Hematology 101
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SEED Haematology Sysmex Educational Enhancement and Development October 2012
SEED Haematology Sysmex Educational Enhancement and Development October 2012 The red blood cell indices The full blood count has been used in conjunction with the traditional red The complete blood count (CBC) is central to clinical deci- cell indices in order to narrow down the possible causes sion making. This makes it one of the commonest laboratory of anaemia in an individual patient. investigations performed worldwide. Whilst the definition of what constitutes an CBC is influenced by the number Impedance technology and type of parameters measured by different haematology The RBC, HCT and MCV are all closely interrelated as they analysers, the traditional red cell indices that are widely are derived from information obtained from the passage used to classify anaemias are common to all. of cells through the aperture of the impedance channel of an automated haematology analyser. The impedance The laboratory approach to anaemia technology is based on the principle that an electrical field, Anaemia is an extremely common global healthcare prob- created between two electrodes of opposite charge, can lem. However, anaemia is merely a symptom which can be used to count and determine the size of cells. Blood result from a multitude of causes. Effective treatment is cells are poor conductors of electricity. The diluent in which only possible if the underlying cause is correctly identified. they are suspended as they pass through the aperture To this end, several classification systems have been devis- during counting is an isotonic solution which is a good ed. The most useful and widely used classification system conductor of electricity. -
Laboratory Approach to Anemia Laboratory Approach to Anemia
DOI: 10.5772/intechopen.70359 Provisional chapter Chapter 12 Laboratory Approach to Anemia Laboratory Approach to Anemia Ebru Dündar Yenilmez and Abdullah Tuli Ebru Dündar Yenilmez and Abdullah Tuli Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.70359 Abstract Anemia is a major cause of morbidity and mortality worldwide and can be defined as a decreased quantity of circulating red blood cells (RBCs). The epidemiological studies suggested that one-third of the world’s population is affected with anemia. Anemia is not a disease, but it is instead the sign of an underlying basic pathological process. However, the sign may function as a compass in the search for the cause. Therefore, the prediag- nosis revealed by thorough investigation of this sign should be supported by laboratory parameters according to the underlying pathological process. We expect that this review will provide guidance to clinicians with findings and laboratory tests that can be followed from the initial stage in the anemia search. Keywords: anemia, complete blood count, red blood cell indices, reticulocyte 1. Introduction Anemia, the meaning of which in Greek is “without blood,” is a relatively common sign and symptom of various medical conditions. Anemia is defined as a significant decrease in the count of total erythrocyte [red blood cell (RBC)] mass, although this definition is rarely used in clinical settings. According to the World Health Organization, anemia is a condition in which the number of red blood cells (RBCs, and consequently their oxygen-carrying capacity) is insufficient to meet the body’s physiologic needs [1, 2]. -
Haematopoiesis to Describe the Components of Normal Blood, Their Relative Proportions and Their Functions
Haematopoiesis To describe the components of normal blood, their relative proportions and their functions Blood 8% of body weight Plasma (55%) clear, 90% water, contains salts, enzymes, proteins WBCs and platelet (1%) RBCs (45%) bioconcave– disc, no nucleus = anuclear- 120days lifespan Immature = blasts– Mature= cytes In white blood cells myeloblast goes to neutrophils, basophils, eosinophils Monoblast= monocyte can also become dendritic cells and macrophages – White blood cells (leukocytes)– Polymorphonuclear= neutrophils, eosinophil s, basophils Mononuclear= lymphocytes= T cells, B cells and’ monocytes Lymphoid= NK cells, T-Lymphocyte, B-lymphocyte Myeloid= Monocyte, erythrocyte, neutrophils, basophils, eosinophils, mast cells, megakaryocyte, mast cells BOTH Dendritic cells (from monocyte in myeloid) (lymphoid precursor) Neutrophil – protection from bacteria and fungi Eosinophil- protection against parasites Basophil – increase during allergic reactions Lymphocytes – T cells- protection against viruses, B cells immunoglobulin synthesis Monocyte- protection from back bacteria and fungi phagocytosis – How do blood go from bone to blood vessels? – The bones are perfused with blood vessels- How do we investigate blood? In venepuncture, the superficial veins of the upper limbs are selected and hollow needle is inserted through the skin into the veins. Blood is then collected into evacuated tubes. These veins are present in numbers and are easily accessible. Anticoagulant, EDTA is used to stop blood clotting 1.Using Automated the sample full collected…. blood count Whole blood for a FBC is usually taken into an EDTA tube to stop it from clotting. The blood is well mixed and put through a machine called an automated analyser, counts the numbers and size of RBC and platelets within the blood using sensors Reticulocyte Assessing the young RBCs numbers performed by automated cell counters give indication of output of young RBC by bone marrow – 2. -
