Abstracts from the 53Rd European Society of Human Genetics (ESHG) Conference: E-Posters

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts from the 53Rd European Society of Human Genetics (ESHG) Conference: E-Posters European Journal of Human Genetics (2020) 28:798–1016 https://doi.org/10.1038/s41431-020-00741-5 ABSTRACTS COLLECTION Abstracts from the 53rd European Society of Human Genetics (ESHG) Conference: e-Posters © European Society of Human Genetics 2020. Modified from the conference website and published with permission 2020 Volume 28 | Supplement 1 Virtual Conference June 6-9, 2020 Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. 1234567890();,: 1234567890();,: Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered “Modest”. Contributions above EUR 10 000.- per year are considered “Significant”. Presenting authors are indicated with bold typeface in the contributor lists. e-Posters improve the prevention and treatment of congenital malformations. E-P01 Reproductive Genetics/Prenatal Genetics Material and methods: The data from Medical Genetic Center Register was analyzing by the MedCalc 15.8 E-P01.07 program. Epidemiological monitoring of congenital malforma- Results: The incidence rate of congenital malformations tions in Yakutia from 2007 to 2018 over a 12-year period averaged 29.4 cases per 1000 newborns with a standard deviation of 2.9. It’s high A. I. Fedorov1, A. L. Sukhomyasova1,2, A. N. Sleptsov2,1,N. indicator In Russia (>20 ‰). At this period, the average R. Maksimova1 annual number of births was 15725.7 (SD 1174.3). The high frequencies of malformations in 2012, 2017 and 2018 1Research Laboratory “Molecular Medicine and Human was observing (Table 1). The observed differences are Genetics”, Medical Institute, M. K. Ammosov North- statistically significantly (p < 0.05). Eastern Federal University, Yakutsk, Russian Federation, 2Medical Genetic Center, Republican Hospital №1 – Table 1. Congenital malformations prevalence “ ” National Medical Center , Yakutsk, Russian Federation Years Incidences with 95% CI Introduction: Congenital malformations represent an 2007 0.0296 (0.02694-0.03246) urgent problem that affects the structure of infant and child 2008 0.02734 (0.02479-0.03008) mortality. In Yakutia, the prevalence of congenital mal- 2009 0.02743 (0.02492-0.03012) formations is recording in Register of Medical Genetic 2010 0.02893 (0.02636-0.03168) Center, Republican Hospital №1-“National Medical 2011 0.02981 (0.02723-0.03258) Center”. The purpose of epidemiological monitoring is to 2012 0.03336 (0.03067-0.03622) Abstracts from the 53rd European Society of Human Genetics (ESHG) Conference: e-Posters 799 and rs560654095. The frequency of the rs34957925 minor Years Incidences with 95% CI variant in the endometriosis group corresponded its rate in 2013 0.0273 (0.02485-0.02992) European populations. The frequency of the minor 2014 0.02704 (0.02463-0.02963) rs560654095 variant was 0.061 (G-0.00001, 1000 2015 0.02527 (0.02289-0.02783) Genomes). Conclusions: fi 2016 0.02977 (0.0271-0.03263) We did not found statistically signi cant differences in allele frequencies of EM patients and control 2017 0.03265 (0.02973-0.03579) groups for the polymorphic variants the WNT7A, TWIST1 2018 0.03464 (0.03154-0.03797) and WNT4 genes. In endometriosis patients a high representation (6%) of the rs560654095 minor allele was Conclusion: Thus, Yakutia is region with a high found. The HOXA10 gene product binds to the β-actin frequency of congenital malformations, and in recent years promoter and regulates its expression in the endometrium. an increase the frequency of their registration. The Further studies are in progress to check this unusual finding. prevalence of congenital malformations is vary at approx- This work was financially supported by the Russian Science imate intervals of 4-5 years and increase tendency may Foundation (No. 19-15-00108) persist for several years because improved diagnostic N.S. Osinovskaya: None. N.Y. Shved: None. O.V. methods. Malysheva: None. M.I. Yarmolinskaya: None. V.S. Research is part of the project FSRG-2020-0014 “Arctic