Asteraceae) in British Columbia

Total Page:16

File Type:pdf, Size:1020Kb

Asteraceae) in British Columbia THE SYSTEMATICS OF INDIGENOUS SPECIES OF HIERACIUM (ASTERACEAE) IN BRITISH COLUMBIA by GERALDINE ANNE ALLEN GUPPY B.Sc, University of British Columbia, 1972 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Botany We accept this thesis as conforming to the required standard The University of British Columbia September, 1975 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 - 11 - ABSTRACT Hieracium L., a large and taxonomically complex genus in the family Asteraceae, is represented in British Columbia by seven species. The present study was undertaken in order to gain insight into the relationships between these species. Data was gathered from various sources. Patterns of morphological variation were studied, as well as the type of reproduction in each taxon and its ability to hybridize with other taxa. Chromosome number, karyotype, and meiotic behaviour were also investigated. Five of the species were examined chemically and their flavonoids identified. The species of Hieracium in British Columbia fall into two groups. The subgenus Euhieracium (a predominantly European group) contains one species, Hieracium umbel!a turn, which is triploid, apomictic and morphologically variable. The other six species belong to the subgenus Stenotheca (a mainly New World group). Within the subgenus they form three clusters of one or more species each, all of which are diploid and sexually reproducing. The clusters are morphologically and chemically distinct from one another, and differ in reproductive strategy. However, they have very similar chromosomes and are interfertile. The hybrids between species of different clusters, though they have lowered pollen viability, are all meiotically regular (indicating close relationships between the parents). Within the clusters the species intergrade morphologically and reproductively, and are chemically similar (with the exception of Hieracium triste and H_. gracile, which differ chemically). A synopsis of the seven Hieracium species is - iii - TABLE OF CONTENTS page ABSTRACT ii ACKNOWLEDGEMENTS x I. INTRODUCTION 1 II. MORPHOLOGY 5 Species of the Subgenus Euhieracium 6 The Hieracium scouleri Complex and Hieracium albiflorum . 24 (1) Variation within the Hieracium scouleri complex . 26 (2) Variation in Hieracium albiflorum 30 (3) The relationship between the Hieracium scouleri complex and Hieracium albiflorum ... 32 The Hieracium triste - Hieracium gracile Complex .... 39 III. REPRODUCTIVE BIOLOGY 47 Breeding System 48 Hybridization Experiments 56 Pollen Viability 66 IV. CYTOGENETICS 69 Methods 69 Results 76 (1) Chromosome number 76 (2) Karyotype 77 (3) Meiosis 83 - iv - page V. FLAVONOID CHEMISTRY 92 Methods 93 Results 98 VI. DISCUSSION 122 Theoretical Considerations 122 The Species of Hieracium: Biology and Interrelationships . 123 (1) The North American Hieracium umbel!atum complex . 123 (2) The Hieracium scouleri complex 128 (3) Hieracium albiflorum 133 (4) The Hieracium triste - Hieracium gracile complex . 136 (5) Relationships between sections 142 (6) The position of the genus within the Cichorieae . 143 A Synopsis of Hieracium Species in British Columbia . ... 146 LITERATURE CITED 148 - V - LIST OF TABLES page I. Morphological features of some North American species of Hieracium subgenus Euhieracium, based on published descriptions 8 II. Collection sites of the plant material used for breeding experiments 49 III. Results of experiments to determine breeding system . 