Transcriptional Regulation of Wnt/Β-Catenin Pathway in Colorectal Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Genetic Screening Identifies a Component of the SWI/SNF Complex, Arid1b As a Senescence Regulator
A genetic screening identifies a component of the SWI/SNF complex, Arid1b as a senescence regulator Sadaf Khan A thesis submitted to Imperial College London for the degree of Doctor in Philosophy MRC Clinical Sciences Centre Imperial College London, School of Medicine July 2013 Statement of originality All experiments included in this thesis were performed by myself unless otherwise stated. Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives license. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the license terms of this work. 2 Abstract Senescence is an important tumour suppressor mechanism, which prevents the proliferation of stressed or damaged cells. The use of RNA interference to identify genes with a role in senescence is an important tool in the discovery of novel cancer genes. In this work, a protocol was established for conducting bypass of senescence screenings, using shRNA libraries together with next-generation sequencing. Using this approach, the SWI/SNF subunit Arid1b was identified as a regulator of cellular lifespan in MEFs. SWI/SNF is a large multi-subunit complex that remodels chromatin. Mutations in SWI/SNF proteins are frequently associated with cancer, suggesting that SWI/SNF components are tumour suppressors. Here the role of ARID1B during senescence was investigated. Depletion of ARID1B extends the proliferative capacity of primary mouse and human fibroblasts. -
ATF4 Promotes Angiogenesis and Neuronal Cell Death and Confers Ferroptosis in a Xct-Dependent Manner
OPEN Oncogene (2017) 36, 5593–5608 www.nature.com/onc ORIGINAL ARTICLE ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner D Chen1,2,ZFan1,3, M Rauh4, M Buchfelder5, IY Eyupoglu1,5 and N Savaskan1,5,6 Activating transcription factor 4 (ATF4) is a critical mediator of metabolic and oxidative homeostasis and cell survival. ATF4 is elevated in response to diverse microenvironmental stresses, including starvation, ER stress damages and exposure to toxic factors. Here we show that ATF4 expression fosters the malignancy of primary brain tumors (WHO grade III and IV gliomas) and increases proliferation and tumor angiogenesis. Hence, ATF4 expression promotes cell migration and anchorage-independent cell growth, whereas siRNA-mediated knockdown of ATF4 attenuates these features of malignancy in human gliomas. Further experiments revealed that ATF4-dependent tumor promoting effects are mediated by transcriptional targeting the glutamate antiporter xCT/SCL7A11 (also known as system Xc-). Thus, xCT is elevated as a consequence of ATF4 activation. We further found evidence that ATF4-induced proliferation can be attenuated by pharmacological or genetic xCT inhibition and ferroptosis inducers such as sorafenib, erastin and GPx4 inhibitor RSL3. Further, fostered xCT expression promotes cell survival and growth in ATF4 knockdown cells. Moreover, increased xCT levels ameliorate sorafenib and erastin-induced ferroptosis. Conversely, ATF4 knockdown renders cells susceptible for erastin, sorafenib and RSL3-induced ferroptosis. We further identified that ATF4 promotes tumor-mediated neuronal cell death which can be alleviated by xCT inhibition. Moreover, elevated ATF4 expression in gliomas promotes tumor angiogenesis. Noteworthy, ATF4-induced angiogenesis could be diminished by ferroptosis inducers erastin and by GPx4 inhibitor RSL3. -
Constitutive Scaffolding of Multiple Wnt Enhanceosome Components By
RESEARCH ARTICLE Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/ BCL9 Laurens M van Tienen, Juliusz Mieszczanek, Marc Fiedler, Trevor J Rutherford, Mariann Bienz* MRC Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract Wnt/b-catenin signaling elicits context-dependent transcription switches that determine normal development and oncogenesis. These are mediated by the Wnt enhanceosome, a multiprotein complex binding to the Pygo chromatin reader and acting through TCF/LEF- responsive enhancers. Pygo renders this complex Wnt-responsive, by capturing b-catenin via the Legless/BCL9 adaptor. We used CRISPR/Cas9 genome engineering of Drosophila legless (lgs) and human BCL9 and B9L to show that the C-terminus downstream of their adaptor elements is crucial for Wnt responses. BioID proximity labeling revealed that BCL9 and B9L, like PYGO2, are constitutive components of the Wnt enhanceosome. Wnt-dependent docking of b-catenin to the enhanceosome apparently