1 the Potential Role of Cytokines and Growth Factors in the Pathogenesis
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2021 doi:10.20944/preprints202108.0237.v1 The Potential Role of Cytokines and growth factors in the pathogenesis of Alzheimer's Disease Gilbert Ogunmokun1, Saikat Dewanjee2, Pratik Chakraborty2, Chandrasekhar Valupadas3,4 Anupama Chaudhary5, Viswakalyan Kolli6, Uttpal Anand7, Jayalakshmi Vallamkondu8, Parul Goel9, Hari Prasad Reddy Paluru10, Kiran Dip Gill11, P. Hemachandra Reddy12-16 , Vincenzo De Feo17*, ,Ramesh Kandimalla18,19*, 1The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, Texas, USA 2Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India 3Professor, Internal Medicine & Medical Superintendent, MGM Hospital, Warangal, India 4In charge Medical Superintendent, KMC Superspeciality Hospital, Warangal, India 5Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Karnal, Haryana -132001, India 6Professor, Department of Biochemistry, GITAM Institute of Medical Sciences and Research, Visakhapatnam, India 7Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel 8National Institute of Technology, Warangal 506004, Telangana, India 9Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences & Research, Mullana, Ambala, India 10Sri Krsihnadevaraya University, Anantapur, Andhra Pradesh, India 11Department of Biochemistry, Posgraduate Institute -
Neutrophil-Mediated Treatment of Neurodegenerative and Other Inflammatory Disorders Alain L
RESEARCH ARTICLE Neutrophil-mediated Treatment of Neurodegenerative and Other Inflammatory Disorders Alain L. Fymat Professor, International Institute of Medicine and Science, California, USA ABSTRACT Conventionally, neuroinflammation has been seen as a branch of immunology linked to neurodegenerative and other inflammatory disorders. The diagnosis and treatment of these disorders are dependent on the ability of delivering diagnostic and therapeutic pharmaceuticals through the blood–brain barrier. While itself contributing to the inflammatory process, the barrier largely hinders or even forbids this delivery but allows neutrophils to pass freely through it. This article discusses the use of a nanobiotechnology-based, neutrophil-mediated treatment of neurodegenerative and other inflammatory disorders. Key words: Dopamine, levodopa, paclitaxel INTRODUCTION A schematic representation of the cells and molecules involved in cerebral inflammation is shown in Figure 1. onventionally, neuroinflammation has been seen as The schema summarizes the pathogenic paths that may a central nervous system (CNS) -centric and specific link intravascular inflammatory events to proepileptogenic branch of immunology. Thus, a great deal of effort events in the brain parenchyma. The BBB and its component C cells forming tight junctions are diagrammed by the oblique has been made to find immunocompetent or inflammatory cells in the brain (or spinal cord) parenchyma. The purpose descending gray lines. External activated microglia and of this article is to query whether neutrophils, which pass gliotic astrocytes interact with the BBB being mediated by freely through the blood–brain barrier (BBB), can mediate the interleukin (IL-1β, IL-6, and IL-12) and tumor necrosis factor delivery of diagnostic and therapeutic drugs to the brain to alpha (TNF-α). -
Hematopathology
320A ANNUAL MEETING ABSTRACTS expression of ALDH1 was analyzed using mouse monoclonal ALDH1 antibody (BD Conclusions: Based on the present results we conclude that miR29ab1 ko’s have Biosciences, San Jose, CA). Correlations between ALDH1 expression and clinical and decreased hematopoietic stem cell population compared to the wild types and that histological parameters were assessed by Pearson’s Chi-square and M-L Chi-square miR29ab1 might have an important role in the maintenance of this cell population. tests. Survival curves were generated using the Kaplan-Meier method and statistical Also, miR29 genes might regulate immunity and life span, since both miR29ab1 and differences by log rank test. miR29ab1/b2c ko’s seem to have markedly decreased life spans. Results: Majority of the tumors (116, 63%) showed stromal staining only, 21 (11%) tumors showed both epithelial and stromal expression, 47 (26%) tumors did not show 1347 The Majority of Immunohistochemically BCL2 Negative FL Grade either epithelial or stromal staining. The normal salivary gland showed epithelial I/II Carry A t(14;18) with Mutations in Exon 1 of the BCL2 Gene and Can expression only. Statistical analyses did not show any correlation between tumor pattern, Be Identifi ed with the BCL2 E17 Antibody tumor size, the presence of perineural invasion and the patterns of ALDH1 expression. P Adam, R Baumann, I Bonzheim, F Fend, L Quintanilla-Martinez. Eberhard-Karls- The survival analysis using Kaplan-Meier method and log rank test did not show any University, Tubingen, Baden-Wurttemberg, Germany. signifi cant differences among the three patterns of ALDH1 expression with survival. -
