Phylogenetic Reconstruction and Diversification of the Triticeae

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Reconstruction and Diversification of the Triticeae Biochemical Systematics and Ecology 50 (2013) 346–360 Contents lists available at SciVerse ScienceDirect Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco Phylogenetic reconstruction and diversification of the Triticeae (Poaceae) based on single-copy nuclear Acc1 and Pgk1 gene data Xing Fan a,b, Li-Na Sha a, Shuang-Bin Yu a, Dan-Dan Wu a, Xiao-Hong Chen a, Xiao-Feng Zhuo a, Hai-Qin Zhang a, Hou-Yang Kang a, Yi Wang a, You-Liang Zheng a,b, Yong-Hong Zhou a,b,* a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China b Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China article info abstract Article history: Two single-copy nuclear gene (Acc1 and Pgk1) sequences were used to estimate the phy- Received 23 March 2013 logeny and diversification patterns of the Triticeae. Phylogenetic analyses and diversification Accepted 18 May 2013 patterns suggested that (1) a major radiation occurring in the Triticeae about 6.1–9.2 MYA Available online might have been triggered by the late Miocene climate oscillations; (2) the Triticeae lineages from Mediterranean and Arctic-temperate regions were evolutionarily distinct; (3) the Keywords: relationship between Thinopyrum bessarabicum and Triticum/Aegilops is more closely than Triticeae that between Lophopyrum elongatum and Triticum/Aegilops;(4)Pseudoroegneria is closely Phylogeny Diversification related to Australopyrum and Lophopyrum;(5)Australopyrum might originate from coloni- Monogenomic genera zation via South-east Asia during the late Miocene; (6) Habitats, mating systems, and climate Climate oscillations oscillations may associated with the diversification rate shifts leading to the majority of Mediterranean lineage. Diversification rate shifts in Mediterranean lineage of the Triticeae not only spur the occurrence of many endemic lineages but also provide opportunity for polyploid crop origin and domestication. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction Determining what processes have driven species diversification and diversity is a central goal of evolutionary and con- servation biologists. The forces acting on species richness may apply at different latitudes or biogeographic regions, indicating the importance of historical processes (e.g. dispersal events, and local speciation and extinction regimes) in mediating the environment–diversity relationship (Qian et al., 2009; Kisel et al., 2011). Theoretical and empirical investigation emphasized that historical climate fluctuations are a key factor promoting species diversification and distribution (Currie, 1991; Pearson and Dawson, 2003; Clarke and Gaston, 2006; Lavergne et al., 2010). Recent studies combining an effect of historical climatic variability with time-calibrated phylogenies suggested that variation in global climate determined the distribution, richness and diversity of plant clades, hence, indirectly influenced plant diversification (Egan and Crandall, 2008; Nyman et al., 2012). * Corresponding author. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China. E-mail address: [email protected] (Y.-H. Zhou). 0305-1978/$ – see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bse.2013.05.010 X. Fan et al. / Biochemical Systematics and Ecology 50 (2013) 346–360 347 The wheat tribe (Poaceae: Triticeae), an economically important gene pool for genetic improvement of cereal and forage crops, includes about 450 diploid and polyploid species that distribute in a wide range of ecological habitats over the temperate and subtropical and tropic alpine regions (Dewey, 1984). In the Triticeae, 24 major basic genomes donated by diploid species have been designated and were recognized in eighteen monogenomic genera (Löve, 1984; Wang et al., 1994). Many basic genomes (e.g. A, B, D, Ns, Xm, E, St, Y, H, P, W) in various combinations (e.g. AB, ABD, NsXm, StE, StH, StY, StYH, StYP, StYW) constitute polyploid species, about 75% of the Triticeae species (Lu, 1994). Monogenomic genera have been the focus of numerous phylogenetic investigations, partly because of its economic importance (which includes barley, rye, and crested- wheat grasses), and partly because of its genome donor to the speciation of polyploid species, as well as partly because of its wide variety of species richness, morphology, ecology and distribution. It