Quick viewing(Text Mode)

Pattern Generation and Control of Humanoid Robots: Towards Human-Like Walking Ahmed Chemori

Pattern Generation and Control of Humanoid Robots: Towards Human-Like Walking Ahmed Chemori

Pattern Generation and Control of Humanoid : Towards Human-Like Walking Ahmed Chemori

To cite this version:

Ahmed Chemori. Pattern Generation and Control of Humanoid Robots: Towards Human-Like Walk- ing. ICEECA: International Conference on Electrical Engineering and Control Applications, Nov 2012, Khenchela, Algeria. ￿10.13140/RG.2.2.35942.52808￿. ￿lirmm-00809634￿

HAL Id: lirmm-00809634 https://hal-lirmm.ccsd.cnrs.fr/lirmm-00809634 Submitted on 10 Sep 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Conference on Electrical Engineering an Control Applications ICEECA 2012

Plenary II

Ahmed CHEMORI

Laboratory of Informatics, and Microelectronics of Montpellier LIRMM, CNRS/University of Montpellier 2 161, rue Ada 34095 Montpellier, France

Khenchela, November, 21st, 2012 Montpellier

Montpellier is a city in the south of France It is the capital of Languedoc Roussillon region as well as Hérault department It is the 8th city in the country

Montpellier

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 2 LIRMM Laboratory

LIRMM

 Laboratory of Informatics, Robotics and Microelectronics of Montpellier (LIRMM) is a research laboratory supervised by both University Montpellier 2 and the French National Center for Scientific Research (CNRS)  359 permanent and 80 temporary employees, working together in 3 research units :

Department of Department of Department of Computer science Robotics Microelectronics

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 3 LIRMM Laboratory

Robotics department The robotics department constitutes one of the vital forces of robotics in France It comprised of 30 researchers and lecturer-researchers It contains 5 main research teams

DEXTER IDH ICAR

Robotics Department

Of LIRMM

EXPLORE DEMAR

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 4 LIRMM Laboratory

Robotics department DEXTER Research team

E. DOMBRE P. POIGNET N. ZEMITI C. LIU (DR CNRS) (PR UM2) (MC UM2) (CR CNRS) Medical robotics

F. PIERROT O. COMPANY S. KRUT A. CHEMORI M. GOUTTEFARDE (DR CNRS) (MC UM2) (CR CNRS) (CR CNRS) (CR CNRS) Parallel robotics

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 5 LIRMM Laboratory

Robotics department Facilities

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 6 LIRMM Laboratory

LIRMM in the robotics platforms network in France

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 7 Outline of the presentation

Part I o Context and problem formulation  Humanoid robotics  Origin of Humanoid robots  Humanoid robots over the years  Humanoid robots of today  Problem formulation Part II o Our demonstrators  SHERPA : A two-leg walking  HOAP3 : A Part III o Optimal Pattern generation  Related work  Proposed solution  Simulation results Part IV o Walking control  Summary of the study  Proposed solution  Simulation results Part V o Towards human-like walking  One basic idea  Related work  Why human like walking  Main steps of our developed study Part IV o Conclusion

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 8 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Part I

 Humanoid robotics  Origin of humanoid robots  Humanoid robots over the years  Humanoid robots of today  Problem formulation

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 9 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Humanoid robotics

A humanoid robot or an anthropomorphic robot is a robot with an overall appearance, based on that of the human body, allowing interaction with made-for-human tools or environments. In general humanoid robots have a torso with a head, two arms and two legs Some humanoid robots may also have a 'face', with 'eyes' and 'mouth' Androids are humanoid robots built to aesthetically resemble a human

Some features of a Humanoid Robot The characteristics features of a humanoid Robot include:  Autonomous learning  Avoiding harmful situations to people, and itself  Safe interacting with human beings and the environment

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 10 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Origin of humanoid robots

