World War II Code Breaker by Peter Lerangis

Total Page:16

File Type:pdf, Size:1020Kb

World War II Code Breaker by Peter Lerangis Time Machine 25 8/7/01 5:03 PM Page 1 Time Machine 25 8/7/01 5:03 PM Page 2 This book is your passport into time. Can you survive World War II? Turn the page to find out. Time Machine 25 8/7/01 5:03 PM Page 3 World War II Code Breaker by Peter Lerangis illustrated by Alex Nino A Byron Preiss Book Time Machine 25 8/7/01 5:03 PM Page 4 For my father, Nicholas P. Lerangis Technical Sergeant, U.S. Army Signal Corps Pacific Theater, 1943–1945 With thanks and love Copyright @ 2001, 1984 by Byron Preiss Visual Publications “Time Machine” is a registered trademark of Byron Preiss Visual Publications, Inc. Registered in the U.S. Patent and Trademark office. Cover painting by Steve Fastner. Cover design by Alex Jay/Studio J. An ipicturebooks.com ebook ipicturebooks.com 24 West 25th St., 11th fl. Y, NY 10010 The ipicturebooks World Wide Web Site Address is: http://www.ipicturebooks.com Original ISBN: 0-553-28157-7 eISBN: 1-59019-090-4 Time Machine 25 8/7/01 5:03 PM Page 5 ATTENTION TIME TRAVELER! This book is your time machine. Do not read it through from beginning to end. In a moment you will receive a mission, a special task that will take you to another time period. As you face the dan- gers of history, the Time Machine often will give you options of where to go or what to do. This book also contains a Data Bank to tell you about the age you are going to visit. You can use this Data Bank to travel more safely through time. Or you can take your chances without reading it. It is up to you to decide. In the back of this book is a Data File. It contains hints to help you if you are not sure what choice to make. The following symbol appears next to any choices for which there is a hint in the Data File. To complete your mission as quickly as possible, you may wish to use the Data Bank and the Data File together. There is one correct end to this Time Machine mission. You must reach it or risk being stranded in time! Time Machine 25 8/7/01 5:03 PM Page 6 THE FOUR RULES OF TIME TRAVEL As you begin your mission, you must observe the following rules. Time Travelers who do not follow these rules risk being stranded in time. 1. You must not kill any person or animal. 2. You must not try to change history. Do not leave anything from the future in the past. 3. You must not take anybody when you jump in time. Avoid disappearing in a way that scares people or makes them suspicious. 4. You must follow instructions given to you by the Time Machine. You must choose from the options given to you by the Time Machine. Time Machine 25 8/7/01 5:03 PM Page 7 YOUR MISSION Your mission is to travel back to World War II and help crack the top secret enemy codes. To prove you have accomplished your mission, you must bring back two decoded messages—one German and one Japanese—that helped the Allies win the war. “Attack at dawn!” “U-boats now approaching!” During World War II, both sides communicated via telegraph messages. But the messages were in code to confuse the enemy, so they looked more like this: “WQSEU PMPIZ TLJJU LRBID!” To decode these complex messages, the Allies had to work round-the-clock. Even the slightest delay might mean the loss of lives to a surprise attack. If it weren’t for a brilliant international team of code breakers, the Allies might never have won the war. To accomplish your mis- sion, you will brave terrible hazards. You will have to keep your wits about you to survive the horror and danger of World War II. To activate the Time Machine, click here. Time Machine 25 8/7/01 5:03 PM Page 8 TIME TRAVEL ACTIVATED. Stand by for Equipment. Click Here Time Machine 25 8/7/01 5:03 PM Page 9 EQUIPMENT The code breakers are a small, secret group, and most members know each other. The number one piece of equipment you will need to infiltrate this select group is your brain. You will wear a standard, Army-issue set of khaki pants and shirt and a pair of spit-polished black shoes. You may find yourself behind enemy lines, in combat, and in horrendous weather. So be sure to take a backpack filled with the following things, wrapped in water-tight plastic: 1. combat boots and fatigues 2. a German uniform 3. a dark, nondescript pair of pants and a spare T-shirt in case of bad weather 4. maps of Europe and the Pacific 5. a small camera to photograph secret messages 6. identification papers with made-up names and serial numbers (one each for England, the United States, and Germany). 