was not considered that genomic analysis can reveal a phylogeny of the monogenomic genera (Kellogg, 1989; Kellogg et al., 1996; Petersen and Seberg, 1997; Seberg and Petersen, 1998). Attempts to sort out the phylogenetic details of the monogenomic genera, phylogenetic reconstructions were carried out based on morphological characteristics (Seberg and Frederiksen, 2001), chloroplast genes (Mason-Gamer et al., 2002), internal transcribed spacers (ITS) sequences (Hsiao et al., 1995), highly repetitive nuclear DNA (Kellogg and Appels, 1995), single-copy nuclear genes (Petersen and Seberg, 1997; Helfgott and Mason-Gamer, 2004; Mason-Gamer, 2005), and multiple gene combined data (Escobar et al., 2011). No consensual definition of clades, however, has been received due to either phylogenetic tree inferred from a limited number of genes (Petersen and Seberg, 1997; Hsiao et al., 1995; Kellogg and Appels, 1995; Helfgott and Mason-Gamer, 2004; Mason-Gamer, 2005) or limited sample (Kellogg and Appels, 1995; Escobar et al., 2011) or introgression events and/or incomplete lineage sorting of ancestral polymorphisms (Mason-Gamer, 2005; Escobar et al., 2011). With the data accumulating on members of the Triticeae, the origin and diversification of the tribe have received attention. Data from natural distribution speculated that the tribe originated about in the middle of the Tertiary period (20–30 MYA), and the first step of phylogenetic diversification in the Triticeae was occurred at the diploid level (Sakamoto, 1973). Morphological analyses presumed that the general evolution of the Triticeae has been defined by divergence at the diploid level from a common diploid ancestor (West et al., 1988). Kellogg et al. (1996) hypothesized that the common ancestor of the Triticeae had a spicate inflorescence with three spikelets per node and gave rise to lineages leading to present-day Psa- thyrostachys and Hordeum. Molecular dating suggested that the divergence between Aegilops/Triticum lineage and barley range from 15 to 10 MYA (million years ago) (Gaut, 2002; Huang et al., 2002; Dvorak and Akhunov, 2005), and the diploid Triticum and Aegilops progenitors of the A, B, D, G and S genomes all radiated about 4.5 MYA (Huang et al., 2002). While these studies add to our understanding of origin of the Triticeae, little is known about the processes driving species diversification and diversity within the Triticeae. Moreover, a complete picture of evolutionary history within the tribe is needed. In this study, we carried out phylogenetic reconstructions and molecular dating using two unlinked nuclear gene (Acc1 and Pgk1) sequences for 31 species of 17 monogenomic genera within the Triticeae. Chromosome mapping indicate that a single copy of the Acc1 gene is present in each of the group 2 homoeologous chromosomes in hexaploid wheat (Gornicki et al., 1997). Analysis of the Pgk1 gene showed that it is present as a single copy per diploid chromosome in grass, and a single copy of the Pgk1 gene is present in each of the group 3 homoeologous chromosomes in hexaploid wheat (Huang et al., 2002). The objectives were: (1) to reconstruct the phylogeny of the Triticeae, especially the time-calibrated phylogeny of the tribe; (2) to document the divergence history within this tribe; (3) to estimate the diversification pattern and process of the Triticeae species. 2. Materials and methods 2.1. Taxon sampling A total of 31 diploid taxa representing 18 basic genomes are used in this study. While generic definitions within the Triticeae have been extremely variable (Barkworth, 2000), this sample represents nearly all of the monogenomic genera accepted in genome-based classifications of the tribe. Acc1 and Pgk1 sequences of Aegilops/Triticum group, Secale, and Hor- deum vulgare were obtained from the data reported by Huang et al. (2002). The remaining sequences of the Triticeae, along with Bromus inermis were obtained from our published data (Fan et al., 2009, 2012). Plant material with sample information and GenBank identification numbers are listed in Table S1. 2.2. Data analysis The Acc1 and Pgk1 sequences were edited using SeqMan (DNASTAR package, Inc. Madison, Wisconsin) and adjusted manually where necessary. The basic sequence statistics, including nucleotides frequencies, transition/transversion ratio and variability in different regions of the sequences were examined by MEGA3 (Kumar et al., 2004). The partition homogeneity test, implemented in the program PAUP*4.0b10 (Swofford D L, Sinauer Associates, http://www.sinauer.com) was used to determine whether the Acc1 and Pgk1 genes contained significantly different signals. The partition homogeneity test can generate significant results if one gene has experienced many multiple substitutions or contains random information. The result of the partition homogeneity test showed that the sequence data sets for the Acc1 and Pgk1 loci were congruent (P ¼ 0.1000) and could therefore be combined for purposes of estimating the phylogeny and diversification pattern of the Triticeae. 348 X. Fan