In 1921: Karel Capek coined the term Robot In 1941: Isaac Asimov proposed Three Laws of Robotics In 1948: Norbert Wiener formulated the principle of Cybernetics In 1969: Miomir Vukobratovic proposed the theory of Zero Moment Point (ZMP) In 1973: Waseda University (Tokyo) developed WABOT-1, which was capable to communicate with a person in Japanese, could do distance and direction measurements using sensors, artificial ears, eyes and as well as an artificial mouth In 20th century (end) many robots have been proposed : Greenman in 1983, WABOT-2 in 1984, WHL-11 in 1985, the musician robot- WASUBOT in 1985, series of seven biped robots called E0-E6 by Honda in 1986, the full scale anthromorphic robot- MANNY in 1989, with 42 degrees of freedom, Honda’s P1 through P3 in 1993, HADALY and WABIAN in 1995, SAIKA in 1996 and ASIMO by Honda in 2000. In 21st Century, further additions were done by Sony’s QRIO in 2001, HOAP and in 2003, PERSIA and KHR-1 in 2004, PKD and WAKAMARU in 2005, TOPIO in 2007, , KT-X and NEXI in 2008, SURALP in 2009, -2, -II and HRP-4C in 2010

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 11 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Humanoid robots over the years

WL-1 (1967) WAP-3 (1971) WL-10RD (1984) WABIAN (1995)

humanoid robots humanoid

Waseda

P2 P3 P4 E5 E6 P1 E2 E3 E4 E1 Towards whole-

body Honda humanoid robots humanoid Honda

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 12 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Humanoid robots of today

ASIMO (Honda)

SDR4 (Sony) HRP4/HRP4-C (AIST)

Nao (Aldebaran)

Hoap3 ()

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 13 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Problem formulation Walking cycle decomposition

Can distinguish :  2 main phases : Single support & double support  1 transition : impact with ground (instantaneous)

Impact

Single Double support support

We need to control the robot on the whole cycle What we need for that ?

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 14 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Problem formulation Static or dynamic walking ? Static walking Dynamic walking

Center Of Mass (COM) Zero Moment Point (ZMP)

G G

mg mg

5 (1971) 5

- WL C C

(a) (b) Point with respect to which dynamic reaction Weighting sum of the centers of different bodies forces at the contact does not produce any moment in the horizontal direction

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 15 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Two related problems Pattern generator Controller Robot Robot feet/ZMP Model positions qd Walking Pattern SHERPA Articulations U SHERPA Parameters generator robot control robot q, qp Contact forces control

Feet position modification Contact forces Posture measurement

Foot landing Balance Posture control control control Position error of the body

Stabilizer Two problems to be resolved : Pattern generation and control design for walking

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 16 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Part III

 SHERPA : A two-leg walking robot  HOAP 3 : A humanoid robot

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 17 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

SHERPA robot : Development steps Guide de montagne dans l'Himalaya

Prototype Original idea

Mechanical Biomechanical design studies

Articulated mechanical structure dof : 18 (6dof/leg) + 6 dof (position/orientation)  3 rotations (hip)  1 rotation (knee)  2 rotations (ankle) Actuation : 3 modules / leg For each module :  2 AC brushless motors  Cable differential joints Transparent actuation (low inertia & backdrivable)

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 18 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

SHERPA robot : Actuation

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 19 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

SHERPA robot : Experimental setup Control PC

ankle Hip

Force femur sensor 6-axis

foot knee

Tibia

Interface cards

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 20 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

SHERPA robot : First movements

Articulations movements Walking suspended

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 21 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

HOAP3 : Architecture Electronic boards inside

28 dof : 6 dof/leg - 6dof/arm - 3dof/head - 1dof/body

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 22 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

HOAP3 : Actuators and sensors

Speaker

Distance sensor

Posture sensor USB Cameras 3-axis acc sensor Angular velocity sensor (gyro)

Joint sensors 28 actuators (21 DC, 7 Stepper)

Force sensors (4/foot) Grip sensors

This demonstrator is useful for whole body control

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 23 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

HOAP3 : Operating modes cablemode

Robot

System configurationSystem in

Robot

radiomode System configurationSystem in

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 24 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Part IV

 Related work  Proposed solution

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 25 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Related work