7. the following data cards, which list the important events in World War II: EUROPE 1939 September 1: Hitler invades Poland. 4: Britain and France declare war on Germany. 28: Poland surrenders. 1940 May 10: The Germans begin a massive attack westward, captur Time Machine 25 8/7/01 5:03 PM Page 10 Time Machine 25 8/7/01 5:03 PM Page 11 ing the Netherlands and Belgium. June 3: The Luftwaffe, the German air force, bombs Paris. 5: The Battle of France begins. 24: France surrenders and is divided into the occupied (north) and unoccupied zones; both zones cooperate with the Nazis. July 10: The Battle of Britain begins. The Luftwaffe attacks the southern coast of England. 15: The Germans begin Operation Eagle, a plan to flush out and destroy British Royal Air Force (RAF) planes. September 7: The Luftwaffe begins to bomb London (the Blitz). The bombing continues until May 1941. 15: The RAF wins decisively over the Luftwaffe in the Battle of Britain. November 4: The Luftwaffe bombs Coventry, England. December 18: Hitler issues plans to invade Russia. 1941 March 24: Nazi Field Marshal Rommel begins a North African offensive in Libya. April 29: Rommel runs out of supplies on the Egyptian border; the German drive is halted. June 22: Hitler’s massive attack on the Soviet Union begins, sev eral months late. October 2: The Germans invade Moscow. December Time Machine 25 8/7/01 5:03 PM Page 12 7: Japan attacks Pearl Harbor. 8: The U.S. declares war on Japan. 10: Germany and Italy declare war on the U.S. 1942 June 25–27: England’s Prime Minister Churchill and the United States’ President Roosevelt decide to attack the Germans in North Africa. They also authorize atom bomb research. July 21: Again a victim of lack of supplies, Rommel’s offensive sputters. October 23: British General Montgomery starts the Battle of El Alamein against Rommel. November 4: Rommel starts to retreat. 8: Eisenhower, the new Allied Commander, begins Operation Torch with massive landings in North Africa. December 25: Defeated by the Russians in Stalingrad, the Germans begin to retreat. 1943 January 24: Hitler forbids the Nazi generals’ plea to surrender in Russia. 30: The RAF begins a major air raid on Berlin. February 2: The Germans surrender to the Russians. 14: Rommel sets back the Allies at Kasserine Pass. April 7: Eisenhower’s forces meet up with Montgomery’s in Tunisia. May Time Machine 25 8/7/01 5:03 PM Page 13 12: Rommel flees North Africa, leaving his troops to sur render. July 10: Led by field commanders Patton and Montgomery, the Allies invade Sicily. August 18: The RAF bombs German rocket-bomb factories in Peenemunde. September 10: The Germans seize Rome. 1944 June 4: The Germans abandon Rome to the Allies. 6: The Allies launch a massive D-Day offensive (Operation Overlord) on the northern coast of France. The Germans are slow to respond. 13: German V1 rocket bombs land on London. August 1: General George Patton’s army breaks across France toward Germany. 25: The Allied French retake Paris. September 3: The British seize Brussels and Antwerp; the Germans retreat from Finland. 8: New, sophisticated German rocket bombs (V2) fall on London. 12–14: The Americans cross the German border and capture the first German city (Aachen). The British push through Holland. December 17: The Germans retaliate by pushing through Belgium and Luxembourg. The Battle of the Bulge begins. 31: The Allies win the Battle of the Bulge; there are 100,000 casualties on both sides, 50,000 Germans are captured. Time Machine 25 8/7/01 5:03 PM Page 14 1945 February 13–14: The Allies bomb Dresden, Germany, killing 135,000. March 7: The Americans thwart the German demolition team, pour across Remagen Bridge over the Rhine, and capture Cologne. April 10: Eisenhower’s troops seize the concentration camp at Buchenwald and see the horrors of the “death camps” for the first time. 12: President Roosevelt dies; Harry Truman succeeds him. 16: The Russians attack Berlin from the east. 30: Hitler commits suicide; a week later, the remaining Nazis surrender. May 8: V-E (Victory-Europe) Day. JAPAN 1940 September 26: Despite warnings from the U.S., Japan invades Indochina. 29: U.S. Marines start building new defenses on Midway Island. 1941 July 26: Roosevelt freezes Japanese assets in the U.S. and halts trade with Japan. August 17: Roosevelt tells the Japanese ambassador that the U.S.