Recommended publications
  • Triticeae Biodiversity and Conservation, a “Genebanker” View
    Czech J. Genet. Plant Breed., 41, 2005 (Special Issue) Triticeae Biodiversity and Conservation, a “Genebanker” View V. H������ Department of Gene Bank, Research Institute of Crop Production, 161 06 Prague-Ruzyně, Czech Republic, e-mail: [email protected] Abstract: Wild Triticeae are important genetic resources for cultivated cereals. While wild and primitive wheats are well preserved, other genera are rather neglected. Most of Triticeae have a large area of distribution, many occupy secondary habitats, or are weedy. However, there are also species with a limited distribution and those need primary attention in conservation. Annuals can be easily stored ex situ as easily as cultivated cereals; peren- nials have their longevity shortened. For successful conservation of genetic diversity one sample of a species is not enough. It is necessary to collect samples from the whole distribution area. Geographically distant popula- tions differ not only morphologically, but can have different spectra of genes. Even within a population there are large differences. For species scattered in distribution or restricted to a certain small area, it is reasonable to consider their in situ conservation. The basic requirement is to protect the locality/ies and to ensure that they are managed for sustainable reproduction of the Triticeae. Basically, this requires maintaining acceptable levels of use by man (grazing and disturbance), acceptable levels of plant competition from other species, and controlling allochtonous invasive species. Localities with in situ conservation require instant monitoring. A detailed docu- mentation (so called passport data) is prerequisite for both ex situ and in situ conservation. The taxonomic system must be conservative, without frequent nomenclatoral changes.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Registration of the Triticeae-CAP Spring Wheat Nested Association Mapping Population
    Published February 28, 2019 JOURNAL OF PLANT REGISTRATIONS MAPPING POPULATION Registration of the Triticeae-CAP Spring Wheat Nested Association Mapping Population N. K. Blake, M. Pumphrey, K. Glover, S. Chao, K. Jordan, J.-L. Jannick, E. A. Akhunov, J. Dubcovsky, H. Bockelman, and L. E. Talbert* Abstract andrace accessions of wheat (Triticum aestivum The Triticeae-CAP spring wheat nested association mapping L.) are a potentially important resource for superior population (Reg. No. MP-10, NSL 527060 MAP) consisting of genes to improve modern wheat cultivars. The landrace recombinant inbred line (RIL) populations derived from 32 Laccessions themselves are typically inferior to modern cultivars spring wheat (Triticum aestivum L.) accessions each crossed to for both agronomic and quality characteristics. This is particu- a common spring wheat parent, ‘Berkut’, has been released. larly true when landraces from one region are grown in a differ- The spring wheat accessions consisted of 29 landraces and ent locale in that important alleles for adaptation to biotic and three cultivars. Each population consists of approximately 75 abiotic factors are lacking. A challenge for breeders is that supe- lines for a total of 2325 RILs (Reg. Nos. GSTR No. 14701–GSTR 17133). The RILs have all been genotyped with the Illumina rior alleles are difficult to detect in a background of undesir- wheat iSelect 90K single nucleotide polymorphism array able alleles that typify the landraces. The increased efficiency of using the Infinium assay method and through genotype-by- modern genotyping capabilities has provided an opportunity to sequencing. This nested association mapping population identify superior alleles from nonadapted germplasm for incor- provides a genotyped germplasm resource for the wheat poration into elite breeding material.