Pattern generators

Simplified models Biomechanics Oscillators B-Splines functions Others

LIPM Biomchanics Van Der Pol Polynomial functions [Huang et al. 1999] [Kajita et al. 2001] [Bruneau et al. 1998] [Katoh et al. 1984] [ Zaier et al. 2007] [Hong et al. 2009] Motion capture Sinusoidal Neural networks

[Tang et al. 2007] [Harada, 2009] [Zhao et al. 2008] [Yang et al. 2007] [Ferreira et al. 2009] [Kim et al. 2009] FFT [Lee, 2007] [Takano et al. 2007] [Yamaguchi et al. 2008] 2MLIPM [Albert et al. 2002] 3MLIPM Our proposed solution [Takenaka et al. 2009] is within this class

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 26 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Summary of the proposed solution Objective

Design and development of a pattern generator for stable dynamic walking

Assumptions

A1: Walking on a horizontal ground without obstacles A2: walking cycle (SS+imact phases), no DS phase

Method & application

Method 1 : B-Spline functions with control points Method 2 : B-Spline functions with boundary conditions & interpolated points Application : Walking robot SHERPA

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 27 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Block-diagram of the proposed solution

Number Swing foot Trajectory of steps

Initial conditions Hip’s Trajectory Feet Length of Positions

steps Feet B-Spline trajectories I.K Reference Placement Functions Swing leg COM Whole Real ZMP Angle of model rotation COM computation Simplified Model Simplified ZMP

ZMP computation stability stability of Parameters

B-Spline with boundary conditions & interpolated points

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 28 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation results

 Integration of the proposed solution in a simulator  Simulation results without optimization  Trajectories optimization  Simulation results with optimization

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 29 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Integration of the proposed solution in a simulator

Walking User help parameters

Trajectories computation

Curves visualization

Animation make movie

Visualization footprints & CoM

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 30 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Scenario 1 : Straight walking without optimization

q , q [rad] q , q [rad] 2 8 5 11 qp , qp [rad/s] qp , qp [rad/s] 1 1.5 2 8 5 11

1 2

0 1 0 0 -1 0.5 0 2 4 6 0 2 4 6 -1 -2 0 2 4 6 0 2 4 6 q , q [rad] q , q [rad] 3 9 6 12 qp , qp [rad/s] qp , qp [rad/s] 0.2 0 3 9 6 12 1 1

0 -0.5 positions

velocities 0 0

-0.2 -1 0 2 4 6 0 2 4 6 -1 -1 0 2 4 6 0 2 4 6 q , q [rad] q , q [rad] 4 10 7 13 qp , qp [rad/s] qp , qp [rad/s] 0 0.2 4 10 7 13 1 1 -0.5 0

0 0

Articular Articular -1 -0.2 0 2 4 6 0 2 4 6 -1 -1 Temps [s] Temps [s] 0 2 4 6 0 2 4 6 Temps [s] Temps [s]

qpp , qpp [rad/s2] qpp , qpp [rad/s2] 2 8 5 11 2

1 20

X 0 0 0 Pied droit Pied gauche -1 -20 -2 0 2 4 6 0 2 4 6 0 1 2 3 4 5 6 Temps [s] qpp , qpp [rad/s2] qpp , qpp [rad/s2] 3 9 6 12 0.2 10 10

0 0 Y 0

accelerations accelerations

-10 -10 -0.2 0 2 4 6 0 2 4 6 0 1 2 3 4 5 6 Temps [s] qpp , qpp [rad/s2] qpp , qpp [rad/s2] 4 10 7 13 0.05

10 10 Feet trajectories Feet

0 0 Z Articular -10 -10 0 0 2 4 6 0 2 4 6 0 1 2 3 4 5 6 Temps [s] Temps [s] Temps [s] Obtained cyclic trajectories

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 31 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Scenario 1 : Stability evaluation without optimization