Blood and Immunity
Chapter Ten BLOOD AND IMMUNITY Chapter Contents 10 Pretest Clinical Aspects of Immunity Blood Chapter Review Immunity Case Studies Word Parts Pertaining to Blood and Immunity Crossword Puzzle Clinical Aspects of Blood Objectives After study of this chapter you should be able to: 1. Describe the composition of the blood plasma. 7. Identify and use roots pertaining to blood 2. Describe and give the functions of the three types of chemistry. blood cells. 8. List and describe the major disorders of the blood. 3. Label pictures of the blood cells. 9. List and describe the major disorders of the 4. Explain the basis of blood types. immune system. 5. Define immunity and list the possible sources of 10. Describe the major tests used to study blood. immunity. 11. Interpret abbreviations used in blood studies. 6. Identify and use roots and suffixes pertaining to the 12. Analyse several case studies involving the blood. blood and immunity. Pretest 1. The scientific name for red blood cells 5. Substances produced by immune cells that is . counteract microorganisms and other foreign 2. The scientific name for white blood cells materials are called . is . 6. A deficiency of hemoglobin results in the disorder 3. Platelets, or thrombocytes, are involved in called . 7. A neoplasm involving overgrowth of white blood 4. The white blood cells active in adaptive immunity cells is called . are the . 225 226 ♦ PART THREE / Body Systems Other 1% Proteins 8% Plasma 55% Water 91% Whole blood Leukocytes and platelets Formed 0.9% elements 45% Erythrocytes 10 99.1% Figure 10-1 Composition of whole blood. -
10 Maturation and Development of Leucocytes
MODULE Maturation and Development of Leucocytes Hematology and Blood Bank Technique 10 Notes MATURATION AND DEVELOPMENT OF LEUCOCYTES 10.1 INTRODUCTION The leucocytes develop from the multipotent hematopoietic stem cell which then gives rise to a stem cell committed to formation of leucocytes. Both these cells cannot be identified morphologically by routine methods. The various types of leucocytes are granulocytes (neutrophils, eosinophils and basophils), monocytes and lymphocytes. The three cell types develop separately and accordingly these processes will be discussed separately. OBJECTIVES After reading this lesson, you will be able to: z explain the various stages in the development of leucocytes. z describe the different types of leucocytes seen normally in PBF. 10.2 MYELOPOIESIS This is the process of formation of myeloid cells. It is restricted to the bone marrow after birth. The committed progenitor cell for granulocytes and monocytes is the GM-CFU which proliferates and differentiates to form myeloblast and monoblast. The myeloblast is the earliest morphologically identifiable cell. It is 10-18µm in size. The cytoplasm is scant and basophilic, usually agranular and may contain a few azurophilic cytoplasmic granules in the blast transiting to the next stage 80 HEMATOLOGY AND BLOOD BANK TECHNIQUE Maturation and Development of Leucocytes MODULE of promyelocyte. It has a large round to oval nucleus with a smooth nuclear Hematology and Blood membrane. The chromatin is fine, lacy and is evenly distributed throughout the Bank Technique nucleus. Two-five nucleoli can be identified in the nucleus. The next stage of maturation is the Promyelocyte. It is larger than a myeloblast, 12-20 µm with more abundant cytoplasm which has abundant primary azurophilic granules . -
Chronic Myeloid Leukemia: a Guide for Patients
Chronic Myeloid Leukaemia What is chronic myeloid leukaemia? Let us explain it to you. www.anticancerfund.org www.esmo.org ESMO/ACF Patient Guide Series based on the ESMO Clinical Practice Guidelines CHRONIC MYELOID LEUKEMIA: A GUIDE FOR PATIENTS PATIENT INFORMATION BASED ON ESMO CLINICAL PRACTICE GUIDELINES This guide for patients has been prepared by the Anticancer Fund as a service to patients, to help patients and their relatives better understand the nature of Chronic Myeloid Leukemia (CML) and appreciate the best treatment choices available according to the subtype of CML. We recommend that patients talk to their doctors about the tests or treatments that are needed for their type and stage of disease. The medical information described in this document is based on the clinical practice guidelines of the European Society for Medical Oncology (ESMO) for the management of Chronic Myeloid Leukemia. This guide for patients has been produced in collaboration with ESMO and is disseminated with the permission of ESMO. It has been written by a medical doctor and reviewed by two oncologists from ESMO including the lead author of the clinical practice guidelines for professionals. It has also been reviewed by patients’ representatives from ESMO’s Cancer Patient Working Group. More information about the Anticancer Fund: www.anticancerfund.org More information about the European Society for Medical Oncology: www.esmo.org For words marked with an asterisk, a definition is provided at the end of the document. CML: a guide for patients - Information based on ESMO Clinical Practice Guidelines - v.2013.1 Page 1 This document is provided by the Anticancer Fund with the permission of ESMO. -