Baranov: None. Genomics: epidemiology, heredity and pathology”. A.I. Fedorov: None. A.L. Sukhomyasova: None. A.N. E-P01.12 Sleptsov: None. N.R. Maksimova: None. NFE2L2 and JUN transcription study in fetal and maternal tissues of women with pregnancy loss in the E-P01.09 first trimester Analysis of the minor allele frequency of WNT7A (rs2639607), WNT4 (rs7521902), TWIST1 (rs4721745) E. Mashkina, K. Kovalenko and HOXA10 gene (exon2) in women with presumably hereditary forms of endometriosis. Southern Federal University, Rostov-on-Don, Russian Federation N. S. Osinovskaya1,2, N. Y. Shved1, O. V. Malysheva1,M.I. Yarmolinskaya1, V. S. Baranov1 Background: The cells constantly interact with many sig- naling molecules. This leads to dynamic changes in the 1Ott’s Scientific Research Institute of Obstetrics, Gynecol- spectrum of expressed genes. Nrf2 and JUN are transcrip- ogy and Reproductology, St. Petersburg, Russian Federa- tion factors that are involved in maintaining intracellular tion, 2North-Western State Medical University named after redox homeostasis, which is necessary for cells proliferation I.I. Mechnikov, Saint-Petersburg, Russian Federation and differentiation. These transcription factors activate the antioxidant defense of cells from oxidative stress. In current Introduction: According to GWAS, over 100 genes are work, we investigated the expression of NFE2L2, JUN, associated with development of endometriosis (EM) - SOD1 genes in chorionic and decidual tissues after spon- common gynecologic disorder. The present work was taneous abortion compared to normal first trimester devoted to the study of exon 2 polymorphism in HOXA10 pregnancies. gene as well as the frequency of minor allelic variants of the Materials and methods: Samples of chorionic tissue and WNT7A, WNT4, TWIST1 genes. decidua were taken after surgical termination of normally Materials and methods: DNA samples extracted from progressing pregnancies and spontaneous abortion in 5-9 peripheral blood of 41 patients with laparoscopically proved week of gestation. RNA expression was analyzed using endometriosis and 43 ones from the control cohort were quantitative real-time PCR method. Data were analyzed used. Real-time PCR was applied to analyze allelic variants using the 2-ΔΔCT method. of the WNT7A, WNT4, TWIST1 genes. Sanger sequencing Results: The transcription level of the NFE2L2, JUN, of the 2nd exon of the HOXA10 gene was performed in 41 SOD1 genes is significantly higher in decidual tissue cells patients with proved endometriosis. compared to chorion cells during normal pregnancy Results: The frequencies of the minor variants: (p<0.0001). Thus, the tissue-specific transcription level of rs12639607 (WNT7A), rs4721745 (TWIST1), rs7521902 the NFE2L2, JUN, SOD1 genes has been revealed for (WNT4) corresponded its rate in European populations. In physiological pregnancy. The correlation in the mRNA the HOXA10 gene, we identified two variants: rs34957925 levels of the JUN, NFE2L2 and SOD1 genes was detected 800 J. del Picchia in decidua. In chorionic tissue during normal pregnancy, the This report stresses the importance of molecular diagnosis level of mRNA of the SOD1 gene is directly proportional to in IP for genetic counseling of the entire family. the mRNA of the NFE2L2 gene (r=0.81 p=0.0002). With S. Koka: None. O. Lobel: None. E. Zivi: None. Z. Ben- miscarriage the level of mRNA of the JUN gene in the Neriah: None. A. Frumkin: None. O. Weiss: None. S. chorionic tissue is significantly higher compared to the Zeligson: None. R. Segel: None. control. Conclusion: The results demonstrated that high JUN E-P01.18 transcription level in chorionic tissue could be associated Reciprocal 7p deletion-7q duplication in a malformed with miscarriage in first trimester of pregnancy. fetus due to maternal inversion of chromosome 7 - E. Mashkina: None. K. Kovalenko: None. cytogenetic and microarray analysis E-P01.14 M. Hristova-Savova1, R. Bozhilova2, V. Peycheva2, Prenatal diagnosis of Xq28 microdeletion including exon E. Dimova3, K. Belemezova1, S. Yovinska1, M. Rizov1, 10 of IKBKG gene in male fetus with increased