S1 : Straight walking S2 : Walking with change of direction

ZMP & COM réel 0.5 1 ZMP 0.4 0.8 COM ZMP 0.3 0.6 COM

0.2 0.4

0.1 0.2

0 0

-0.1 -0.2

-0.2 -0.4

-0.3 -0.6

-0.4 -0.8

-0.5 -1 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ZMP, COM et footprints ZMP, COM and footprints

S1 : ZMP is inside of the support polygon Stable walking S2 : ZMP is outside of the support polygon Unstable walking

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 32 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Trajectories optimization

Objective : Improve the stability of dynamic waling

Proposed solution : Optimization with respect to ZMP

: Coordinates of ZMP position

: Desired ZMP position

: Weighting coefficients

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 33 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Scenario 2 : Straight walking with optimization

M2 : Without optimization M2 : With optimization

1 0.5 0.8 0.4 ZMP 0.6 0.3 COM 0.4 0.2 0.2 0.1 0 0 -0.2 -0.1 -0.4 -0.2 -0.6 -0.3 -0.8 -0.4 -1 -0.5 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 ZMP, COM et footprints ZMP, COM and footprints

With optimization : ZMP is inside of the support polygon Stable walking ZMP is more concentrated Stability improved

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 34 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

GUI Animation

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 35 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Part V

 Summary of the study  Proposed solution  Simulation results

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 36 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Summary of the study Objective

Design of controllers for stable dynamic walking in humanoid robotics

Assumptions

A1: Walking on a horizontal ground without obstacles A2: walking cycle (SS+imact phases), no DS phase (except at the beginning)

Method & application

Method : Dynamic control Walking stability : ZMP-based stabilizer Application : Walking robot SHERPA

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 37 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Block-diagram of the proposed solution

SHERPA Robot

CoMd q , q ,q Trajectories d d d Dynamic u  Generation IKM controller

CoMaux   q , q z Stabilizer  y   x

3D foot/ground contact model

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 38 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation results

 14 steps walking scenario  Starting from rest  Variable (increasing) walking speed

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 39 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation results

Joint positions of first leg Joint positions of second leg

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 40 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation results

Torques of first leg Torques of second leg

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 41 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation results

Contact forces ZMP tracking

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 42 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Part VI

 One basic idea  Related work  Why human-like walking?  Main steps of our study

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 43 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

One basic idea

Pattern generator Controller Robot Robot feet/ZMP Model positions qd Walking Pattern SHERPA Articulations U SHERPA Parameters generator robot control robot q, qp Contact forces control

Feet position modification Contact forces Posture measurement

Foot landing Balance Posture control control control Position error of the body Human walking data

Stabilizer

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 44 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Related work

Whole body motion control

Task-based schemes Human-Data based schemes

Class 1: Online computation Class 2: Offline computation

Objective function Motion Primitives [Liegeois, 1977] Balance/Tracking controller [Nakaoka et al., 2003- Task priority based [Yamane et al.,2009-2010] 2005] redundancy control Imitation Gait parameter extraction [Siciliano et al.,1991, [Shaal et al.,1999-2003, [Harada et al.,2009] Nakamura et al., 1987] Calderon & Hu 2005] Scale and optimization Stack of task [Suleiman et al., 2008] [Mansard., 2007]

Human Normalized model [Montecillo et al.,2010]

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 45 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Why human like-walking ?

Human walking versus humanoid walking

Objective : Study of the influence of the upper limbs (torso & arms) on dynamic stability and energy consumption during walking

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 46 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Main steps of our study

• Simulator development step1

• Human walking study  Gather human walking data Step 2

• Pattern generator design (based on human walking data) Step 3

• Control architecture (controller + stabilizer) Step 4

• Implementation on a humanoid robot (HOAP3) Step 5

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 47 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Step 1

Developed simulator for whole-body control

Summary of the simulator characteristics  View GUI of the simulator  Whole body proposed model

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 48 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Summary of the simulator main characteristics

Includes whole-body models of different robots

Examples : SHERPA robot, Whole-body proposed model, Hydroid, Hoap3

Easy extensions  add other models

Takes into account both robot dynamics and contact dynamics

Two contact models : compliant / rigid

Has a graphical interface (OpenGL)  Show the movements of the robot

Written in C++ language (use GSL open source library)

