Ethically Aligned Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robotic Pets in Human Lives: Implications for the Human–Animal Bond and for Human Relationships with Personified Technologies ∗ Gail F
Journal of Social Issues, Vol. 65, No. 3, 2009, pp. 545--567 Robotic Pets in Human Lives: Implications for the Human–Animal Bond and for Human Relationships with Personified Technologies ∗ Gail F. Melson Purdue University Peter H. Kahn, Jr. University of Washington Alan Beck Purdue University Batya Friedman University of Washington Robotic “pets” are being marketed as social companions and are used in the emerging field of robot-assisted activities, including robot-assisted therapy (RAA). However,the limits to and potential of robotic analogues of living animals as social and therapeutic partners remain unclear. Do children and adults view robotic pets as “animal-like,” “machine-like,” or some combination of both? How do social behaviors differ toward a robotic versus living dog? To address these issues, we synthesized data from three studies of the robotic dog AIBO: (1) a content analysis of 6,438 Internet postings by 182 adult AIBO owners; (2) observations ∗ Correspondence concerning this article should be addressed to Gail F. Melson, Depart- ment of CDFS, 101 Gates Road, Purdue University, West Lafayette, IN 47907-20202 [e-mail: [email protected]]. We thank Brian Gill for assistance with statistical analyses. We also thank the following individuals (in alphabetical order) for assistance with data collection, transcript preparation, and coding: Jocelyne Albert, Nathan Freier, Erik Garrett, Oana Georgescu, Brian Gilbert, Jennifer Hagman, Migume Inoue, and Trace Roberts. This material is based on work supported by the National Science Foundation under Grant No. IIS-0102558 and IIS-0325035. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. -
Evidence-Based Policy Cause Area Report
Evidence-Based Policy Cause Area Report AUTHOR: 11/18 MARINELLA CAPRIATI, DPHIL 1 — Founders Pledge Animal Welfare Executive Summary By supporting increased use of evidence in the governments of low- and middle-income countries, donors can dramatically increase their impact on the lives of people living in poverty. This report explores how focusing on evidence-based policy provides an opportunity for leverage, and presents the most promising organisation we identified in this area. A high-risk/high-return opportunity for leverage In the 2013 report ‘The State of the Poor’, the World Bank reported that, as of 2010, roughly 83% of people in extreme poverty lived in countries classified as ‘lower-middle income’ or below. By far the most resources spent on tackling poverty come from local governments. American think tank the Brookings Institution found that, in 2011, $2.3 trillion of the $2.8 trillion spent on financing development came from domestic government revenues in the countries affected. There are often large differences in the effectiveness and cost-effectiveness of social programs— the amount of good done per dollar spent can vary significantly across programs. Employing evidence allows us to identify the most cost-effective social programs. This is useful information for donors choosing which charity to support, but also for governments choosing which programs to implement, and how. This suggests that employing philanthropic funding to improve the effectiveness of policymaking in low- and middle-income countries is likely to constitute an exceptional opportunity for leverage: by supporting the production and use of evidence in low- and middle-income countries, donors can potentially enable policy makers to implement more effective policies, thereby reaching many more people than direct interventions. -
Cybernetic Human HRP-4C: a Humanoid Robot with Human-Like Proportions
Cybernetic Human HRP-4C: A humanoid robot with human-like proportions Shuuji KAJITA, Kenji KANEKO, Fumio KANEIRO, Kensuke HARADA, Mitsuharu MORISAWA, Shin’ichiro NAKAOKA, Kanako MIURA, Kiyoshi FUJIWARA, Ee Sian NEO, Isao HARA, Kazuhito YOKOI, Hirohisa HIRUKAWA Abstract Cybernetic human HRP-4C is a humanoid robot whose body dimensions were designed to match the average Japanese young female. In this paper, we ex- plain the aim of the development, realization of human-like shape and dimensions, research to realize human-like motion and interactions using speech recognition. 1 Introduction Cybernetics studies the dynamics of information as a common principle of com- plex systems which have goals or purposes. The systems can be machines, animals or a social systems, therefore, cybernetics is multidiciplinary from its nature. Since Norbert Wiener advocated the concept in his book in 1948[1], the term has widely spreaded into academic and pop culture. At present, cybernetics has diverged into robotics, control theory, artificial intelligence and many other research fields, how- ever, the original unified concept has not yet lost its glory. Robotics is one of the biggest streams that branched out from cybernetics, and its goal is to create a useful system by combining mechanical devices with information technology. From a practical point of view, a robot does not have to be humanoid; nevertheless we believe the concept of cybernetics can justify the research of hu- manoid robots for it can be an effective hub of multidiciplinary research. WABOT-1, -
Blame, What Is It Good For?