Recommended publications
  • CODEBREAKING Suggested Reading List (Can Also Be Viewed Online at Good Reads)
    MARSHALL LEGACY SERIES: CODEBREAKING Suggested Reading List (Can also be viewed online at Good Reads) NON-FICTION • Aldrich, Richard. Intelligence and the War against Japan. Cambridge: Cambridge University Press, 2000. • Allen, Robert. The Cryptogram Challenge: Over 150 Codes to Crack and Ciphers to Break. Philadelphia: Running Press, 2005 • Briggs, Asa. Secret Days Code-breaking in Bletchley Park. Barnsley: Frontline Books, 2011 • Budiansky, Stephen. Battle of Wits: The Complete Story of Codebreaking in World War Two. New York: Free Press, 2000. • Churchhouse, Robert. Codes and Ciphers: Julius Caesar, the Enigma, and the Internet. Cambridge: Cambridge University Press, 2001. • Clark, Ronald W. The Man Who Broke Purple. London: Weidenfeld and Nicholson, 1977. • Drea, Edward J. MacArthur's Ultra: Codebreaking and the War Against Japan, 1942-1945. Kansas: University of Kansas Press, 1992. • Fisher-Alaniz, Karen. Breaking the Code: A Father's Secret, a Daughter's Journey, and the Question That Changed Everything. Naperville, IL: Sourcebooks, 2011. • Friedman, William and Elizebeth Friedman. The Shakespearian Ciphers Examined. Cambridge: Cambridge University Press, 1957. • Gannon, James. Stealing Secrets, Telling Lies: How Spies and Codebreakers Helped Shape the Twentieth century. Washington, D.C.: Potomac Books, 2001. • Garrett, Paul. Making, Breaking Codes: Introduction to Cryptology. London: Pearson, 2000. • Hinsley, F. H. and Alan Stripp. Codebreakers: the inside story of Bletchley Park. Oxford: Oxford University Press, 1993. • Hodges, Andrew. Alan Turing: The Enigma. New York: Walker and Company, 2000. • Kahn, David. Seizing The Enigma: The Race to Break the German U-boat Codes, 1939-1943. New York: Barnes and Noble Books, 2001. • Kahn, David. The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet.
    [Show full text]
  • 9 Purple 18/2
    THE CONCORD REVIEW 223 A VERY PURPLE-XING CODE Michael Cohen Groups cannot work together without communication between them. In wartime, it is critical that correspondence between the groups, or nations in the case of World War II, be concealed from the eyes of the enemy. This necessity leads nations to develop codes to hide their messages’ meanings from unwanted recipients. Among the many codes used in World War II, none has achieved a higher level of fame than Japan’s Purple code, or rather the code that Japan’s Purple machine produced. The breaking of this code helped the Allied forces to defeat their enemies in World War II in the Pacific by providing them with critical information. The code was more intricate than any other coding system invented before modern computers. Using codebreaking strategy from previous war codes, the U.S. was able to crack the Purple code. Unfortunately, the U.S. could not use its newfound knowl- edge to prevent the attack at Pearl Harbor. It took a Herculean feat of American intellect to break Purple. It was dramatically intro- duced to Congress in the Congressional hearing into the Pearl Harbor disaster.1 In the ensuing years, it was discovered that the deciphering of the Purple Code affected the course of the Pacific war in more ways than one. For instance, it turned out that before the Americans had dropped nuclear bombs on Japan, Purple Michael Cohen is a Senior at the Commonwealth School in Boston, Massachusetts, where he wrote this paper for Tom Harsanyi’s United States History course in the 2006/2007 academic year.