54 IV. Statistical comparisons of germination rates 55 V. Morphological features of the hybrids obtained from crossing experiments 60 VI. Pollen viability 67 VII. Collection sites of plant material used for chromosome studies 71 VIII. Sources of plant material used for chemical analyses . 94 IX. Rf values and colour reactions of Hieracium flavonoids . 99 X. Distribution of the flavonoid compounds in species of Hieracium 103 - vi - LIST OF FIGURES page 1. Species of Hieracium found in British Columbia, according to Cronquist (1955a) 3 2. The Hieracium umbel latum complex: collection sites of all material examined from western North America 15 3. The Hieracium umbellatum complex: collection sites of all material examined from other regions 16 4. Leaf length-to-width ratios in the Hieracium umbellatum complex in western North America 17 5. Leaf length-to-width ratios in the Hieracium umbellatum complex in Europe, Asia and eastern North America 18 6. Morphological variation in the Hieracium umbellatum complex in western North America 20 7. Morphological variation in the Hieracium umbellatum complex in eastern North America, Europe and Asia 21 8. Numbers of flower heads in the Hieracium umbellatum complex . 25 9. Collection sites of all material examined of the Hieracium scouleri complex 27 10. Morphological variation in the Hieracium scouleri complex . 29 11. Numbers of flower heads in the species of the Hlteracium scouleri complex. 31 12. Collection sites of all material examined of Hieracium albiflorum 33 13. Morphological variation in Hieracium albiflorum 34 14. Variation in numbers of flower heads in Hieracium albiflorum . 35 15. Relative abundance of stellate hairs in Hieracium albiflorum and in the Hieracium scouleri complex 37 16. Collection sites of all material examined of Hieracium triste and Hieracium gracile 40 - vii - page 17. Morphological variation in the Hieracium triste - Hieracium gracile complex 42 18. Numbers of flower heads in the Hieracium triste - Hieracium gracile complex 45 19. Infrared spectra of apigenin 7-0-B-D-glucuronide and its y-lactone 101 20. The probable biosynthesis of the flavonoid aglycones found in Hieracium 107 21. Possible glycosylating enzymes in the different species of Hieracium 109 22. Hypothetical relationships among the western North American species of Hieracium subgenus Stenotheca 144 - vi i i - LIST OF PLATES page 1. Hieracium gracile on a mountainside southwest of Hedley, British Columbia xii 2. Pressed specimens of Hieracium cynoglossoides, H. gracile, and the-artificially produced first-generation hybrid between them 62 3. Flower heads of Hieracium scouleri, H_. albiflorum and a natural hybrid between them 64 4. A natural hybrid between Hieracium albiflorum and H_. gracile . 65 5. Karyotype of Hieracium umbellatum .... 78 6. Karyotype of Hieracium umbellatum 78 7. Karyotype of Hieracium albertinum 79 8. Karyotype of Hieracium cynoglossoides 79 9. Karyotype of Hieracium scouleri 80 10. Karyotype of Hieracium albiflorum 80 11. Karyotype of Hieracium triste 81 12. Karyotype of Hieracium gracile 81 13. Meiosis (diakinesis) in pollen mother cells of Hieracium umbellatum 85 14. Metaphase I in Hieracium umbellatum 85 15. Metaphase I in Hieracium umbellatum 85 16. Anaphase I in Hieracium umbellatum 85 17. Diakinesis in Hieracium albertinum 87 18. Metaphase I in Hieracium albertinum 87 19. Diakinesis in Hieracium cynoglossoides 87 20. Metaphase I in Hieracium cynoglossoides 87 21. Diakinesis in Hieracium scouleri 88 - ix - page 22. Metaphase I in Hieracium scouleri 88 23. Diakinesis in Hieracium albiflorum ..... 