causes a rearrangement that apposes the BCL9/B9L C-terminus to TCF. This C-terminus binds to the Groucho/TLE co-repressor, and also to the Chip/LDB1-SSDP enhanceosome core complex via an evolutionary conserved element. An unexpected link between BCL9/B9L, PYGO2 and nuclear co-receptor complexes suggests that these b-catenin co-factors may coordinate Wnt and nuclear hormone responses. DOI: 10.7554/eLife.20882.001 *For correspondence: mb2@mrc- Introduction lmb.cam.ac.uk The Wnt/b-catenin signaling cascade is an ancient cell communication pathway that operates con- Competing interests: The text-dependent transcriptional switches to control animal development and tissue homeostasis authors declare that no (Cadigan and Nusse, 1997). -
AXIN1 Protein Full-Length Recombinant Human Protein Expressed in Sf9 Cells
Catalog # Aliquot Size A71-30G-20 20 µg A71-30G-50 50 µg AXIN1 Protein Full-length recombinant human protein expressed in Sf9 cells Catalog # A71-30G Lot # E3330-6 Product Description Purity Full-length recombinant human AXIN1 was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. This gene accession number is BC044648. The purity of AXIN1 protein was Gene Aliases determined to be >75% by densitometry. AXIN; MGC52315 Approx. MW 135 kDa. Formulation Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 50mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol. Storage and Stability Store product at –70oC. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Scientific Background AXIN 1 encodes a cytoplasmic protein which contains a regulation of G-protein signaling (RGS) domain and a dishevelled and axin (DIX) domain that interacts with adenomatosis polyposis coli, catenin beta-1, glycogen synthase kinase 3 beta, protein phosphate 2, and itself. AXIN1 has both positive and negative regulatory roles in Wnt-beta-catenin signaling. AXIN1 is a core component of a 'destruction complex' that promotes AXIN1 Protein phosphorylation and polyubiquitination of cytoplasmic beta- Full-length recombinant human protein expressed in Sf9 cells catenin, resulting in beta-catenin proteasomal degradation in the absence of Wnt signaling. Nuclear accumulation of AXIN1 can Catalog # A71-30G positively influence beta-catenin-mediated transcription during Lot # E3330-6 Wnt signalling and can induce apoptosis (1). -
New Model IQGAP1.Pdf
NewmodelfortheinteractionofIQGAP1withCDC42andRAC1 KazemNouri1,DavidJ.Timson2,MohammadR.Ahmadian1 1InstituteofBiochemistryandMolecularBiologyII,MedicalfacultyoftheHeinrichͲHeineUniversity, 40225Düsseldorf,Germany;2SchoolofPharmacyandBiomolecularSciences,UniversityofBrighton, HuxleyBuilding,LewesRoad,BrightonBN24GJ,UnitedKingdom Correspondingauthor:Prof.Dr.MohammadRezaAhmadian,InstitutfürBiochemieund MolekularbiologieII,MedizinischeFakultätderHeinrichͲHeineͲUniversität,Universitätsstr.1, Gebäude22.03,40255Düsseldorf,Germany;Tel.:#49Ͳ211Ͳ8112384;#Fax:49Ͳ211Ͳ8112726;EͲmail: [email protected] Keywords:IQGAP1,RHOGTPases,RAC1,CDC42,RHOeffectors Shorttitle:IQGAP1interactionwithCDC42andRAC1 Abstract:Thespecificandrapidformationofproteincomplexes,involvingIQGAPfamilyproteins, isessentialfordiversecellularprocesses,suchasadhesion,polarization,anddirectional migration.AlthoughCDC42andRAC1,prominentmembersoftheRHOGTPasefamily,havebeen implicatedinbindingtoandactivatingIQGAP1,theexactnatureofthisproteinͲprotein recognitionprocesshasremainedobscure.Here,weproposeamechanisticframeworkmodel thatisbasedonamultipleͲstepbindingprocess,whichisaprerequisiteforthedynamicfunctions ofIQGAP1asascaffoldingproteinandacriticalmechanismintemporalregulationand integrationofcellularpathways. Abbreviations:CaM,calmodulin;CC,coiledͲcoilrepeatregion;CHD,calponinhomologydomain;CT, CͲterminaldomain;GAP,GTPaseͲactivatingprotein;GEF,guaninenucleotideexchangefactor;GDI, guaninenucleotidedissociationinhibitor;GRD,GAPͲrelateddomain;GST,glutathionͲSͲtransferase; -
The Wnt Pathway Scaffold Protein Axin Promotes Signaling Specificity by Suppressing Competing Kinase Reactions