Blame, What is it Good For? Gordon Briggs1 Abstract— Blame is an vital social and cognitive mechanism [6] and reside in a much more ambiguous moral territory. that humans utilize in their interactions with other agents. In Additionally, it is not enough to be able to correctly reason this paper, we discuss how blame-reasoning mechanisms are about moral scenarios to ensure ethical or otherwise desirable needed to enable future social robots to: (1) appropriately adapt behavior in the context of repeated and/or long-term outcomes from human-robot interactions, the robot must interactions and relationships with other social agents; (2) avoid have other social competencies that support this reasoning behaviors that are perceived to be rude due to inappropriate mechanism. Deceptive interaction partners or incorrect per- and unintentional connotations of blame; and (3) avoid behav- ceptions/predictions about morally-charged scenarios may iors that could damage long-term, working relationships with lead even a perfect ethical-reasoner to make choices with other social agents. We also discuss how current computational models of blame and other relevant competencies (e.g. natural unethical outcomes [7]. What these challenges stress is the language generation) are currently insufficient to address these need to look beyond the ability to simply generate the proper concerns. Future work is necessary to increase the social answer to a moral dilemma in theory, and to consider the reasoning capabilities of artificially intelligent agents to achieve social mechanisms needed in practice. these goals. One such social mechanism that others have posited as I. INTRODUCTION being necessary to the construction of a artificial moral agent is blame [8]. -
Cognitive Biases Nn Discussing Cognitive Biases with Colleagues and Pupils
The RSA: an enlightenment organisation committed to finding innovative practical solutions to today’s social challenges. Through its ideas, research and 27,000-strong Fellowship it seeks to understand and enhance human capability so we can close the gap between today’s reality and people’s hopes for a better world. EVERYONE STARTS WITH AN ‘A’ Applying behavioural insight to narrow the socioeconomic attainment gap in education NATHALIE SPENCER, JONATHAN ROWSON, LOUISE BAMFIELD MARCH 2014 8 John Adam Street London WC2N 6EZ +44 (0) 20 7930 5115 Registered as a charity in England and Wales IN COOPERATION WITH THE no. 212424 VODAFONE FOUNDATION GERMANY Copyright © RSA 2014 www.thersa.org www.thersa.org For use in conjunction with Everyone Starts with an “A” 3 ways to use behavioural insight in the classroom By Spencer, Rowson, www.theRSA.org Bamfield (2014), available www.vodafone-stiftung.de A guide for teachers and school leaders at: www.thersa.org/startswitha www.lehrerdialog.net n Praising pupils for effort instead of intelligence to help instil the Whether you and your pupils believe that academic idea that effort is key and intelligence is not a fixed trait. For ability is an innate trait (a ‘fixed mindset’) or can be example, try “great, you kept practicing” instead of “great, you’re strengthened through effort and practice like a muscle really clever”. (a ‘growth mindset’) affects learning, resilience to n Becoming the lead learner. Educators can shape mindset setbacks, and performance. Mindset through modelling it for the pupils. The way that you (and parents) give feedback to Think about ability like a muscle Try: n Giving a “not yet” grade instead of a “fail” to set the expectation pupils can reinforce or attenuate a given mindset. -
Modelling User Preference for Embodied Artificial Intelligence and Appearance in Realistic Humanoid Robots
Article Modelling User Preference for Embodied Artificial Intelligence and Appearance in Realistic Humanoid Robots Carl Strathearn 1,* and Minhua Ma 2,* 1 School of Computing and Digital Technologies, Staffordshire University, Staffordshire ST4 2DE, UK 2 Falmouth University, Penryn Campus, Penryn TR10 9FE, UK * Correspondence: [email protected] (C.S.); [email protected] (M.M.) Received: 29 June 2020; Accepted: 29 July 2020; Published: 31 July 2020 Abstract: Realistic humanoid robots (RHRs) with embodied artificial intelligence (EAI) have numerous applications in society as the human face is the most natural interface for communication and the human body the most effective form for traversing the manmade areas of the planet. Thus, developing RHRs with high degrees of human-likeness provides a life-like vessel for humans to physically and naturally interact with technology in a manner insurmountable to any other form of non-biological human emulation. This study outlines a human–robot interaction (HRI) experiment employing two automated RHRs with a contrasting appearance and personality. The selective sample group employed in this study is composed of 20 individuals, categorised by age and gender for a diverse statistical analysis. Galvanic skin response, facial expression analysis, and AI analytics permitted cross-analysis of biometric and AI data with participant testimonies to reify the results. This study concludes that younger test subjects preferred HRI with a younger-looking RHR and the more senior age group with an older looking RHR. Moreover, the female test group preferred HRI with an RHR with a younger appearance and male subjects with an older looking RHR. -