    [Show full text]
  • Secure Communications One Time Pad Cipher
    Cipher Machines & Cryptology © 2010 – D. Rijmenants http://users.telenet.be/d.rijmenants THE COMPLETE GUIDE TO SECURE COMMUNICATIONS WITH THE ONE TIME PAD CIPHER DIRK RIJMENANTS Abstract : This paper provides standard instructions on how to protect short text messages with one-time pad encryption. The encryption is performed with nothing more than a pencil and paper, but provides absolute message security. If properly applied, it is mathematically impossible for any eavesdropper to decrypt or break the message without the proper key. Keywords : cryptography, one-time pad, encryption, message security, conversion table, steganography, codebook, message verification code, covert communications, Jargon code, Morse cut numbers. version 012-2011 1 Contents Section Page I. Introduction 2 II. The One-time Pad 3 III. Message Preparation 4 IV. Encryption 5 V. Decryption 6 VI. The Optional Codebook 7 VII. Security Rules and Advice 8 VIII. Appendices 17 I. Introduction One-time pad encryption is a basic yet solid method to protect short text messages. This paper explains how to use one-time pads, how to set up secure one-time pad communications and how to deal with its various security issues. It is easy to learn to work with one-time pads, the system is transparent, and you do not need special equipment or any knowledge about cryptographic techniques or math. If properly used, the system provides truly unbreakable encryption and it will be impossible for any eavesdropper to decrypt or break one-time pad encrypted message by any type of cryptanalytic attack without the proper key, even with infinite computational power (see section VII.b) However, to ensure the security of the message, it is of paramount importance to carefully read and strictly follow the security rules and advice (see section VII).
    [Show full text]
  • The Enigma History and Mathematics
    The Enigma History and Mathematics by Stephanie Faint A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics m Pure Mathematics Waterloo, Ontario, Canada, 1999 @Stephanie Faint 1999 I hereby declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the University of Waterloo to reproduce this thesis by pho­ tocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. 11 The University of Waterloo requires the signatures of all persons using or pho­ tocopying this thesis. Please sign below, and give address and date. ill Abstract In this thesis we look at 'the solution to the German code machine, the Enigma machine. This solution was originally found by Polish cryptologists. We look at the solution from a historical perspective, but most importantly, from a mathematical point of view. Although there are no complete records of the Polish solution, we try to reconstruct what was done, sometimes filling in blanks, and sometimes finding a more mathematical way than was originally found. We also look at whether the solution would have been possible without the help of information obtained from a German spy. IV Acknowledgements I would like to thank all of the people who helped me write this thesis, and who encouraged me to keep going with it. In particular, I would like to thank my friends and fellow grad students for their support, especially Nico Spronk and Philippe Larocque for their help with latex.
    [Show full text]
  • Vigen`Ere Cipher – Friedman's Attack
    Statistics 116 - Fall 2002 Breaking the Code Lecture # 5 – Vigen`ere Cipher – Friedman’s Attack Jonathan Taylor 1 Index of Coincidence In this lecture, we will discuss a more “automated” approach to guessing the keyword length in the Vigen`erecipher. The procedure is based on what we will call the index of coincidence of two strings of text S1 and S2 of a given length n. The index of coincidence is just the proportion of positions in the strings where the corresponding characters of the two strings match, and is defined for the strings S1 = (s11, s12, . , s1n) and S2 = (s21, s22, . , s2n) n 1 X I(S ,S ) = δ(s , s ) 1 2 n 1i 2i i=1 where the function ( 1 if x = y δ(x, y) = 0 otherwise. Now, in our situation we have to imagine that the string we observe is “random”. Suppose then, that S1 and S2 are two random strings generated by choosing letters at random with the frequencies (p0, . , p25) and (q0, . , q25), respectively. If the strings are random we can talk about the “average” index of coincidence of the two strings S1 and S2. In statistics, if we have a random quantity X we write E(X) for the “expectation” or “average” of X. It is not difficult to show that if S1 is a string of random letters with frequencies (p0, . , p25) and (q0, . , q25) then the average index of coincidence of these two strings is given by 25 X piqi. (1) i=0 1 This is because, for any of the letters in the string, the probability that the two characters match is the probability that they are both A’s, both B’s, .