nuchal P. Chaveeva1, A. Shterev1, R. Kaneva2, I. Dimova1,2 translucency and hydrops and a family history of Incontinentia Pigmenti 1SAGBAL "Dr Shterev", Sofia, Bulgaria, 2Molecular Medicine Center, Medical University Sofia, Sofia, Bulgaria, S. Koka1, O. Lobel1, E. Zivi1, Z. Ben-Neriah1, A. Frumkin2, 3RWTH, Aachen, Germany O. Weiss1, S. Zeligson1, R. Segel1 Pericentric inversions occur in human with a frequency of 1Shaare Zedek Medical Center, Jerusalem, Israel, 1-2% of general population. These balanced chromosomal 2Cytogenetics Lab, Department of Genetics, Hadassah rearrangements do not cause any problem for the carrier, Medical Center, Jerusalem, Israel but during meiosis there is a risk of inversion loop for- mation in the offspring leading to de novo duplication, Introduction: Incontinentia Pigmenti (IP), is an X-linked deletion or a combination of both [duplication q/deletion p dominant Male-lethal disorder, caused by devastating (dup q/del p) or del q/dup p]. Significant numbers of mutations in IKBKG gene. A recurrent exon 4_10 deletion recombinants are produced when the inverted segment in the IKBKG gene accounts for 60 to 80% of IP-causing size is >50% of the total length of the affected chromo- mutations, but other point mutations along the gene as well some. We report here a case of prenatal diagnostics of a as exon 10 (which include the zinc-finger domain) trun- fetus with multiple anomalies: severe growth retardation, cating mutation were described previously. enlarged third ventricle, agenesis of ductus venosus, and Materials and methods: Chromosomal Microarray cyst of the blood cord. Cytogeneic analysis was performed Analysis (CMA) was performed in chorionic villi sample after amniocentesis and pathologic duplication of chro- of aborted pregnancy of fetus with increased nuchal mosome 7q was revealed.
Recommended publications
  • IDF Patient & Family Handbook
    Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. FIFTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. REPRINT 2015 Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases 5th Edition This publication has been made possible through a generous grant from Baxalta Incorporated Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R. Michael Blaese, MD William Blouin, MSN, ARNP, CPNP State University of New York Georgetown University Hospital Immune Deficiency Foundation Miami Children’s Hospital Buffalo, NY Washington, DC Towson, MD Miami, FL Francisco A.
    [Show full text]
  • Clinical Utility Gene Card For: 3-M Syndrome – Update 2013
    European Journal of Human Genetics (2014) 22, doi:10.1038/ejhg.2013.156 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg CLINICAL UTILITY GENE CARD UPDATE Clinical utility gene card for: 3-M syndrome – Update 2013 Muriel Holder-Espinasse*,1, Melita Irving1 and Vale´rie Cormier-Daire2 European Journal of Human Genetics (2014) 22, doi:10.1038/ejhg.2013.156; published online 31 July 2013 Update to: European Journal of Human Genetics (2011) 19, doi:10.1038/ejhg.2011.32; published online 2 March 2011 1. DISEASE CHARACTERISTICS nonsense and missense mutations c.4333C4T (p.Arg1445*) and 1.1 Name of the disease (synonyms) c.4391A4C (p.His1464Pro), respectively, render CUL7 deficient 3-M syndrome (gloomy face syndrome, dolichospondylic dysplasia). in recruiting ROC1, leading to impaired ubiquitination. OBSL1: microsatellites analysis of the locus (2q35-36.1) in con- 1.2 OMIM# of the disease sanguineous families. OBSL1: microsatellites analysis of the locus 273750. (2q35-36.1) in consanguineous families. Mutations induce non- sense mediated decay. Knockdown of OBSL1 in HEK293 cells 1.3 Name of the analysed genes or DNA/chromosome segments shows the role of this gene in the maintenance of normal levels of CUL7, OBSL1 and CCDC8.1–5 CUL7. Abnormal IGFBP2 andIGFBP5 mRNA levels in two patients with OBSL1 mutations, suggesting that OBSL1 modulates the 1.4 OMIM# of the gene(s) expression of IGFBP proteins. CCDC8: microsatellites analysis 609577 (CUL7), 610991 (OBSL1) and 614145 (CCDC8). at the locus (19q13.2-q13.32). CCDC8, 1-BP DUP, 612G and CCDC8, 1-BP.