bioRxiv preprint doi: https://doi.org/10.1101/768242; this version posted September 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The Wnt pathway scaffold protein Axin promotes signaling specificity by suppressing competing kinase reactions Maire Gavagan1,2, Erin Fagnan1,2, Elizabeth B. Speltz1, and Jesse G. Zalatan1,* 1Department of Chemistry, University of Washington, Seattle, WA 98195, USA 2These authors contributed equally to this work *Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/768242; this version posted September 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract GSK3β is a multifunctional kinase that phosphorylates β-catenin in the Wnt signaling network and also acts on other protein targets in response to distinct cellular signals. To test the long-standing hypothesis that the scaffold protein Axin specifically accelerates β-catenin phosphorylation, we measured GSK3β reaction rates with multiple substrates in a minimal, biochemically-reconstituted system. We observed an unexpectedly small, ~2-fold Axin-mediated rate increase for the β-catenin reaction. The much larger effects reported previously may have arisen because Axin can rescue GSK3β from an inactive state that occurs only under highly specific conditions. -
Epithelial-Specific Knockout of the Rac1 Gene Leads to Enamel Defects
Eur J Oral Sci 2011; 119 (Suppl. 1): 168–176 Ó 2011 Eur J Oral Sci DOI: 10.1111/j.1600-0722.2011.00904.x European Journal of Printed in Singapore. All rights reserved Oral Sciences Zhan Huang1, Jieun Kim2, Rodrigo Epithelial-specific knockout of the Rac1 S. Lacruz1, Pablo Bringas Jr1, Michael Glogauer3, Timothy G. gene leads to enamel defects Bromage4, Vesa M. Kaartinen2, Malcolm L. Snead1 1The Center for Craniofacial Molecular Biology, Huang Z, Kim J, Lacruz RS, Bringas P Jr, Glogauer M, Bromage TG, Kaartinen VM, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Snead ML. Epithelial-specific knockout of the Rac1 gene leads to enamel defects. 2 Eur J Oral Sci 2011; 119 (Suppl. 1): 168–176. Ó 2011 Eur J Oral Sci Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; 3Matrix The Ras-related C3 botulinum toxin substrate 1 (Rac1) gene encodes a 21-kDa GTP- Dynamics Group, Faculty of Dentistry, binding protein belonging to the RAS superfamily. RAS members play important University of Toronto, Toronto, Ontario, roles in controlling focal adhesion complex formation and cytoskeleton contraction, Canada; 4New York University College of activities with consequences for cell growth, adhesion, migration, and differentiation. Dentistry, New York, NY, USA To examine the role(s) played by RAC1 protein in cell–matrix interactions and enamel matrix biomineralization, we used the Cre/loxP binary recombination system to characterize the expression of enamel matrix proteins and enamel formation in Rac1 knockout mice (Rac1)/)). Mating between mice bearing the floxed Rac1 allele and mice bearing a cytokeratin 14-Cre transgene generated mice in which Rac1 was absent Zhan Huang, The Center for Craniofacial from epithelial organs. -
Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. -
ARID1B Is a Specific Vulnerability in ARID1A-Mutant Cancers The
ARID1B is a specific vulnerability in ARID1A-mutant cancers The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Helming, K. C., X. Wang, B. G. Wilson, F. Vazquez, J. R. Haswell, H. E. Manchester, Y. Kim, et al. 2014. “ARID1B is a specific vulnerability in ARID1A-mutant cancers.” Nature medicine 20 (3): 251-254. doi:10.1038/nm.3480. http://dx.doi.org/10.1038/nm.3480. Published Version doi:10.1038/nm.3480 Accessed February 16, 2015 10:04:32 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12987227 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA (Article begins on next page) NIH Public Access Author Manuscript Nat Med. Author manuscript; available in PMC 2014 September 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nat Med. 2014 March ; 20(3): 251–254. doi:10.1038/nm.3480. ARID1B is a specific vulnerability in ARID1A-mutant cancers Katherine C. Helming1,2,3,4,*, Xiaofeng Wang1,2,3,*, Boris G. Wilson1,2,3, Francisca Vazquez5, Jeffrey R. Haswell1,2,3, Haley E. Manchester1,2,3, Youngha Kim1,2,3, Gregory V. Kryukov5, Mahmoud Ghandi5, Andrew J. Aguirre5,6,7, Zainab Jagani8, Zhong Wang9, Levi A. Garraway6, William C. Hahn6,7, and Charles W. -
Utx Is Required for Proper Induction of Ectoderm and Mesoderm During Differentiation of Embryonic Stem Cells
Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells Cristina Morales Torres1,2, Anne Laugesen1,2, Kristian Helin1,2,3* 1 Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark, 2 Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark, 3 The Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark Abstract Embryonic development requires chromatin remodeling for dynamic regulation of gene expression patterns to ensure silencing of pluripotent transcription factors and activation of developmental regulators. Demethylation of H3K27me3 by the histone demethylases Utx and Jmjd3 is important for the activation of lineage choice genes in response to developmental signals. To further understand the function of Utx in pluripotency and