88 24. Metaphase I in Hieracium albiflorum 88 25. Metaphase I in Hieracium gracile 89 26. Anaphase I in Hieracium gracile 89 27. Diakinesis in Hieracium gracile 89 28. Metaphase I in Hieracium gracile 89 29. Diakinesis in pollen mother cells of Hieracium albiflorum X H. albertinum 91 30. Metaphase I in Hieracium albiflorum X H_. al bertinum .... 91 31. Metaphase I in Hieracium gracile X H_. scouleri 91 32. Metaphase I in Hieracium gracile X H_. albiflorum 91 33. A two-dimensional chromatogram of Hieracium umbellatum . 113 34. A two-dimensional chromatogram of Hieracium albertinum . 113 35. A two-dimensional chromatogram of Hieracium cynoglossoides . 114 36. A two-dimensional chromatogram of Hieracium scouleri .... 114 37. A two-dimensional chromatogram of Hieracium albiflorum . 115 38. A two-dimensional chromatogram of Hieracium triste .... 115 39. A two-dimensional chromatogram of Hieracium gracile .... 116 40. A two-dimensional chromatogram of Hieracium gracile X H. albiflorum 116 41. A two-dimensional chromatogram of Hieracium gracile X H_. cynoglossoides 117 42. A two-dimensional chromatogram of Hieracium albiflorum X H. scouleri 117 - x - ACKNOWLEDGEMENTS I would like to express my appreciation to my graduate adviser, Dr. Roy L. Taylor of the University of British Columbia Botanical Garden, for his help and guidance throughout the course of this research and during the preparation of the thesis. Dr. Bruce A. Bohm of the Department of Botany, University of British Columbia, provided me with laboratory space for the chemical research, and was generous with assistance and advice regarding this portion of the work. Dr. F. William Collins (now of the Department of Botany, University of Toronto) provided much useful advice and discussion concerning chemical techniques. Dr. Christopher J. Marchant (Research Scientist, University of British Columbia Botanical Garden) assisted
Recommended publications
  • List of Vascular Plants Endemic to Britain, Ireland and the Channel Islands 2020
    British & Irish Botany 2(3): 169-189, 2020 List of vascular plants endemic to Britain, Ireland and the Channel Islands 2020 Timothy C.G. Rich Cardiff, U.K. Corresponding author: Tim Rich: [email protected] This pdf constitutes the Version of Record published on 31st August 2020 Abstract A list of 804 plants endemic to Britain, Ireland and the Channel Islands is broken down by country. There are 659 taxa endemic to Britain, 20 to Ireland and three to the Channel Islands. There are 25 endemic sexual species and 26 sexual subspecies, the remainder are mostly critical apomictic taxa. Fifteen endemics (2%) are certainly or probably extinct in the wild. Keywords: England; Northern Ireland; Republic of Ireland; Scotland; Wales. Introduction This note provides a list of vascular plants endemic to Britain, Ireland and the Channel Islands, updating the lists in Rich et al. (1999), Dines (2008), Stroh et al. (2014) and Wyse Jackson et al. (2016). The list includes endemics of subspecific rank or above, but excludes infraspecific taxa of lower rank and hybrids (for the latter, see Stace et al., 2015). There are, of course, different taxonomic views on some of the taxa included. Nomenclature, taxonomic rank and endemic status follows Stace (2019), except for Hieracium (Sell & Murrell, 2006; McCosh & Rich, 2018), Ranunculus auricomus group (A. C. Leslie in Sell & Murrell, 2018), Rubus (Edees & Newton, 1988; Newton & Randall, 2004; Kurtto & Weber, 2009; Kurtto et al. 2010, and recent papers), Taraxacum (Dudman & Richards, 1997; Kirschner & Štepànek, 1998 and recent papers) and Ulmus (Sell & Murrell, 2018). Ulmus is included with some reservations, as many taxa are largely vegetative clones which may occasionally reproduce sexually and hence may not merit species status (cf.