    [Show full text]
  • Phenotype Correlations in Individuals with Pathogenic RERE Variants
    Genotype-phenotype correlations in individuals with pathogenic RERE variants Valerie K. Jordan,1 Brieana Fregeau,2 Xiaoyan Ge,3,4 Jessica Giordano,5 Ronald J. Wapner,5 Tugce B. Balci,6 Melissa T. Carter,6 John A. Bernat,7 Amanda N. Moccia,8 Anshika Srivastava,8 Donna M. Martin,8,9 Stephanie L. Bielas,8 John Pappas,10 Melissa D. Svoboda,11 Marlène Rio,12,13 Nathalie Boddaert,12,14 Vincent Cantagrel,12,15 Andrea M. Lewis,3,16 Fernando Scaglia,3,16 Undiagnosed Diseases Network, Jennefer N. Kohler,17 Jonathan A. Bernstein,17 Annika M. Dries,17 Jill A. Rosenfeld,3 Colette DeFilippo,18 Willa Thorson,19 Yaping Yang,3,4 Elliott H. Sherr,2 Weimin Bi,3,4 Daryl A. Scott1,3,16* 1) Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA 2) Department of Neurology, University of California, San Francisco, San Francisco, CA, USA 3) Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA 4) Baylor Genetics, Houston, TX, USA 5) Institute of Genomic Medicine and Department of OB/GYN, Columbia University Medical Center, New York, NY, USA 6) Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada 7) Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, USA 8) Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • The National Economic Burden of Rare Disease Study February 2021
    Acknowledgements This study was sponsored by the EveryLife Foundation for Rare Diseases and made possible through the collaborative efforts of the national rare disease community and key stakeholders. The EveryLife Foundation thanks all those who shared their expertise and insights to provide invaluable input to the study including: the Lewin Group, the EveryLife Community Congress membership, the Technical Advisory Group for this study, leadership from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH), the Undiagnosed Diseases Network (UDN), the Little Hercules Foundation, the Rare Disease Legislative Advocates (RDLA) Advisory Committee, SmithSolve, and our study funders. Most especially, we thank the members of our rare disease patient and caregiver community who participated in this effort and have helped to transform their lived experience into quantifiable data. LEWIN GROUP PROJECT STAFF Grace Yang, MPA, MA, Vice President Inna Cintina, PhD, Senior Consultant Matt Zhou, BS, Research Consultant Daniel Emont, MPH, Research Consultant Janice Lin, BS, Consultant Samuel Kallman, BA, BS, Research Consultant EVERYLIFE FOUNDATION PROJECT STAFF Annie Kennedy, BS, Chief of Policy and Advocacy Julia Jenkins, BA, Executive Director Jamie Sullivan, MPH, Director of Policy TECHNICAL ADVISORY GROUP Annie Kennedy, BS, Chief of Policy & Advocacy, EveryLife Foundation for Rare Diseases Anne Pariser, MD, Director, Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health Elisabeth M. Oehrlein, PhD, MS, Senior Director, Research and Programs, National Health Council Christina Hartman, Senior Director of Advocacy, The Assistance Fund Kathleen Stratton, National Academies of Science, Engineering and Medicine (NASEM) Steve Silvestri, Director, Government Affairs, Neurocrine Biosciences Inc.
    [Show full text]
  • Investigation of Modifier Genes Within Copy Number Variations in Rett Syndrome
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/51147767 Investigation of modifier genes within copy number variations in Rett syndrome ARTICLE in JOURNAL OF HUMAN GENETICS · MAY 2011 Impact Factor: 2.53 · DOI: 10.1038/jhg.2011.50 · Source: PubMed CITATIONS DOWNLOADS VIEWS 6 89 134 15 AUTHORS, INCLUDING: Dag H Yasui Maria Antonietta Mencarelli University of California, Davis Azienda Ospedaliera Universitaria Senese 30 PUBLICATIONS 1,674 CITATIONS 58 PUBLICATIONS 962 CITATIONS SEE PROFILE SEE PROFILE Francesca Mari Janine M Lasalle Università degli Studi di Siena University of California, Davis 81 PUBLICATIONS 1,658 CITATIONS 98 PUBLICATIONS 3,525 CITATIONS SEE PROFILE SEE PROFILE Available from: Janine M Lasalle Retrieved on: 22 July 2015 Europe PMC Funders Group Author Manuscript J Hum Genet. Author manuscript; available in PMC 2012 January 01. Published in final edited form as: J Hum Genet. 2011 July ; 56(7): 508–515. doi:10.1038/jhg.2011.50. Europe PMC Funders Author Manuscripts Investigation of modifier genes within copy number variations in Rett syndrome Rosangela Artuso1,*, Filomena Tiziana Papa1,*, Elisa Grillo1, Mafalda Mucciolo1, Dag H. Yasui2, Keith W. Dunaway2, Vittoria Disciglio1, Maria Antonietta Mencarelli1, Marzia Pollazzon1, Michele Zappella3, Giuseppe Hayek4, Francesca Mari1, Alessandra Renieri1, Janine M. LaSalle2, and Francesca Ariani1 1 Medical Genetics Section, Biotechnology Department, University of Siena, Italy 2 Medical Microbiology and Immunology, Genome Center, School of Medicine, University of California, Davis, CA, USA 3 Child Neuropsychiatry, Versilia Hospital, Viareggio, Italy 4 Infantile Neuropsychiatry, Siena General Hospital, Italy Abstract MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT).