    [Show full text]
  • Loads of Codes – Cryptography Activities for the Classroom
    Loads of Codes – Cryptography Activities for the Classroom Paul Kelley Anoka High School Anoka, Minnesota In the next 90 minutes, we’ll look at cryptosystems: Caesar cipher St. Cyr cipher Tie-ins with algebra Frequency distribution Vigenere cipher Cryptosystem – an algorithm (or series of algorithms) needed to implement encryption and decryption. For our purposes, the words encrypt and encipher will be used interchangeably, as will decrypt and decipher. The idea behind all this is that you want some message to get somewhere in a secure fashion, without being intercepted by “the bad guys.” Code – a substitution at the level of words or phrases Cipher – a substitution at the level of letters or symbols However, I think “Loads of Codes” sounds much cooler than “Loads of Ciphers.” Blackmail = King = Today = Capture = Prince = Tonight = Protect = Minister = Tomorrow = Capture King Tomorrow Plaintext: the letter before encryption Ciphertext: the letter after encryption Rail Fence Cipher – an example of a “transposition cipher,” one which doesn’t change any letters when enciphered. Example: Encipher “DO NOT DELAY IN ESCAPING,” using a rail fence cipher. You would send: DNTEAIECPN OODLYNSAIG Null cipher – not the entire message is meaningful. My aunt is not supposed to read every epistle tonight. BXMT SSESSBW POE ILTWQS RIA QBTNMAAD OPMNIKQT RMI MNDLJ ALNN BRIGH PIG ORHD LLTYQ BXMT SSESSBW POE ILTWQS RIA QBTNMAAD OPMNIKQT RMI MNDLJ ALNN BRIGH PIG ORHD LLTYQ Anagram – use the letters of one word, phrase or sentence to form a different one. Example: “Meet behind the castle” becomes “These belched a mitten.” Substitution cipher – one in which the letters change during encryption.
    [Show full text]
  • Code-Based Cryptography — ECRYPT-CSA Executive School on Post-Quantum Cryptography
    Code-based Cryptography | ECRYPT-CSA Executive School on Post-Quantum Cryptography 2017 TU Eindhoven | Nicolas Sendrier Linear Codes for Telecommunication linear expansion data - codeword ? k n > k noisy channel data? noisy codeword decoding [Shannon, 1948] (for a binary symmetric channel of error rate p): k Decoding probability −! 1 if = R < 1 − h(p) n (h(p) = −p log2 p − (1 − p) log2(1 − p) the binary entropy function) Codes of rate R can correct up to λn errors (λ = h−1(1 − R)) For instance 11% of errors for R = 0:5 Non constructive −! no poly-time algorithm for decoding in general N. Sendrier { Code-Based Public-Key Cryptography 1/44 Random Codes Are Hard to Decode When the linear expansion is random: • Decoding is NP-complete [Berlekamp, McEliece & van Tilborg, 78] • Even the tiniest amount of error is (believed to be) hard to re- move. Decoding n" errors is conjectured difficult on average for any " > 0 [Alekhnovich, 2003]. N. Sendrier { Code-Based Public-Key Cryptography 2/44 Codes with Good Decoders Exist Coding theory is about finding \good" codes (i.e. linear expansions) n • alternant codes have a poly-time decoder for Θ errors log n • some classes of codes have a poly-time decoder for Θ(n) errors (algebraic geometry, expander graphs, concatenation, . ) N. Sendrier { Code-Based Public-Key Cryptography 3/44 Linear Codes for Cryptography linear expansion plaintext - codeword ? k n > k intentionally add errors plaintext ciphertext decoding • If a random linear code is used, no one can decode efficiently • If a \good" code is used, anyone who knows the structure has access to a fast decoder Assuming that the knowledge of the linear expansion does not reveal the code structure: • The linear expansion is public and anyone can encrypt • The decoder is known to the legitimate user who can decrypt • For anyone else, the code looks random N.
