, informed decisions can be made early in a program to give the business case the best chance of economic success. The authors have designed several NASA, military, commercial and private launch complexes and supported the evaluation and licensing of commercial aerospaceports. Data from these designs has been used to identify the major factors which, on a broad scale, drive their non-recurring costs. Both vehicle specific and location specific factors play major roles in establishing costs. I. Introduction It is critical for launch vehicle operators and other stakeholders to understand the factors and trends that affect the non-recurring costs of launch site infrastructure. These costs are often an area of concern when planning for the development of a new launch vehicle program as they can represent a significant capital investment that must be recovered over the lifecycle of the program.
    [Show full text]
  • A Pictorial History of Rockets
    he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here.
    [Show full text]
  • The New American Space Age: a Progress Report on Human Spaceflight the New American Space Age: a Progress Report on Human Spaceflight the International Space
    The New American Space Age: A PROGRESS REPORT ON HUMAN SpaCEFLIGHT The New American Space Age: A Progress Report on Human Spaceflight The International Space Station: the largest international scientific and engineering achievement in human history. The New American Space Age: A Progress Report on Human Spaceflight Lately, it seems the public cannot get enough of space! The recent hit movie “Gravity” not only won 7 Academy Awards – it was a runaway box office success, no doubt inspiring young future scientists, engineers and mathematicians just as “2001: A Space Odyssey” did more than 40 years ago. “Cosmos,” a PBS series on the origins of the universe from the 1980s, has been updated to include the latest discoveries – and funded by a major television network in primetime. And let’s not forget the terrific online videos of science experiments from former International Space Station Commander Chris Hadfield that were viewed by millions of people online. Clearly, the American public is eager to carry the torch of space exploration again. Thankfully, NASA and the space industry are building a host of new vehicles that will do just that. American industry is hard at work developing new commercial transportation services to suborbital altitudes and even low Earth orbit. NASA and the space industry are also building vehicles to take astronauts beyond low Earth orbit for the first time since the Apollo program. Meanwhile, in the U.S. National Lab on the space station, unprecedented research in zero-g is paving the way for Earth breakthroughs in genetics, gerontology, new vaccines and much more.
    [Show full text]
  • Spaceport News America's Gateway to the Universe
    MissionUpdate Vol. 36, No. 17 August 29, 1997 Shuttle-Mir Spaceport News America's gateway to the universe. Leading the world in preparing and launching missions to Earth and beyond. John F. Kennedy Space Center Internal EVA conducted: Mir 24 cosmonauts Anatoly Solovyev and Pavel Vinogradov and U.S. astronaut Michael Foale continue the process of verifying restoration of electrical power to the Russian Busy week at Space Station Mir after an intravehicular activity Aug. 22. Troubleshooting of the oxygen- generating system also was under America’s way, and an extravehicular activity was tentatively set for the first week of September to conduct an spaceport inspection of leak sites on the damaged Spektr module. STS-86 ONE Shuttle rolled out to the launch pad Aug. 18 and another returned to KSC the following day. The Space Shuttle Atlantis (above) is now at Pad 39A, undergoing final preparations for launch Sept. 25 on the seventh Shuttle-Mir docking mission, STS-86. The Terminal Countdown Demonstration Test is scheduled for Sept. 9- Atlantis (20th flight OV-104) 10. At about 7:08 a.m., Aug. 19, Discovery (right) 87th Shuttle flight touched down on Runway 33 of KSC's Shuttle Landing Pad 39A Facility, bringing Mission STS-85 to a successful 7th Mir Docking conclusion. Researchers were delighted with the Launch: Sept. 25, 10:34 p.m. performance of the primary scientific instruments flown Crew: Wetherbee; Bloomfield; on the 86th Shuttle flight, the Cryogenic Infrared Parazynski; Titov; Chretien Spectrometers and Telescopes for the Atmosphere (France); Lawrence; Wolf. (CRISTA)-SPAS and the Middle Atmosphere High Commander Wetherbee flew on Resolution Spectrograph Investigation (MAHRSI), both of STS-63, the Shuttle flight that which performed flawlessly.