Modular approach

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 49 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

View of the GUI of the simulator

20 dof whole body model Hoap 3 robot model (28 dof)

And others …

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 50 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Whole body proposed model

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 51 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Preliminary tests on the simulator Scenario 1: Squat task Scenario 2: Whole body balance

Scenario 3: Arms balance Scenario 3: Torso & arms balance

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 52 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Step 2

Human walking study

 Human walking  Motion capture system

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 53 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Human walking

Including :  Human Locomotion  Kinematics & kinetics of human walking  Energy & muscle activity during walking  Simulation of Walking  … etc How we can acquire data on human walking ?

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 54 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Motion capture system

Plug-in-Gait Marker Placement

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 55 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Motion capture system

Context : A joint French-Italian project  LIRMM(France) / LABLAB (Italy) Objective : Human walking analysis  Effects of upper limbs on human walking

Equipments : 1 host PC 10 VICON cameras  3 Forces plates

Force plate VICON Camera

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 56 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Motion capture system Is the process of recording movement, and translate that movement to a digital model

Reflective marker

Study: - 15 Subjects walking at different speeds - 35 markers using Plug-in Gait template (a) - Reconstruction of movement using Vicon Nexus (b) - Estimation of CoM using Lifemod (c)

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 57 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Step 3

Pattern generator design

 Basic idea of the proposed solution  Proposed human data base pattern generator  Simulation results

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 58 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Basic idea of the proposed solution What happen if we apply directly human data to the humanoid robot ? y : SS : DS

x

ZMP is outside the polygon of support  unstable waking ! Proposed solution : Upper body

Lower body

3D-LIPM 22 dof

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 59 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Proposed human data based pattern generator

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 60 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation results

Proposed pattern generator was implemented in the robot simulator Human walking data used for upper body For a three-step walking scenario starting from rest

Stable Dynamic walking

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 61 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation results

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 62 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Step 4

Control architecture design

 Basic idea of the proposed control architecture  Block-diagram  Extended version

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 63 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Basic idea of the proposed control scheme

Motion Capture

S

Control scheme

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 64 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Block-diagram of the proposed control architecture

First task

Null space projection Second task

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 65 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Extended version of the proposed control architecture (With ZMP regulation)

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 66 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Step 5

Implementation on a humanoid robot

Simulation scenarios Real-time experimental scenarios  Scenario 1 : Simple validation of the scheme  Scenario 1 : ZMP control  Scenario 2 : Human data without adaptation  Scenario 2 : Squat motion  Scenario 3 : Human data with CoM scaling  Scenario 4 : Squat motion

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 67 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation scenario 1 : First validation of the scheme

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 68 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation scenario 2 : Human data without adaptation

Reconstructed human movement Application of the proposed scheme

Simulation of the proposed control scheme Use of human data without any adaptation

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 69 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation scenario 3 : Human data with CoM scaling

Reconstructed human movement Application of the proposed scheme

Simulation of the proposed control scheme Use of human data with scaling of the CoM trajectories

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 70 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Simulation scenario 4 : Squat motion

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 71 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Experimental scenario 1 : ZMP control with external disturbance

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 72 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Experimental scenario 2 : Squat motion

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 73 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Part V

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 74 Context Demonstrators P. Generation Walking T. H. Walking Conclusion

Context : Pattern generation and control in humanoid robotics Three main studies : First study : Pattern generation  B-spline based generator Second study : Walking control  Walking control architecture with stabilizer Third study : Towards human-like walking (whole body control) in 5 steps  Simulation development  Human walking study  Pattern generator design  Control architecture design (no phase decomposition continuous)  Implementation Future work : Final walking control implementation on Hoap 3 robot Real-time implementation on a humanoid robot : HRP4

ICEECA 2012 - khenchela, Algeria Speaker : A. Chemori (LIRMM, CNRS – Univ. Montpellier 2, France) 75 View publication stats