    [Show full text]
  • Managing for Species: Integrating the Needs of England’S Priority Species Into Habitat Management
    Natural England Research Report NERR024 Managing for species: Integrating the needs of England’s priority species into habitat management. Part 2 Annexes www.naturalengland.org.uk Natural England Research Report NERR024 Managing for species: Integrating the needs of England’s priority species into habitat management. Part 2 Annexes Webb, J.R., Drewitt, A.L. and Measures, G.H. Natural England Published on 15 January 2010 The views in this report are those of the authors and do not necessarily represent those of Natural England. You may reproduce as many individual copies of this report as you like, provided such copies stipulate that copyright remains with Natural England, 1 East Parade, Sheffield, S1 2ET ISSN 1754-1956 © Copyright Natural England 2010 Project details This report results from work undertaken by the Evidence Team, Natural England. A summary of the findings covered by this report, as well as Natural England's views on this research, can be found within Natural England Research Information Note RIN024 – Managing for species: Integrating the needs of England’s priority species into habitat management. This report should be cited as: WEBB, J.R., DREWITT, A.L., & MEASURES, G.H., 2009. Managing for species: Integrating the needs of England’s priority species into habitat management. Part 2 Annexes. Natural England Research Reports, Number 024. Project manager Jon Webb Natural England Northminster House Peterborough PE1 1UA Tel: 0300 0605264 Fax: 0300 0603888 [email protected] Contractor Natural England 1 East Parade Sheffield S1 2ET Managing for species: Integrating the needs of England’s priority species into habitat i management.
    [Show full text]
  • Phylogeography of the Invasive Weed Hypochaeris Radicata
    Molecular Ecology (2008) 17, 3654–3667 doi: 10.1111/j.1365-294X.2008.03835.x PhylogeographyBlackwell Publishing Ltd of the invasive weed Hypochaeris radicata (Asteraceae): from Moroccan origin to worldwide introduced populations M. Á. ORTIZ,* K. TREMETSBERGER,*† A. TERRAB,*† T. F. STUESSY,† J. L. GARCÍA-CASTAÑO,* E. URTUBEY,‡ C. M. BAEZA,§ C. F. RUAS,¶ P. E. GIBBS** and S. TALAVERA* *Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apdo-1095, 41080 Sevilla, Spain, †Department of Systematic and Evolutionary Botany, Faculty Center Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria, ‡División Plantas Vasculares, Museo de La Plata, Paseo del Bosque s/n, La Plata, CP 1900, Argentina, §Departamento de Botánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile, ¶Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil, **School of Biology, University of St Andrews, Scotland, UK Abstract In an attempt to delineate the area of origin and migratory expansion of the highly successful invasive weedy species Hypochaeris radicata, we analysed amplified fragment length polymorphisms from samples taken from 44 populations. Population sampling focused on the central and western Mediterranean area, but also included sites from Northern Spain, Western and Central Europe, Southeast Asia and South America. The six primer combinations applied to 213 individuals generated a total of 517 fragments of which 513 (99.2%) were polymorphic. The neighbour-joining tree presented five clusters and these divisions were supported by the results of Bayesian analyses: plants in the Moroccan, Betic Sierras (Southern Spain), and central Mediterranean clusters are all heterocarpic. The north and central Spanish, southwestern Sierra Morena, and Central European, Asian and South American cluster contain both heterocarpic (southwestern Sierra Morena) and homocarpic populations (all other populations).
    [Show full text]
  • Inflorescence Development and Floral Organogenesis in Taraxacum Kok
    plants Article Inflorescence Development and Floral Organogenesis in Taraxacum kok-saghyz Carolina Schuchovski 1 , Tea Meulia 2, Bruno Francisco Sant’Anna-Santos 3 and Jonathan Fresnedo-Ramírez 4,* 1 Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Rua dos Funcionários, 1540 CEP 80035-050 Curitiba, Brazil; [email protected] 2 Molecular and Cellular Imaging Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; [email protected] 3 Laboratório de Anatomia e Biomecânica Vegetal, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico, Jardim das Américas, C.P. 19031, 81531-980 Curitiba, Brazil; [email protected] 4 Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA * Correspondence: [email protected]; Tel.: +1-330-263-3822 Received: 13 August 2020; Accepted: 22 September 2020; Published: 24 September 2020 Abstract: Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK has demonstrated TK’s potential in industrial applications as a relevant natural rubber and latex-producing alternative crop. However, many aspects of its biology have been neglected in published studies. For example, floral development is still poorly characterized. TK inflorescences were studied by scanning electron microscopy. Nine stages of early inflorescence development are proposed, and floral micromorphology is detailed. Individual flower primordia development starts at the periphery and proceeds centripetally in the newly-formed inflorescence meristem.