    [Show full text]
  • The Impacts of the Government Shutdown on Our Economic Security
    S. HRG. 113–615 THE IMPACTS OF THE GOVERNMENT SHUTDOWN ON OUR ECONOMIC SECURITY HEARING BEFORE THE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION UNITED STATES SENATE ONE HUNDRED THIRTEENTH CONGRESS FIRST SESSION OCTOBER 11, 2013 Printed for the use of the Committee on Commerce, Science, and Transportation ( U.S. GOVERNMENT PUBLISHING OFFICE 93–946 PDF WASHINGTON : 2015 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Nov 24 2008 08:20 Apr 15, 2015 Jkt 075679 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 S:\GPO\DOCS\93946.TXT JACKIE SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION ONE HUNDRED THIRTEENTH CONGRESS FIRST SESSION JOHN D. ROCKEFELLER IV, West Virginia, Chairman BARBARA BOXER, California JOHN THUNE, South Dakota, Ranking BILL NELSON, Florida ROGER F. WICKER, Mississippi MARIA CANTWELL, Washington ROY BLUNT, Missouri MARK PRYOR, Arkansas MARCO RUBIO, Florida CLAIRE MCCASKILL, Missouri KELLY AYOTTE, New Hampshire AMY KLOBUCHAR, Minnesota DEAN HELLER, Nevada MARK WARNER, Virginia DAN COATS, Indiana MARK BEGICH, Alaska TIM SCOTT, South Carolina RICHARD BLUMENTHAL, Connecticut TED CRUZ, Texas BRIAN SCHATZ, Hawaii DEB FISCHER, Nebraska MARTIN HEINRICH, New Mexico RON JOHNSON, Wisconsin EDWARD MARKEY, Massachusetts JEFF CHIESA, New Jersey ELLEN L. DONESKI, Staff Director JAMES REID, Deputy Staff Director JOHN WILLIAMS, General Counsel DAVID SCHWIETERT, Republican Staff Director NICK ROSSI, Republican Deputy Staff Director REBECCA SEIDEL, Republican General Counsel and Chief Investigator (II) VerDate Nov 24 2008 08:20 Apr 15, 2015 Jkt 075679 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 S:\GPO\DOCS\93946.TXT JACKIE C O N T E N T S Page Hearing held on October 11, 2013 .........................................................................
    [Show full text]
  • First Stage of a Highly Reliable Reusable Launch System
    First Stage of a Highly Reliable Reusable Launch System * $ Kurt J. Kloesel , Jonathan B. Pickrelf, and Emily L. Sayles NASA Dryden Flight Research Center, Edwards, California, 93523-0273 Michael Wright § NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771-0001 Darin Marriott** Embry-Riddle University, Prescott, Arizona, 86301-3720 Dr. Leo Hollandtf General Atomics Electromagnetic Systems Division, San Diego, California, 92121-1194 Dr. Stephen Kuznetsov$$ Power Superconductor Applications Corporation, New Castle, Pennsylvania, 16101-5241 Electromagnetic launch assist has the potential to provide a highly reliable reusable first stage to a space access system infrastructure at a lower overall cost. This paper explores the benefits of a smaller system that adds the advantages of a high specific impulse air-breathing stage and supersonic launch speeds. The method of virtual specific impulse is introduced as a tool to emphasize the gains afforded by launch assist. Analysis shows launch assist can provide a 278-s virtual specific impulse for a first-stage solid rocket. Additional trajectory analysis demonstrates that a system composed of a launch-assisted first-stage ramjet plus a bipropellant second stage can provide a 48-percent gross lift-off weight reduction versus an all-rocket system. The combination of high-speed linear induction motors and ramjets is identified, as the enabling technologies and benchtop prototypes are investigated. The high-speed response of a standard 60 Hz linear induction motor was tested with a pulse width modulated variable frequency drive to 150 Hz using a 10-lb load, achieving 150 mph. A 300-Hz stator-compensated linear induction motor was constructed and static-tested to 1900 lbf average.
    [Show full text]
  • SPACE VEHICLE OPERATORS CONCEPT of OPERATIONS a Vision to Transform Ground and Launch Operations
    SPACE VEHICLE OPERATORS CONCEPT OF OPERATIONS A Vision to Transform Ground and Launch Operations Future Interagency Range and Spaceport Technologies October 2004 Future Interagency Range and Spaceport Technologies (FIRST) FOREWORD The Future Interagency Range and Spaceport Technologies (FIRST) initiative is a partnership and interagency working group of NASA, the Department of Defense (Air Force Space Command and Office of the Secretary of Defense), and the Federal Aviation Administration. The partnership was established to guide transformation of U.S. ground and space launch operations toward a single, integrated national “system” of space transportation systems that enables low-cost, routine, safe access to space for a variety of applications and markets through technology infusion. This multi-agency consortium is formulating plans to create a national program office that will coordinate individual agency plans to produce an integrated national space transportation system infrastructure comprised of spaceports, ranges, and space and air traffic management systems. A set of concepts of operations, or CONOPS, has been produced to articulate a cohesive interagency vision for this future space transportation system in support of FIRST program formulation efforts. These concepts are intended to guide and support the coordinated development of technologies that allow multiple launch vehicle architectures and missions to be supported by the same ground and launch systems without significant modification. These documents reflect the interests of the partners in the working group, and are not intended to imply final approval or policy of any of the participating agencies. These visionary CONOPS documents have been built on the foundation that was established over the past two years by the Advanced Range Technology Working Group (ARTWG) and Advanced Spaceport Technology Working Group (ASTWG).
    [Show full text]