    [Show full text]
  • The Advantage of Genome-Wide Microarrays Over Targeted Approaches
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/70828 Please be advised that this information was generated on 2021-09-24 and may be subject to change. COPY NUMBER VARIATION AND MENTAL RETARDATION opmaak koolen.indd 1 10-09-2008 10:11:31 Copy number variation and mental retardation The studies presented in this thesis were performed at the Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands. The research was supported by a grant from the Netherlands Organization for Health Research and Development (ZonMw). Publication of this thesis was financially supported by the Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands. ISBN/EAN 978-90-6464-290-6 © 2008 D.A. Koolen All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, by print or otherwise, without permission in writing from the author. Cover photo: Printed by: Ponsen & Looijen B.V., Wageningen opmaak koolen.indd 2 10-09-2008 10:11:31 Copy number variation and mental retardation Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen Proefschrift ter verkrijging van de graad doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het College van Decanen in het openbaar te verdedigen op donderdag 6 november 2008 om 15.30 uur precies door David Aljosja Koolen geboren op 22 juni 1976 te ‘s-Gravenhage opmaak koolen.indd 3 10-09-2008 10:11:32 Promotor: Prof.
    [Show full text]
  • WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure
    Journal of Clinical Immunology (2019) 39:532–556 https://doi.org/10.1007/s10875-019-00665-w CME REVIEW WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure Lauren E. Heusinkveld1,2 & Shamik Majumdar1 & Ji-Liang Gao1 & David H. McDermott1 & Philip M. Murphy1 Received: 22 April 2019 /Accepted: 26 June 2019 /Published online: 16 July 2019 # This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019 Abstract WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lympho- penia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions. Keywords Chemokine . CXCL12 . CXCR4 . CXCR2 . myelokathexis . human papillomavirus . plerixafor Historical Background [M:E] ratio with a “shift to the right”); and (3) numerous dysmorphic bone marrow neutrophils having cytoplasmic Myelokathexis was first described as a new type of severe hypervacuolation and hyperlobulated pyknotic nuclear lobes congenital neutropenia in 1964 by Krill and colleagues from connected by long thin strands (Fig.
    [Show full text]
  • Pathway-Based Genome-Wide Association Analysis of Coronary Heart Disease Identifies Biologically Important Gene Sets
    European Journal of Human Genetics (2012) 20, 1168–1173 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Pathway-based genome-wide association analysis of coronary heart disease identifies biologically important gene sets Lisa de las Fuentes1,4, Wei Yang2,4, Victor G Da´vila-Roma´n1 and C Charles Gu*,2,3 Genome-wide association (GWA) studies of complex diseases including coronary heart disease (CHD) challenge investigators attempting to identify relevant genetic variants among hundreds of thousands of markers being tested. A selection strategy based purely on statistical significance will result in many false negative findings after adjustment for multiple testing. Thus, an integrated analysis using information from the learned genetic pathways, molecular functions, and biological processes is desirable. In this study, we applied a customized method, variable set enrichment analysis (VSEA), to the Framingham Heart Study data (404 467 variants, n ¼ 6421) to evaluate enrichment of genetic association in 1395 gene sets for their contribution to CHD. We identified 25 gene sets with nominal Po0.01; at least four sets are previously known for their roles in CHD: vascular genesis (GO:0001570), fatty-acid biosynthetic process (GO:0006633), fatty-acid metabolic process (GO:0006631), and glycerolipid metabolic process (GO:0046486). Although the four gene sets include 170 genes, only three of the genes contain a variant ranked among the top 100 in single-variant association tests of the 404 467 variants tested. Significant enrichment for novel gene sets less known for their importance to CHD were also identified: Rac 1 cell-motility signaling pathway (h_rac1 Pathway, Po0.001) and sulfur amino-acid metabolic process (GO:0000096, Po0.001).