    [Show full text]
  • CODE SCHOOL: TOP SECRET COMMUNICATIONS DURING WWII Codes and Ciphers a Code Is a Word Or Message That Is Replaced with an Agreed Code Word Or Symbol
    CODE SCHOOL: TOP SECRET COMMUNICATIONS DURING WWII Codes and Ciphers A code is a word or message that is replaced with an agreed code word or symbol. A cipher is when each letter in an alphabet is replaced with another letter, number, picture, or other symbol. Ciphers always have key that is shared among those sending and receiving the message. A coded message would be like saying, “The eagle has landed!”, while a cipher may look like this: 8-5-12-12-15. In the cipher, each letter of the alphabet has been replaced by its corresponding number (A = 1). Do you know the message? Communications during Wartime Navajo Code Talkers Humans figured out how to send secret One incredible example of transmitting secret messages a long time ago. The Greeks used messages was through the US’s use of the something we now call the Caesar cipher (the Navajo language. More than 400 Navajo alphabet is shifted so each letter is replaced by Indians served as code talkers, communicating a different one), while Spartans used a device secret messages for the U.S. Marines. These called a scytale (where a message was written Navajo servicemen were specially trained to on a piece of paper and would be read using a use their own language to communicate during special rod). battles throughout the Pacific campaign. The Navajo code used their own Navajo words to stand for English words. For example, the English word “air” was translated into the Navajo word for air. If an English word did not exist in the Navajo language, they would use Navajo words to symbolize the English word— Skytale submarine became besh-lo, meaning iron fish.
    [Show full text]
  • Some Notes on Code-Based Cryptography Löndahl, Carl
    Some Notes on Code-Based Cryptography Löndahl, Carl 2015 Link to publication Citation for published version (APA): Löndahl, C. (2015). Some Notes on Code-Based Cryptography. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Some Notes on Code-Based Cryptography Carl Löndahl Doctoral Dissertation Information Theory Lund, December 2014 Carl Löndahl Department of Electrical and Information Technology Information Theory Lund University P.O. Box 118, 221 00 Lund, Sweden Series of licentiate and doctoral dissertations ISSN 1654-790X; No. 67 ISBN 978-91-7623-119-7 c 2014 Carl Löndahl Typeset in Palatino and Helvetica using LATEX 2#. Printed in Sweden by Tryckeriet i E-huset, Lund University, Lund.
    [Show full text]
  • An Improved Encryption Process Using One-Time Pad Together with Graph Labeling
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-4S5, December 2019 An Improved Encryption Process using One-Time Pad Together With Graph Labeling Jaya Shruthy V. N., V. Maheswari with the aid of Cipher clue the receiver is able to retrieve back Abstract: In this Research paper we discuss the encryption the plaintext. technique of secret messages using One -Time Pad encryption technique accompanied with Graph Labeling. Theoretically the II. LITERATURE REVIEW One - Time Pads (OTPs) are recognized as the truly unbreakable Ciphers as messages are encrypted with unique keys based on In paper [3], [4] and [5] Harmonious labeling techniques on randomness thereby paving no way to “Crack the Code” when various Graph structures and some of their properties have applied properly. Though OTPs have their own limitations the been studied. [6], [7] and [8] showcases new methodology efficiency of this Cipher can be improved by maintaining the and researches involved in encryption techniques using utmost secrecy of the ciphering key and destroying it One-Time Pads, its uses, drawbacks etc. For some basic immediately after its implementation. To add a feather to its terminologies on Graph labeling we refer [1]. In [2] our work features the encryption procedure through One -Time Pads can be further enhanced by joining hands with Graph labeling on double encryption process using Graph labeling through Technique. The resulting Ciphertext is represented as a Cipher enhanced Vigenere Cipher Technique encouraged us to carry Graph which is passed over to the receiver. We apply out some more research in this area with slight variations and Harmonious labeling technique to this Cipher graph which our current work is one among them.