    [Show full text]
  • Taxonomy and Phylogeny in Triticeae: a Historical Review and Current Status
    Advances in Plants & Agriculture Research Review Article Open Access Taxonomy and phylogeny in Triticeae: a historical review and current status Abstract Volume 3 Issue 5 - 2016 The Triticeae is an economically important tribe within the Poaceae. Because a number of cereal crops and forage grasses belong to the tribe it has attracted much scientific Mohannad G Al–Saghir attention covering many species: taxonomy, phylogeny, genetics, cytogenetic, genome Department of Environmental and Plant Biology, Ohio analyses (crossing ability and chromosome pairing), isoenzymes, molecular biology University, USA (RFLP, RAPD, PCR sequencing) and breeding. This paper contains a brief historical outline of the taxonomy of the tribe. Phylogenetic hypotheses regarding this tribe Correspondence: Mohannad G Al–Saghir, Department of inferred from different methods, techniques and approaches, are reviewed. The Environmental and Plant Biology, Ohio University, Zanesville, different phylogenies are discussed and compared and conflicts are elucidated. Ohio, USA, Email al–[email protected] Keywords: triticeae, phylogeny, taxonomy, poaceae, perennial species, durum Received: April 23, 2016 | Published: May 10, 2016 wheat, phylogenies, genetic diversity, cytogenetics, molecular biology, chromosomes, perennial, caespitose, thizomatous species Introduction as cited above. We can therefore conclude that the most appropriate outgroup for the tribe will be Bromus. The tribe Triticeae Dum is economically the most important tribe in the grass family (Poaceae). It encompasses between 350 and 500 Definition annual or perennial species,1–3 including the important cereal crops wheat (Triticum aestivium L.), durum wheat (T. turgidum sup. durum The Triticeae encompasses annual and perennial, caespitose or (Desf. MacKay) barley (Hordeum vulgare L.), rye (Secale cereal L.) thizomatous species.
    [Show full text]
  • Molecular Analyses of the Genera Eremopyrum (Ledeb.) Jaub
    Pak. J. Bot., 46(3): 769-774, 2014. MOLECULAR ANALYSES OF THE GENERA EREMOPYRUM (LEDEB.) JAUB. & SPACH AND AGROPYRON GAERTNER (POACEAE) BY PCR METHODS REMZİYE YILMAZ1, EVREN CABİ2* AND MUSA DOGAN3 1Middle East Technical University, Central Laboratory, Molecular Biology & Biotechnology R&D Center, 06530, Ankara, Turkey 2Namık Kemal University, Department of Biology, 59030 Tekirdağ, Turkey, 3Middle East Technical University, Department of Biological Sciences, 06530, Ankara-Turkey *Corresponding author’s e-mail: [email protected]; [email protected]; Ph: +90-282-2502670 Abstract RAPD-PCR (Random Amplified Polymorphic DNA Polymerase Chain Reaction) and Post PCR (Polymerase Chain Reaction) Melting Curve Analysis (MCA) have been used to investigate the pattern of genetic variation among some species in the genera Eremopyrum (Ledeb.) Jaub. & Spach and Agropyron Gaertner (Poaceae). Thirteen primers have been used in the study based on the RAPD-PCR and MCA analyses. Each species produced a distinct pattern of DNA fragments which have been used as a measure of the degree of relationship between species by means of using the RAPD-PCR results with three primers selected for identifying the genetic similarities. Polymorphic melting profiles have been obtained with Post PCR MCA method using three primers. Genetic similarities are calculated for all the species studied with RAPD-PCR and MCA methods, the dendrograms are obtained with the MVSP (Multi Variate Statistical Package) software using UPGMA (Unweighted Pair Group Method with Arithmetic Averages) and Jaccard’s Coefficient. Polymorphism between 18 populations of Eremopyrum and 6 Agropyron populations and within the species are determined by using RAPD-PCR and Post PCR melting curve analysis (MCA) respectively.
    [Show full text]
  • Who's Related to Whom?
    149 Who’s related to whom? Recent results from molecular systematic studies Elizabeth A Kellogg Similarities among model systems can lead to generalizations systematist’s question-why are there so many different about plants, but understanding the differences requires kinds of organisms? Studies of the evolution of develop- systematic data. Molecular phylogenetic analyses produce ment demand that the investigator go beyond the model results similar to traditional classifications in the grasses system and learn the pattern of variation in its relatives (Poaceae), and relationships among the cereal crops [3*]. This requires a reasonable assessment of the relatives’ are quite clear. Chloroplast-based phylogenies for the identity. Solanaceae show that tomato is best considered as a species of Solarium, closely related to potatoes. Traditional Knowledge of plant relationships has increased rapidly classifications in the Brassicaceae are misleading with in the past decade, reflecting partly the development regard to true phylogenetic relationships and data are only of molecular systematics. It has been known for some now beginning to clarify the situation. Molecular data are time that plant classifications do not reflect phylogeny also being used to revise our view of relationships among accurately, even though both phylogeny and classification flowering plant families. Phylogenetic data are critical for are hierarchical. The hierarchy of classification was interpreting hypotheses of the evolution of development. imposed in the late 18th century, well before ideas of descent with modification (evolution) were prevalent [4]. These pre-evolutionary groups were then re-interpreted in Address an evolutionary context, and were assumed to be products Harvard University Herbaria, 22 Divinity Avenue Cambridge, MA of evolution, rather than man-made artefacts.