    [Show full text]
  • Identification and Validation of Methylation-Driven Genes Prognostic Signature for Recurrence of Laryngeal Squamous Cell Carcino
    Cui et al. Cancer Cell Int (2020) 20:472 https://doi.org/10.1186/s12935-020-01567-3 Cancer Cell International PRIMARY RESEARCH Open Access Identifcation and validation of methylation-driven genes prognostic signature for recurrence of laryngeal squamous cell carcinoma by integrated bioinformatics analysis Jie Cui3†, Liping Wang2†, Waisheng Zhong4†, Zhen Chen5, Jie Chen4*, Hong Yang3* and Genglong Liu1* Abstract Background: Recurrence remains a major obstacle to long-term survival of laryngeal squamous cell carcinoma (LSCC). We conducted a genome-wide integrated analysis of methylation and the transcriptome to establish methyla- tion-driven genes prognostic signature (MDGPS) to precisely predict recurrence probability and optimize therapeutic strategies for LSCC. Methods: LSCC DNA methylation datasets and RNA sequencing (RNA-seq) dataset were acquired from the Cancer Genome Atlas (TCGA). MethylMix was applied to detect DNA methylation-driven genes (MDGs). By univariate and multivariate Cox regression analyses, fve genes of DNA MDGs was developed a recurrence-free survival (RFS)-related MDGPS. The predictive accuracy and clinical value of the MDGPS were evaluated by receiver operating characteristic (ROC) and decision curve analysis (DCA), and compared with TNM stage system. Additionally, prognostic value of MDGPS was validated by external Gene Expression Omnibus (GEO) database. According to 5 MDGs, the candidate small molecules for LSCC were screen out by the CMap database. To strengthen the bioinformatics analysis results, 30 pairs of clinical samples were evaluated by digoxigenin-labeled chromogenic in situ hybridization (CISH). Results: A total of 88 DNA MDGs were identifed, and fve RFS-related MDGs (LINC01354, CCDC8, PHYHD1, MAGEB2 and ZNF732) were chosen to construct a MDGPS.
    [Show full text]
  • Supporting Information
    Supporting Information Torkamani et al. 10.1073/pnas.0802403105 Materials and Methods kinase sequences used to generate conserved motifs, as in Kannan Kinase Identifiers. Kinase protein and DNA reference sequences et al. (3), the Gibbs motif sampling method identifies characteristic were obtained from Kinbase. These reference sequences were motifs for each individual subdomain of the kinase catalytic core, used as the basis to assign various gene identifiers (including which are then used to generate high confidence motif-based Ensembl gene IDs, HGNC gene symbols, and Entrez gene IDs) Markov chain Monte Carlo multiple alignments based upon these to every known human protein kinase. Ultimately, only eukary- motifs (4). These subdomains compromise the core structural otic protein kinases, that is, all human protein kinases except components of the protein kinase catalytic core. Intervening re- those belonging to the atypical protein kinase family, were gions between these subdomains were not aligned. considered in this study. The various gene identifiers were assigned as follows: Ensembl Mapping to Multiple Alignments and Generation of Logo Figures. A Gene ID’s were determined for each protein kinase by BLAST- nonredundant set of SNPs was generated to be mapped to the ing the reference Kinbase protein sequence against the Ensembl alignment computationally. That is, if multiple disease or com- ࿝ database (www.ensembl.org/Homo sapiens/blastview). The En- mon SNPs have been observed at a particular position within a sembl Gene ID of the top hit was assigned to the protein kinase. particular protein kinase, it is only considered once in our The Ensembl Gene ID was then used as a query in Biomart analysis.