    [Show full text]
  • Molecular Phylogeny and Evolutionary Trends in Hieracium (Asteraceae, Lactuceae)
    Charles University in Prague, Faculty of Science Department of Botany Molecular phylogeny and evolutionary trends in Hieracium (Asteraceae, Lactuceae) Molekulární fylogeneze a evoluční trendy v rodě Hieracium (Asteraceae, Lactuceae) Karol Krak Ph.D. thesis Prague, May 2012 Supervised by: Dr. Judith Fehrer Content Declaration.........................................................................................................1 Acknowledgements............................................................................................2 Sumary...............................................................................................................3 Introduction.........................................................................................................4 Aims of the thesis.............................................................................................14 References.......................................................................................................15 Papers included in the thesis 1. Intra-individual polymorphism in diploid and apomictic polyploid.................22 hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. Fehrer J., Krak K., Chrtek J. BMC Evolutionary Biology (2009) 9: 239 2. Genome size in Hieracium subgenus Hieracium (Asteraceae) is...............45 strongly correlated with major phylogenetic groups. Chrtek J., Zahradníček J., Krak K., Fehrer J. Annals of Botany (2009) 104: 161–178 3. Development of novel low-copy nuclear markers
    [Show full text]
  • Asteraceae) and Its Implications to the Taxonomic Position of the Genus Pietrosia
    Phytotaxa 197 (4): 282–290 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.197.4.5 First mature fruit description of Pietrosia laevitomentosa (Asteraceae) and its implications to the taxonomic position of the genus Pietrosia ANCA MANOLE Plant and Animal Cytobiology Department, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; email: [email protected] Abstract For the first time we describe the morphology and anatomy of mature achenes bearing fertile seeds of Pietrosia laevito- mentosa, an endemic plant species in the Eastern Carpathians. The new diagnostic features of the genus Pietrosia justify its taxonomic recognition as separate from Andryala; those are the achene size (between 2.5 and 4.3 mm long), the deciduous pappus, the single-rimmed achene apex, the elongate exocarpic cells, the complete ring of mesocarpic sclerenchyma (up to 11-layered), and the number and localization of the vascular bundles (5 bundles, in the small ribs). Furthermore, our data may also serve to reconsider the species ecology and conservation strategies. Key words: carpology, Compositae, conservation, Eastern Carpathians, endangered species, endemism, Romania, sexual propagation Introduction Pietrosia laevitomentosa Nyár. in Sennikov (1999: 78) is still an enigmatic species despite being the subject of active scientific interest after its discovery fifty years ago. It was the only species assigned to the genus Andryala found so far north, as all the other species occur in the Mediterranean Region and Macaronesia (Lucas & Synge 1978). According to published reports, the plant has a very restricted distribution in an area of about 150 square meters on rocky slopes of the Pietrosul Bistriţei Mountain (Eastern Carpathians, Romania).
    [Show full text]
  • Genetic Variability and Distance Between Lactuca Serriola L
    Acta Bot. Croat. 77 (2), 172–180, 2018 CODEN: ABCRA 25 DOI: 10.2478/botcro-2018-0019 ISSN 0365-0588 eISSN 1847-8476 Genetic variability and distance between Lactuca serriola L. populations from Sweden and Slovenia assessed by SSR and AFLP markers Michaela Jemelková1, Miloslav Kitner1, Eva Křístková1, Ivana Doležalová2, Aleš Lebeda1* 1 Palacký University in Olomouc, Faculty of Science, Department of Botany, Šlechtitelů 27, 783 71 Olomouc, Czech Republic 2 Department of Genetic Resources for Vegetables, Medicinal, and Special Plants of Crop Research Institute in Olomouc, Šlechtitelů 29, 783 71 Olomouc, Czech Republic Abstract – The study involved 121 samples of the common weed, Lactuca serriola L. (prickly lettuce), represent- ing 53 populations from Sweden and Slovenia. The seed materials, originating from different habitats, were re- generated and taxonomically validated at the Department of Botany, Palacký University in Olomouc, Czech Re- public. The morphological characterizations of the collected plant materials classified all 121 samples as L. serriola f. serriola; one sample was heterogeneous, and also present was L. serriola f. integrifolia. Differences in the amount and distribution of the genetic variations between the two regions were analyzed using 257 ampli- fied fragment length polymorphism (AFLP) and 7 microsatellite (SSRs) markers. Bayesian clustering and Neigh- bor-Network were used for visualization of the differences among the samples by country. Under the Bayesian approach, the best partitioning (according to the most frequent signals) was resolved into three groups. While the absence of an admixture or low admixture was detected in the Slovenian samples, and the majority of the Swedish samples, a significant admixture was detected in the profiles of five Swedish samples collected near Malmö, which bore unique morphological features of their rosette leaves.