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • JRG Consulting Wheat Barley Breeding Report Annexes for Public
    Exploring Options for Producer Involvement in Wheat and Barley Variety Development Annexes Prepared for Wheat and Barley Variety Working Group Prepared by JRG Consulting Group a division of 1260977 Ontario Inc. Guelph, Ontario (519) 836-1860 November 2015 JRG Consulting Group Collaborating for Success in the Agri-Food Sector Exploring Options for Producer Involvement in Wheat and Barley Variety Development - Annexes November 2015 Table of Contents Annex Page A Wheat and Barley Variety Development in Western Canada Today 1 B Funding of Variety Development and Value Capture Today 16 C Constraints and Gaps in Wheat and Barley Variety Development 21 D Summary and Assessment of Producer Involvement Approaches 30 E Producer Involvement in Variety Development in Some Other Crops 34 F Producer Involvement in Variety Development with Royalties 41 G Variety Development in the United States 62 H Producer Involvement in Variety Development 86 I Potential Models for Producer Involvement in Variety Development 100 Prepared by JRG Consulting Group ii for Wheat and Barley Variety Working Group Exploring Options for Producer Involvement in Wheat and Barley Variety Development - Annexes November 2015 Annex A - Wheat and Barley Variety Development in Western Canada Today There are a number of institutions involved in wheat and barley variety development in western Canada. These range from public sector bodies such as Agriculture and Agri-Food Canada (AAFC), Alberta’s Field Crop Development Centre (FCDC), the Crop Development Centre (CDC) at the University of Saskatchewan (U of S), the National Research Council (NRC), the University of Alberta (U of M), University of Manitoba (U of M) and private sector bodies such as Bayer Crop Science, Canterra, and Syngenta.
    [Show full text]
  • Importance of Crop Wild Relatives in Climate Resilience
    Int.J.Curr.Microbiol.App.Sci (2020) 9(3): 2922-2932 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 3 (2020) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2020.903.336 Importance of Crop Wild Relatives in Climate Resilience B. Keerthiraj1*, Anju M. Job2, K. S. Shankarprasad3, G. S. Sathisha4, SadanandKumbar5 and C. M. Karthik6 1Department of Genetics and Plant Breeding, College of Agriculture, UAHS, Shivamogga-577204, India 2Department of Plant Breeding and Genetics, College of Horticulture, KAU, Thrissur-680656, India 3Department of Plantation Crops and Spices, College of Horticulture, UHS, Bagalkot-560065, India 4Department of Agronomy, College of Agriculture, UAHS, Shivamogga-577204, India 5Department of Vegetable science, OUAT, Odisha -751003, India 6Department of Agricultural Entomology, College of Agriculture, UAHS, Shivamogga-577204, India *Corresponding author ABSTRACT Inferable from the impressive populace of wild relatives and forebears, the hereditary base of harvests was peaceful wide before taming. Through the span of time, hereditarily uniform improved assortments supplanted the profoundly differing nearby cultivars and landraces. These high yielding K eyw or ds assortments have restricted inconstancy to battle the impact of biotic and abiotic stresses not at all like the Crop Wild Relative (CWR), which is an enormous store of agronomically critical Crop wild relatives. characteristics. The usage of qualities from wild hereditary assets (CWR) for harvest improvement is Wild genetic entrenched with essential models going back over a century. In this paper, the data on the resources. significance and use of wild qualities for expanding efficiency, biotic and abiotic stress opposition in Importance of wild major developed harvests is audited.