differentiation we generated Utx knockout embryonic stem cells (ESCs). Here we show that Utx is not required for the proliferation of ESCs, however, Utx contributes to the establishment of ectoderm and mesoderm in vitro. Interestingly, this contribution is independent of the catalytic activity of Utx. Furthermore, we provide data showing that the Utx homologue, Uty, which is devoid of detectable demethylase activity, and Jmjd3 partly compensate for the loss of Utx. Taken together our results show that Utx is required for proper formation of ectoderm and mesoderm in vitro, and that Utx, similar to its C.elegans homologue, has demethylase dependent and independent functions. Citation: Morales Torres C, Laugesen A, Helin K (2013) Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells. PLoS ONE 8(4): e60020. doi:10.1371/journal.pone.0060020 Editor: Qiang Wu, National University of Singapore, Singapore Received December 13, 2012; Accepted February 21, 2013; Published April 3, 2013 Copyright: ß 2013 Morales Torres et al. -
Nucleo-Cytoplasmic Distribution of ß-Catenin Is Regulated by Retention
Research Article 1453 Nucleo-cytoplasmic distribution of -catenin is regulated by retention Eva Krieghoff, Jürgen Behrens* and Bernhard Mayr Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Glückstr. 6, 91054 Erlangen, Germany *Author for correspondence (e-mail: [email protected]) Accepted 19 December 2005 Journal of Cell Science 119, 1453-1463 Published by The Company of Biologists 2006 doi:10.1242/jcs.02864 Summary -catenin is the central signalling molecule of the canonical of -catenin, i.e. increases the rate of -catenin nuclear Wnt pathway, where it activates target genes in a complex import or export. Moreover, the cytoplasmic enrichment of with LEF/TCF transcription factors in the nucleus. The -catenin by APC and axin is not abolished by inhibition regulation of -catenin activity is thought to occur mainly of CRM-1-dependent nuclear export. TCF4, APC, axin and on the level of protein degradation, but it has been axin2 move more slowly than -catenin in their respective suggested that -catenin nuclear localization and hence its compartment, and concomitantly decrease -catenin transcriptional activity may additionally be regulated via mobility. Together, these data indicate that -catenin nuclear import by TCF4 and BCL9 and via nuclear export interaction partners mainly regulate -catenin subcellular by APC and axin. Using live-cell microscopy and localization by retaining it in the compartment in which fluorescence recovery after photobleaching (FRAP), we they are localized, rather than by active transport into or have directly analysed the impact of these factors on the out of the nucleus. subcellular localization of -catenin, its nucleo-cytoplasmic shuttling and its mobility within the nucleus and the Supplementary material available online at cytoplasm. -
Decreased Expression of the Id3gene at 1P36.1 in Ovarian
British Journal of Cancer (2001) 84(3), 352–359 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2000.1620, available online at http://www.idealibrary.com on http://www.bjcancer.com Decreased expression of the Id3 gene at 1p36.1 in ovarian adenocarcinomas JM Arnold1, SC Mok2, D Purdie1 and G Chenevix-Trench1,3 1The Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Queensland, Australia, 4029; 2Laboratory of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproduction Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; 3Department of Pathology, University of Queensland, St Lucia, Brisbane, Australia, 4067 Summary The molecular events that drive the initiation and progression of ovarian adenocarcinoma are not well defined. We have investigated changes in gene expression in ovarian cancer cell lines compared to an immortalized human ovarian surface epithelial cell line (HOSE) using a cDNA array. We identified 17 genes that were under-expressed and 10 genes that were over-expressed in the cell lines compared to the HOSE cells. One of the genes under-expressed in the ovarian cancer cell lines, Id3, a transcriptional inactivator, was selected for further investigation. Id3 mRNA was expressed at reduced levels in 6 out of 9 ovarian cancer cell lines compared to the HOSE cells while at the protein level, all 7 ovarian cancer cell lines examined expressed the Id3 protein at greatly reduced levels. Expression of Id3 mRNA was also examined in primary ovarian tumours and was found in only 12/38 (32%) cases. A search was conducted for mutations of Id3 in primary ovarian cancers using single stranded conformation polymorphism (SSCP) analysis.