bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.089656; this version posted May 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Nuclear IQGAP1 promotes gastric cancer cell growth by altering the splicing of 2 a cell-cycle regulon in co-operation with hnRNPM 3 Andrada Birladeanu1,5, Malgorzata Rogalska2,5, Myrto Potiri1,5, Vassiliki 4 Papadaki1, Margarita Andreadou1, Dimitris Kontoyiannis1,3, Zoi Erpapazoglou1, 5 Joe D. Lewis4, Panagiota Kafasla*,1 6 7 1Institute for Fundamental Biomedical Research, B.S.R.C. “Alexander Fleming”, 34 8 Fleming st., 16672 Vari, Athens, Greece 9 2Centre de Regulació Genòmica, The Barcelona Institute of Science and Technology 10 and Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain 11 3 Department of Biology, Aristotle University of Thessaloniki, Greece 12 4European Molecular Biology Laboratory, 69117 Heidelberg, Germany 13 5These authors contributed equally 14 *Correspondence:
[email protected] 15 16 Summary 17 Heterogeneous nuclear ribonucleoproteins (hnRNPs) play crucial roles in alternative 18 splicing, regulating the cell proteome. When they are miss-expressed, they contribute 19 to human diseases. hnRNPs are nuclear proteins, but where they localize and what 20 determines their tethering to nuclear assemblies in response to signals remain open 21 questions. Here we report that IQGAP1, a cytosolic scaffold protein, localizes in the 22 nucleus of gastric cancer cells acting as a tethering module for hnRNPM and other 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.089656; this version posted May 13, 2020.