    [Show full text]
  • DANDELION Taraxacum Officinale ERADICATE
    OAK OPENINGS REGION BEST MANAGEMENT PRACTICES DANDELION Taraxacum officinale ERADICATE This Best Management Practice (BMP) document provides guidance for managing Dandelion in the Oak Openings Region of Northwest Ohio and Southeast Michigan. This BMP was developed by the Green Ribbon Initiative and its partners and uses available research and local experience to recommend environmentally safe control practices. INTRODUCTION AND IMPACTS— Dandelion (Taraxacum officinale) HABITAT—Dandelion prefers full sun and moist, loamy soil but can is native to Eurasia and was likely introduced to North America many grow anywhere with 3.5-110” inches of annual precipitation, an an- times. The earliest record of Dandelion in North America comes from nual mean temperature of 40-80°F, and light. It is tolerant of salt, 1672, but it may have arrived earlier. It has been used in medicine, pollutants, thin soils, and high elevations. In the OOR Dandelion has food and beverages, and stock feed. Dandelion is now widespread been found on sand dunes, in and at the top of floodplains, near across the planet, including OH and MI. vernal pools and ponds, and along roads, ditches, and streams. While the Midwest Invasive Species Information Net- IDENTIFICATION—Habit: Perennial herb. work (MISIN) has no specific reports of Dandelion in or within 5 miles of the Oak Openings Region (OOR, green line), the USDA Plants Database reports Dan- D A delion in all 7 counties of the OOR and most neighboring counties (black stripes). Dan- delion is ubiquitous in the OOR. It has demonstrated the ability to establish and MI spread in healthy and disturbed habitats of OH T © Lynn Sosnoskie © Steven Baskauf © Chris Evans the OOR and both the wet nutrient rich soils of wet prairies and floodplains as well Leaves: Highly variable in shape, color and hairiness in response to as sandy dunes and oak savannas.
    [Show full text]
  • (Cichorium Endivia, L.) Phenolic Extracts on Breast Cancer Cell Line: MCF7
    E3 Journal of Biotechnology and Pharmaceutical Research Vol. 3(4), pp. 74-82, June 2012 Available online at http://www.e3journals.org/JBPR ISSN 2141-7474 © 2012 E3 Journals Full Length Research Paper Molecular and biochemical evaluation of anti- proliferative effect of (Cichorium endivia, L.) phenolic extracts on breast cancer cell line: MCF7 Ali Alshehri1* and Hafez E. Elsayed2 1King Khalid University, Faculty of Science, Department of Biology, Abha, Saudi Arabia. 2City for Scientific Research and Technology Applications, Alexandria, Egypt. Accepted 11 May, 2012 Medicinal plants are considered to be the most hopeful way for cancer treatment. The Cichorium endivia, L. plant materials were collected from Tanuma, Saudi Arabia. Methanol extraction for the phenolic compounds was carried out and the HPLC analysis showed that, the extract containing four main compounds with different concentrations. The anticancer activity of the root extract was examined on breast cancer cell line MFC7 compared with the anticancer 5 FU (5-fluorouracil). Cytotoxicity of the root extract against the MFC7 line was 401ug/mL but it was 0.67 ug/mL with the 5 FU. The gene expression for the DNA cancer markers; P53, Bcl2, TNF and interleukin IL-4, IL-6 and IL-2 were examined using real time PCR. The expression of the P53 and TNF was high both in cells treated with FU and root extract. Expression of Bcl2 was high in the cell line treated with root extract compared with the FU, yet this expression still was low compared with the control ones. The expression level of IL-2, IL-4 decreased in the examined cell lines treated with both root extract and with 5FU as well.