    [Show full text]
  • Large Trees, Supertrees and the Grass Phylogeny
    LARGE TREES, SUPERTREES AND THE GRASS PHYLOGENY Thesis submitted to the University of Dublin, Trinity College for the Degree of Doctor of Philosophy (Ph.D.) by Nicolas Salamin Department of Botany University of Dublin, Trinity College 2002 Research conducted under the supervision of Dr. Trevor R. Hodkinson Department of Botany, University of Dublin, Trinity College Dr. Vincent Savolainen Jodrell Laboratory, Molecular Systematics Section, Royal Botanic Gardens, Kew, London DECLARATION I thereby certify that this thesis has not been submitted as an exercise for a degree at any other University. This thesis contains research based on my own work, except where otherwise stated. I grant full permission to the Library of Trinity College to lend or copy this thesis upon request. SIGNED: ACKNOWLEDGMENTS I wish to thank Trevor Hodkinson and Vincent Savolainen for all the encouragement they gave me during the last three years. They provided very useful advice on scientific papers, presentation lectures and all aspects of the supervision of this thesis. It has been a great experience to work in Ireland, and I am especially grateful to Trevor for the warm welcome and all the help he gave me, at work or outside work, since the beginning of this Ph.D. in the Botany Department. I will always remember his patience and kindness to me at this time. I am also grateful to Vincent for his help and warm welcome during the different periods of time I stayed in London, but especially for all he did for me since my B.Sc. at the University of Lausanne. I wish also to thank Prof.
    [Show full text]
  • Phylogeny of Elymus Ststhh Allotetraploids Based on Three Nuclear Genes
    Reticulate Evolutionary History of a Complex Group of Grasses: Phylogeny of Elymus StStHH Allotetraploids Based on Three Nuclear Genes Roberta J. Mason-Gamer*, Melissa M. Burns¤a, Marianna Naum¤b Department of Biological Sciences, The University of Illinois at Chicago, Chicago, Illinois, United States of America Abstract Background: Elymus (Poaceae) is a large genus of polyploid species in the wheat tribe Triticeae. It is polyphyletic, exhibiting many distinct allopolyploid genome combinations, and its history might be further complicated by introgression and lineage sorting. We focus on a subset of Elymus species with a tetraploid genome complement derived from Pseudoroegneria (genome St) and Hordeum (H). We confirm the species’ allopolyploidy, identify possible genome donors, and pinpoint instances of apparent introgression or incomplete lineage sorting. Methodology/Principal Findings: We sequenced portions of three unlinked nuclear genes—phosphoenolpyruvate carboxylase, b-amylase, and granule-bound starch synthase I—from 27 individuals, representing 14 Eurasian and North American StStHH Elymus species. Elymus sequences were combined with existing data from monogenomic representatives of the tribe, and gene trees were estimated separately for each data set using maximum likelihood. Trees were examined for evidence of allopolyploidy and additional reticulate patterns. All trees confirm the StStHH genome configuration of the Elymus species. They suggest that the StStHH group originated in North America, and do not support separate North American and European origins. Our results point to North American Pseudoroegneria and Hordeum species as potential genome donors to Elymus. Diploid P. spicata is a prospective St-genome donor, though conflict among trees involving P. spicata and the Eurasian P.
    [Show full text]
  • Historical Review and Prospect of Taxonomy of Tribe Triticeae Dumortier (Poaceae)
    Breeding Science 59: 513–518 (2009) Review Historical review and prospect of taxonomy of tribe Triticeae Dumortier (Poaceae) Chi Yen* and Jun Liang Yang Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, The People’s Republic of China The tribe Triticeae is a taxon in the Poaceae that includes several important cereal crops and forage grasses. All its species, including those that are not used for cereals or forage, are potential sources of genes for crop and forage improvement so they all have high economic value. Taxonomic treatments, including those of the Triticeae, are the basis for identification. They are often designed to reflect phylogenetic relationships and provide a guide for germplasm utilization. Traditional taxonomic treatments of the Triticeae were based on comparative morphology and geography. Morphological characters are phenotypes of an organism, resulting from interactions between or among dominant genes and environmental factors. Morphology cannot reflect recessive inheritance. Similar environmental conditions may result in morphological convergence in distantly related taxa and different environmental conditions in morphological divergence of closely related taxa. Con- sequently, traditional morphological taxonomy may result in misclassification. Cytogenetic and/or molecular genomic analysis may reveal such mistakes. On the basis of recent genomic investigations of the Triticeae, we have recognized 30 genera in this tribe. The taxonomic changes and genomic constitution of these genera are presented in this paper. Key Words: Triticeae, genera, genomic constitution, phylogenetic relationships. Introduction Linnaeus (1753) later named them Aegilops ovata and Ae. triuncialis, respectively. These names are, however, al- The tribe Triticeae is a taxon in the Poaceae that includes ways attributed to Linnaeus because, ever since acceptance several important cereal crops and forage grasses.
    [Show full text]