“Is Cryonics an Ethical Means of Life Extension?” Rebekah Cron University of Exeter 2014
1 “Is Cryonics an Ethical Means of Life Extension?” Rebekah Cron University of Exeter 2014 2 “We all know we must die. But that, say the immortalists, is no longer true… Science has progressed so far that we are morally bound to seek solutions, just as we would be morally bound to prevent a real tsunami if we knew how” - Bryan Appleyard 1 “The moral argument for cryonics is that it's wrong to discontinue care of an unconscious person when they can still be rescued. This is why people who fall unconscious are taken to hospital by ambulance, why they will be maintained for weeks in intensive care if necessary, and why they will still be cared for even if they don't fully awaken after that. It is a moral imperative to care for unconscious people as long as there remains reasonable hope for recovery.” - ALCOR 2 “How many cryonicists does it take to screw in a light bulb? …None – they just sit in the dark and wait for the technology to improve” 3 - Sterling Blake 1 Appleyard 2008. Page 22-23 2 Alcor.org: ‘Frequently Asked Questions’ 2014 3 Blake 1996. Page 72 3 Introduction Biologists have known for some time that certain organisms can survive for sustained time periods in what is essentially a death"like state. The North American Wood Frog, for example, shuts down its entire body system in winter; its heart stops beating and its whole body is frozen, until summer returns; at which point it thaws and ‘comes back to life’ 4. -
The Definition of Effective Altruism
OUP CORRECTED PROOF – FINAL, 19/08/19, SPi 1 The Definition of Effective Altruism William MacAskill There are many problems in the world today. Over 750 million people live on less than $1.90 per day (at purchasing power parity).1 Around 6 million children die each year of easily preventable causes such as malaria, diarrhea, or pneumonia.2 Climate change is set to wreak environmental havoc and cost the economy tril- lions of dollars.3 A third of women worldwide have suffered from sexual or other physical violence in their lives.4 More than 3,000 nuclear warheads are in high-alert ready-to-launch status around the globe.5 Bacteria are becoming antibiotic- resistant.6 Partisanship is increasing, and democracy may be in decline.7 Given that the world has so many problems, and that these problems are so severe, surely we have a responsibility to do something about them. But what? There are countless problems that we could be addressing, and many different ways of addressing each of those problems. Moreover, our resources are scarce, so as individuals and even as a globe we can’t solve all these problems at once. So we must make decisions about how to allocate the resources we have. But on what basis should we make such decisions? The effective altruism movement has pioneered one approach. Those in this movement try to figure out, of all the different uses of our resources, which uses will do the most good, impartially considered. This movement is gathering con- siderable steam. There are now thousands of people around the world who have chosen -
Are You There, God? It's I, Robot: Examining The
ARE YOU THERE, GOD? IT’S I, ROBOT: EXAMINING THE HUMANITY OF ANDROIDS AND CYBORGS THROUGH YOUNG ADULT FICTION BY EMILY ANSUSINHA A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS Bioethics May 2014 Winston-Salem, North Carolina Approved By: Nancy King, J.D., Advisor Michael Hyde, Ph.D., Chair Kevin Jung, Ph.D. ACKNOWLEDGMENTS I would like to give a very large thank you to my adviser, Nancy King, for her patience and encouragement during the writing process. Thanks also go to Michael Hyde and Kevin Jung for serving on my committee and to all the faculty and staff at the Wake Forest Center for Bioethics, Health, and Society. Being a part of the Bioethics program at Wake Forest has been a truly rewarding experience. A special thank you to Katherine Pinard and McIntyre’s Books; this thesis would not have been possible without her book recommendations and donations. I would also like to thank my family for their continued support in all my academic pursuits. Last but not least, thank you to Professor Mohammad Khalil for changing the course of my academic career by introducing me to the Bioethics field. ii TABLE OF CONTENTS List of Tables and Figures ................................................................................... iv List of Abbreviations ............................................................................................. iv Abstract ................................................................................................................ -
On How to Build a Moral Machine