    [Show full text]
  • Relationships of South-East Australian Species of Senecio (Compositae
    eq lq ðL RELATIONSHIPS OF SOUTH-EAST AUSTR.ALTAN SPECIES OF SENECIo(CoMPoSITAE)DEDUCEDFRoMSTUDIESoF MORPHOLOGY, REPRODUCTIVE BIOLOGY AND CYTOGENETICS by Margaret Elizabeth Lawrence, B.Sc. (Hons') Department of Botany, University of Adelaide ii Thesis submitted for the Degree of Doctor of Philosophy, University of Adelaide Mayr 1981 l \t l ûr¿a.,"lto( ? 4t ' "'-' 'l-" "l TABLE OF CONTENTS ?\lLlg',|- Volume 2 205 CHAPTER 4 ReProductive BiologY 206 4.1 Introduction 208 4.2 Materials and methods 209 4.2.L Glasshouse trials 2LL 4.2.2 Pollen-ovule ratios 2LL 4.2.3 Seed size and number 2L2 4.2.4 Seedling establishment 2L2 4.2.5 LongevitY 2L2 4.3 Results and observations 4.3.1 Direct and indirect evidence of breeding 2L2 sYstems 2r8 4.3.2 Observations of floral biology 2L9 4.3.3 Pollen vectors 220 4.4 Discussion 220 4.4.1 Mode of reProduction 220 4.4.2 Breeding sYstems 22L 4.4.3 Breeding systems and generation length 223 4.4.4 Seed size and number 225 4.4.5 DisPersal Potential 226 4.4. 6 Seedllng establishment 4.4.7 Combinations of reproductive traits: 228 r- and K-selection 235 4.5 Conclusions 237 CHAPTER 5 Recombination in Senecio 5.1 Introduction 238 5.2 Materials and methods 240 5.3 Results and discussion 24L 5. 3.1 Chromosome numbers 24l. 5.3.1.1 Ploidy distributions in Senecio 24L 5.3.L.2 Polyploidy and recombination 249 5.3.1.3 Polyploidy and speciation 25L 5.3.2 Effects of chiasma frequency and position 253 5.3.3 Effects of breeding sYstems 255 5.3.4 Effects of generation lengths 257 5.3.5 Pair-wise associations of regulatory factors
    [Show full text]
  • BOLLETTINO DELLA SOCIETÀ ENTOMOLOGICA ITALIANA Non-Commercial Use Only
    BOLL.ENTOMOL_150_2_cover.qxp_Layout 1 07/09/18 07:42 Pagina a Poste Italiane S.p.A. ISSN 0373-3491 Spedizione in Abbonamento Postale - 70% DCB Genova BOLLETTINO DELLA SOCIETÀ ENTOMOLOGICA only ITALIANA use Volume 150 Fascicolo II maggio-agosto 2018Non-commercial 31 agosto 2018 SOCIETÀ ENTOMOLOGICA ITALIANA via Brigata Liguria 9 Genova BOLL.ENTOMOL_150_2_cover.qxp_Layout 1 07/09/18 07:42 Pagina b SOCIETÀ ENTOMOLOGICA ITALIANA Sede di Genova, via Brigata Liguria, 9 presso il Museo Civico di Storia Naturale n Consiglio Direttivo 2018-2020 Presidente: Francesco Pennacchio Vice Presidente: Roberto Poggi Segretario: Davide Badano Amministratore/Tesoriere: Giulio Gardini Bibliotecario: Antonio Rey only Direttore delle Pubblicazioni: Pier Mauro Giachino Consiglieri: Alberto Alma, Alberto Ballerio,use Andrea Battisti, Marco A. Bologna, Achille Casale, Marco Dellacasa, Loris Galli, Gianfranco