    [Show full text]
  • Circle Applicable Codes
    IDENTIFYING INFORMATION (please print legibly) Individual’s Name: DOB: Last 4 Digits of Social Security #: CIRCLE APPLICABLE CODES ICD-10 ICD-10 ICD-9 DIAGNOSTIC ICD-9 DIAGNOSTIC PRIMARY ICD-9 CODES CODE CODE PRIMARY ICD-9 CODES CODE CODE Abetalipoproteinemia 272.5 E78.6 Hallervorden-Spatz Syndrome 333.0 G23.0 Acrocephalosyndactyly (Apert’s Syndrome) 755.55 Q87.0 Head Injury, unspecified – Age of onset: 959.01 S09.90XA Adrenaleukodystrophy 277.86 E71.529 Hemiplegia, unspecified 342.9 G81.90 Arginase Deficiency 270.6 E72.21 Holoprosencephaly 742.2 Q04.2 Agenesis of the Corpus Callosum 742.2 Q04.3 Homocystinuria 270.4 E72.11 Agenesis of Septum Pellucidum 742.2 Q04.3 Huntington’s Chorea 333.4 G10 Argyria/Pachygyria/Microgyria 742.2 Q04.3 Hurler’s Syndrome 277.5 E76.01 or 758.33 Aicardi Syndrome 333 G23.8 Hyperammonemia Syndrome 270.6 E72.4 Alcohol Embryo and Fetopathy 760.71 F84.5 I-Cell Disease 272.2 E77.0 Anencephaly 655.0 Q00.0 Idiopathic Torsion Dystonia 333.6 G24.1 Angelman Syndrome 759.89 Q93.5 Incontinentia Pigmenti 757.33 Q82.3 Asperger Syndrome 299.8 F84.5 Infantile Cerebral Palsy, unspecified 343.9 G80.9 Ataxia-Telangiectasia 334.8 G11.3 Intractable Seizure Disorder 345.1 G40.309 Autistic Disorder (Childhood Autism, Infantile 299.0 F84.0 Klinefelter’s Syndrome 758.7 Q98.4 Psychosis, Kanner’s Syndrome) Biotinidase Deficiency 277.6 D84.1 Krabbe Disease 333.0 E75.23 Canavan Disease 330.0 E75.29 Kugelberg-Welander Disease 335.11 G12.1 Carpenter Syndrome 759.89 Q87.0 Larsen’s Syndrome 755.8 Q74.8 Cerebral Palsy, unspecified 343.69 G80.9
    [Show full text]
  • 2018 Etiologies by Frequencies
    2018 Etiologies in Order of Frequency by Category Hereditary Syndromes and Disorders Count CHARGE Syndrome 958 Down syndrome (Trisomy 21 syndrome) 308 Usher I syndrome 252 Stickler syndrome 130 Dandy Walker syndrome 119 Cornelia de Lange 102 Goldenhar syndrome 98 Usher II syndrome 83 Wolf-Hirschhorn syndrome (Trisomy 4p) 68 Trisomy 13 (Trisomy 13-15, Patau syndrome) 60 Pierre-Robin syndrome 57 Moebius syndrome 55 Trisomy 18 (Edwards syndrome) 52 Norrie disease 38 Leber congenital amaurosis 35 Chromosome 18, Ring 18 31 Aicardi syndrome 29 Alstrom syndrome 27 Pfieffer syndrome 27 Treacher Collins syndrome 27 Waardenburg syndrome 27 Marshall syndrome 25 Refsum syndrome 21 Cri du chat syndrome (Chromosome 5p- synd) 16 Bardet-Biedl syndrome (Laurence Moon-Biedl) 15 Hurler syndrome (MPS I-H) 15 Crouzon syndrome (Craniofacial Dysotosis) 13 NF1 - Neurofibromatosis (von Recklinghausen dis) 13 Kniest Dysplasia 12 Turner syndrome 11 Usher III syndrome 10 Cockayne syndrome 9 Apert syndrome/Acrocephalosyndactyly, Type 1 8 Leigh Disease 8 Alport syndrome 6 Monosomy 10p 6 NF2 - Bilateral Acoustic Neurofibromatosis 6 Batten disease 5 Kearns-Sayre syndrome 5 Klippel-Feil sequence 5 Hereditary Syndromes and Disorders Count Prader-Willi 5 Sturge-Weber syndrome 5 Marfan syndrome 3 Hand-Schuller-Christian (Histiocytosis X) 2 Hunter Syndrome (MPS II) 2 Maroteaux-Lamy syndrome (MPS VI) 2 Morquio syndrome (MPS IV-B) 2 Optico-Cochleo-Dentate Degeneration 2 Smith-Lemli-Opitz (SLO) syndrome 2 Wildervanck syndrome 2 Herpes-Zoster (or Hunt) 1 Vogt-Koyanagi-Harada
    [Show full text]