On How to Build a Moral Machine Paul Bello [email protected] Human & Bioengineered Systems Division - Code 341, Office of Naval Research, 875 N. Randolph St., Arlington, VA 22203 USA Selmer Bringsjord [email protected] Depts. of Cognitive Science, Computer Science & the Lally School of Management, Rensselaer Polytechnic Institute, Troy, NY 12180 USA Abstract Herein we make a plea to machine ethicists for the inclusion of constraints on their theories con- sistent with empirical data on human moral cognition. As philosophers, we clearly lack widely accepted solutions to issues regarding the existence of free will, the nature of persons and firm conditions on moral agency/patienthood; all of which are indispensable concepts to be deployed by any machine able to make moral judgments. No agreement seems forthcoming on these mat- ters, and we don’t hold out hope for machines that can both always do the right thing (on some general ethic) and produce explanations for its behavior that would be understandable to a human confederate. Our tentative solution involves understanding the folk concepts associated with our moral intuitions regarding these matters, and how they might be dependent upon the nature of hu- man cognitive architecture. It is in this spirit that we begin to explore the complexities inherent in human moral judgment via computational theories of the human cognitive architecture, rather than under the extreme constraints imposed by rational-actor models assumed throughout much of the literature on philosophical ethics. After discussing the various advantages and challenges of taking this particular perspective on the development of artificial moral agents, we computationally explore a case study of human intuitions about the self and causal responsibility. -
Which Consequentialism? Machine Ethics and Moral Divergence
MIRI MACHINE INTELLIGENCE RESEARCH INSTITUTE Which Consequentialism? Machine Ethics and Moral Divergence Carl Shulman, Henrik Jonsson MIRI Visiting Fellows Nick Tarleton Carnegie Mellon University, MIRI Visiting Fellow Abstract Some researchers in the field of machine ethics have suggested consequentialist or util- itarian theories as organizing principles for Artificial Moral Agents (AMAs) (Wallach, Allen, and Smit 2008) that are ‘full ethical agents’ (Moor 2006), while acknowledging extensive variation among these theories as a serious challenge (Wallach, Allen, and Smit 2008). This paper develops that challenge, beginning with a partial taxonomy ofconse- quentialisms proposed by philosophical ethics. We discuss numerous ‘free variables’ of consequentialism where intuitions conflict about optimal values, and then consider spe- cial problems of human-level AMAs designed to implement a particular ethical theory, by comparison to human proponents of the same explicit principles. In conclusion, we suggest that if machine ethics is to fully succeed, it must draw upon the developing field of moral psychology. Shulman, Carl, Nick Tarleton, and Henrik Jonsson. 2009. “Which Consequentialism? Machine Ethics and Moral Divergence.” In AP-CAP 2009: The Fifth Asia-Pacific Computing and Philosophy Conference, October 1st-2nd, University of Tokyo, Japan, Proceedings, edited by Carson Reynolds and Alvaro Cassinelli, 23–25. AP-CAP 2009. http://ia-cap.org/ap-cap09/proceedings.pdf. This version contains minor changes. Carl Shulman, Henrik Jonsson, Nick Tarleton 1. Free Variables of Consequentialism Suppose that the recommendations of a broadly utilitarian view depend on decisions about ten free binary variables, where we assign a probability of 80% to our favored option for each variable; in this case, if our probabilities are well-calibrated and our errors are not correlated across variables, then we will have only slightly more than a 10% chance of selecting the correct (in some meta-ethical framework) specification. -
Designing Humanoid Robots with Novel Roles and Social Abilities
Lovotics Dimitrova and Wagatsuma, Lovotics 2015, 3:1 ISSN: 2090-9888 Lovotics DOI: 10.4172/2090-9888.1000112 Review Article Open Access Designing Humanoid Robots with Novel Roles and Social Abilities Maya Dimitrova1,2* and Hiroaki Wagatsuma2,3 1Institute of Systems Engineering and Robotics, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria 2Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Japan 3RIKEN BSI, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan Abstract This mini-review describes aspects of human-robot interaction to be taken into account when designing humanoid robots with novel roles and social abilities. The review accentuates the psychological complexity that is necessary to be made inherent in the design of humanoid robotic technology. Some recent studies of robot acceptance are summarized leading to the proposal for more complex synthetic sensors being needed in novel humanoid robots. The perspective is designing based on modeling attitude (the social level of human robot interaction), but not opinion (psychological level), which can be a valuable aim for humanoid robotics. Keywords: Humanoid robots; Synthetic sensors; Uncanny valley; communicative intentions similarly to the way people perceive them at Psychology; Behavior; Attitude; Modeling some subtle level of awareness. The term ‘affection’ is becoming more and more characteristic of the process of natural and intuitive human- Introduction robot interaction, when the anthropomorphism is the underlying notion of this process according to [7], calling for the design of an ‘affection The interest in humanoid robotics is constantly increasing and sensor’, i.e. for modeling of complex multidimensional aspects of the is motivating novel solutions for personal assistance, elderly care, psychological side of the human-robot interaction process.