    [Show full text]
  • Top Secret! Shhhh! Codes and Ciphers
    Top Secret! Shhhh! Codes and Ciphers 20 15 16 19 5 3 18 5 20 19 8 8 8 Can you figure out what this message says? Do you love secret codes? Do you want to be able to write messages to friends that no one else can read? In this kit you will get to try some codes and learn to code and decode messages. Materials Included in your Kit Directions and template pages Answer key for all codes in this packet starts on page 8. 1 #2 Pencil 1 Brad Fastener Tools You’ll Need from Home Scissors A Piece of Tape Terminology First let’s learn a few terms together. CODE A code is a set of letters, numbers, symbols, etc., that is used to secretly send messages to someone. CIPHER A cipher is a method of transforming a text in order to conceal its meaning. KEY PHRASE / KEY OBJECT A key phrase lets the sender tell the recipient what to use to decode a message. A key object is a physical item used to decrypt a code. ENCRYPT This means to convert something written in plain text into code. DECRYPT This means to convert something written in code into plain text. Why were codes and ciphers used? Codes have been used for thousands of years by people who needed to share secret information with one another. Your mission is to encrypt and decrypt messages using different types of code. The best way to learn to read and write in code is to practice! SCYTALE Cipher The Scytale was used by the ancient Greeks.
    [Show full text]
  • World War II: Breaking the Code Breakout Created by Robyn Young, School Librarian, Avon, Indiana
    World War II: Breaking the Code Breakout created by Robyn Young, School Librarian, Avon, Indiana. ©2020 World War II: Breaking the Code A breakout to help students understand: • The effect of World War II on American culture • Identify key events from World War II and understand their significance Developed by Robyn Young, School Librarian, Avon, Indiana ([email protected]) In this packet you’ll find: Overview of the breakout activity with the answer codes Page 3 Instruction cards for students Page 4 Congratulation cards for students Page 5 Activity Materials Key Lock: Date Which Will Live in Infamy Summary Page 6 Image Page 7 4-Digit Lock: Battle of Stalingrad Summary Page 8 QR Codes / Links for Students Page 9 Image Page 10 Quiz Page 11 Directional Lock: Axis and Allied Powers Map Summary Page 12 QR Codes / Links for Students Page 13 3-Digit Lock: Enigma Machine and Hiroshima Summary Page 14 Article 1 (Enigma Machine) Page 15 Article 2 (Bombing of Hiroshima) Page 16 Invisible ink illustration Page 17 Cipher sheet Page 18 Work Lock: Rationing Summary Page 19 Article (Rationing) Page 20 Chart Page 21 Ration book images Page 22-24 Invisible ink illustration Page 25 Additional materials needed: Invisible ink pen and flashlight Two boxes (large and small) Locks (3-digit, 4-digit, directional, word, key) USB drive World War II: Breaking the Code Breakout created by Robyn Young, School Librarian, Avon, Indiana. ©2020 World War II: Breaking the Code Type of Lock/Item Code Additional Information Small Box Key Lock on the box Flashlight and ABC Cipher inside Large Box Congratulations inside 3 Digit Lock 603 Hiroshima and enigma machine articles 4 Digit Lock 4645 Answers from the Battle of Stalingrad Quiz Word Lock SUGAR From ration book and chart in invisible ink Key Lock On Small Box On USB is image about date which will live in infamy USB Drive Image of date which will live in infamy This Breakout will take approximately 1 hour to complete.
    [Show full text]