Liberti, Bruno Massa, Massimo Meregalli, Luciana Tavella, Stefano Zoia Revisori dei Conti: Enrico Gallo, Sergio Riese, Giuliano Lo Pinto Revisori dei Conti supplenti: Giovanni Tognon, Marco Terrile Non-commercial n Consulenti Editoriali PAOLO AUDISIO (Roma) - EMILIO BALLETTO (Torino) - MAURIZIO BIONDI (L’Aquila) - MARCO A. BOLOGNA (Roma) PIETRO BRANDMAYR (Cosenza) - ROMANO DALLAI (Siena) - MARCO DELLACASA (Calci, Pisa) - ERNST HEISS (Innsbruck) - MANFRED JÄCH (Wien) - FRANCO MASON (Verona) - LUIGI MASUTTI (Padova) - MASSIMO MEREGALLI (Torino) - ALESSANDRO MINELLI (Padova)- IGNACIO RIBERA (Barcelona) - JOSÉ M. SALGADO COSTAS (Leon) - VALERIO SBORDONI (Roma) - BARBARA KNOFLACH-THALER (Innsbruck) - STEFANO TURILLAZZI (Firenze) - ALBERTO ZILLI (Londra) - PETER ZWICK (Schlitz). ISSN 0373-3491 BOLLETTINO DELLA SOCIETÀ ENTOMOLOGICA ITALIANA only use Fondata nel 1869 - Eretta a Ente Morale con R. Decreto 28 Maggio 1936 Volume 150 Fascicolo II maggio-agosto 2018Non-commercial 31 agosto 2018 REGISTRATO PRESSO IL TRIBUNALE DI GENOVA AL N.
    [Show full text]
  • Kamiak Butte
    Checklist of Plants from Kamiak Butte (List alphabetical by genera within major groups) Ferns Cheilanthes gracillima lace lip-fern Cystopteris fragilis brittle bladder-fern Polypodium hesperium polypody Polystichum munitum swordfern Pteridium aquilinum bracken fern; brake fern Conifers Abies grandis grand fir Larix occidentalis western larch Pinus ponderosa ponderosa pine Pseudotsuga menziesii Douglas fir Flowering plants Acer negundo box elder Achillea millefolium yarrow Agoseris heterophylla false dandelion Alyssum alyssoides alyssum Amelanchier alnifolia serviceberry Anaphalis margaritacea pearly-everlasting Anemone piperi windflower Antennaria luzuloides woodrush pussytoes Antennaria microphylla rosy pussytoes Antennaria racemosa raceme pussytoes Anthemis cotula mayweed, chamomile Apocynum androsaemifolium spreading dogbane Arabis sparsiflora sicklepod rockcress Arctostaphylos uva-ursi bearberry, kinnikinnik Arenaria congesta ballhead sandwort Arenaria microphylla bigleaf sandwort Arnica cordifolia heart-leaf arnica Artemisia absinthium wormwood Aster conspicuus showy aster Aster occidentalis western mountain aster Astragalus arrectus Palouse milkvetch Astragalus canadensis Canadian milkvetch Athysanus pusillus sandweed Balsamorhiza sagittata arrowleaf balsamroot Barbarea orthoceras American watercress Berberis repens creeping Oregon grape Besseya rubra red besseya Bromus brizaeformis rattlesnake grass Bromus carinatus California brome Bromus japonicus Japanese brome Bromus tectorum downy cheatgrass Bromus vulgaris Columbia brome
    [Show full text]