Bleeding Fevers! Thrombocytopenia and Neutropenia
Bleeding fevers! Thrombocytopenia and neutropenia Faculty of Physician Associates 4th National CPD Conference Monday 21st October 2019, Royal College of Physicians, London @jasaunders90 | #FPAConf19 Jamie Saunders MSc PA-R Physician Associate in Haematology, Guy’s and St Thomas’ NHS Foundation Trust Board Member, Faculty of Physician Associates Bleeding fevers; Thrombocytopenia and neutropenia Disclosures / Conflicts of interest Nothing to declare Professional Affiliations Board Member, Faculty of Physician Associates Communication Committee, British Society for Haematology Education Committee, British Society for Haematology Bleeding fevers; Thrombocytopenia and neutropenia What’s going to be covered? - Thrombocytopenia (low platelets) - Neutropenia (low neutrophils) Bleeding fevers; Thrombocytopenia and neutropenia Thrombocytopenia Bleeding fevers; Thrombocytopenia (low platelets) Pluripotent Haematopoietic Stem Cell Myeloid Stem Cell Lymphoid Stem Cell A load of random cells Lymphoblast B-Cell Progenitor Natural Killer (NK) Precursor Megakaryoblast Proerythroblast Myeloblast T-Cell Progenitor Reticulocyte Megakaryocyte Promyelocyte Mature B-Cell Myelocyte NK-Cell Platelets Red blood cells T-Cell Metamyelocyte IgM Antibody Plasma Cell Secreting B-Cell Basophil Neutrophil Eosinophil IgE, IgG, IgA IgM antibodies antibodies Bleeding fevers; Thrombocytopenia (low platelets) Platelet physiology Mega Liver TPO (Thrombopoietin) TPO-receptor No negative feedback to liver Plt Bleeding fevers; Thrombocytopenia (low platelets) Platelet physiology -
Download (6MB)
THE OXYDASE OF MYELOID TISSUE and THE USE OF . THE OXYDASE REACTION IN THE DIFFERENTIATION OF ACUTE LEUIIAEMIAS. by JOHN SHAW DUNN, M.A. , M.B., Ch.B. ProQuest Number: 27626761 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 27626761 Published by ProQuest LLO (2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. ProQuest LLO. 789 East Eisenhower Parkway P.Q. Box 1346 Ann Arbor, Ml 48106- 1346 1 - PRELIMINARY. The oxidising property of leucocytes was pointed out by Vitali (1887)^^, when he showed that pus added to tincture of guaiacum produced guaiac-blue, without the addition of hydrogen peroxide. He found that the reaction did not take place if the pus were previously boiled, thus showing that the oxygenating substance was thermo-labile. Brandenburg (1900)^, in a further investigation of this subject, was able, by extracting pus with chloroform water and precipitat ing with alcohol, to obtain a powder which possessed the oxidising property in a marked degree. He considered it to be of the nature of a ferment, and to have the con stitution of a nucleo-albumin. It could be obtained readily from organs vhich contained abundant granular leucocytes, such as bone marrow, but not from purely lymphocytic organs, such as lymphatic glands or thymus, nor from normal liver. -
GETTING the MOST from YOUR PATIENT's CBC Anne Barger, DVM
GETTING THE MOST FROM YOUR PATIENT’S CBC Anne Barger, DVM, MS, DACVP The complete blood cell count (CBC) is an important diagnostic tool for specific diagnosis, as well as a component of a minimum data base. The CBC can be used to monitor response to therapy, gauge the severity of illness or as a first line of diagnosis. Interpretation of the CBC can be broken down into 3 sections: the erythron, the leukon and the thrombon. Each of these parameters can be interpreted individually; however integration of the data is important for the highest diagnostic yield. Erythron Interpretation of the erythron involves interpretation of the red blood cell count (RBC), packed cell volume (PCV), hemoglobin, mean cell volume (MCV), mean corpuscular hemoglobin concentration (MCHC) and mean corpuscular hemoglobin (MCH). The peripheral blood smear can provide additional information through examination of the red blood cell morphology. The PCV is measured as a percentage of packed cells in whole blood, spun in a microhematocrit tube. The hematocrit, however, is a calculation using MCV and RBC values from an automated hematology analyzer. The PCV is generally considered more reliable than the calculated hematocrit. The HCT and the hemoglobin should be in a 3:1 ratio. If it is not then a spun PCV should be performed. Interpretation of the erythron should begin with the evaluation of the PCV and total protein. The PCV is a reflection of the circulating red blood cell mass. If the PCV is decreased, the animal is anemic, whereas an elevated PCV indicates polycythemia. Concurrent measurement of the total protein can assist in interpretation of the PCV.