United States Patent Office Patented Dec

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Dec 3,226,439 United States Patent Office Patented Dec. 28, 1965 E. 2 tion. Thereafter, the desired products are isolated by con 3,226,439 POLYHALOGENATED ALKYL MANES AND HY. Ventional means, e.g., by fractional distiliation as illus BRAZINES AND METHOD OF PRESPARATION trated in Example. Willian.J. Middleton, Willington, Del, assignor to E. H. Exampies of polyhalothioketones of Formula 2 which di Poat de Nemours and Coapany, Winnington, Del., 5 are useful in the above process are a corporation of Delaware octafluoro-2-butathione No Drawing. Fied Yan, 10, 1963, Ser. No. 250,501 S A4 Claigas. (C. 260-566) CF.--C F-CF3 This invention relates to new fluorinated, nitrogen-con O tetradecafluoro-4-heptathione taining organic compounds and to methods for their prep S aration. This application is a continuation-in-part of my co CF3-CF-C F-8-0 F-CF-CF3 assigned application Serial No. 134,815, filed August 30, hexafluoro-2-propathione 1961. S The compounds of this invention are of the formula: CF -8-0 F3 (1) 4H-heptafluoro-2-butathione S wherein R and R may be the same or different and 20 CF-C F-5-c F3 are halogen of atomic number 9-17 or haloalkyl of up to 6 carbons (i.e., 6 carbons or less) in which all halogens 1-chloroheptafluoro-3-butathione are of atomic number 9-17 (i.e., fluorine or chlorine); S and R is hydrogen, amino (-NH) or alkyl of up to 18 carbons. 25 and the like. The preferred compounds are those of the above for The above are known compounds, prepared as de mula wherein Rh and Rh each represent chlorine or scribed in U.S. 2,970,173 either by: fluorine, or perfluoroalkyl, chloroperfluoroalkyl or a-hy (1) Reaction of a secondary polyfluoroalkyl iodide of droperfluoroalkyl of up to 6 carbons; and R is hydrogen, at least three carbons in the alkyl group with a phos amino or alkyl of up to 7 carbons. 30 phorus polysulfide, e.g., P2S5 or PS3, in the liquid or The polyhaloalkylidene imines (RFH) are prepared by vapor state at elevated temperatures. reacting hydrazoic acid (HN) with a polyhalothioketone (2) Heating a polyfluoroketone with phosphorus pen of the formula: tasulfide for several hours at 200 to 300° C. under au (2) i togenous pressure. Rh-CF-C-CF-R (3) Reacting a secondary perfluoroalkanethiol with a wherein Rh and Rh are as defined above. hydrogen fluoride acceptor, e.g., sodium fluoride. As a practical matter, the reaction is carried out at a (4) Reacting sulfur with a perfluoroolefin of at least temperature between -50° C. and 0° C. followed by three carbon atoms at 400 to 650° C. Warming of the reaction mixture to a temperature be 40 (5) Thermal decomposition of selected polyfluorinated tween 20 C. and 100° C. This two-step procedure is a dithietanes at 450° to 700° C. safety measure employed to keep the exothermic reaction The compounds of Formula 1 wherein R is alkyl, i.e., under proper control when using elementary reaction the N-alkyl polyhaloalkylidene imines, are prepared by equipment not suitable for rigorous process conditions. a Second method which can also be used to prepare the Preferably, the acid and thioketone are contacted at a polyhaloalkylidene imines (R=H). This method com temperature between -20° C. and 0° C., and the reac prises two process steps which are, in part, schematically tion mixture is thereafter warmed to a temperature be represented as follows: tween 40 C. and 60° C. (A) The pressure at which the reaction is conducted is not O OE critical; and, therefore, it is most convenient to operate R-CF-C-CF-R -- NHalER --> B-CF-C-CF.-R. at ambient pressure. 50 NHR The hydrazoic acid and polyhalothioketone react in equimolar amounts, and therefore, these reactants are (B) OH preferably used in a 1:1 molar ratio. However, an ex R-CF-d-of-R - Rh-CF-C-CF3-R." - HO cess of either reactant can be employed at the expense of process efficiency. 55 NHR R Preferably the hydrazoic acid and polyhalothioketone wherein R, Rh and Rh' have the previously indicated are contacted in a mutual inert solvent. Any mutual sol meanings. Vent which is normally liquid and will not react with the In Step (A) the polyhaloketone is contacted with at reactants and products is satisfactory. Examples of suit 60 least one molar equivalent of ammonia (R=H) or pris able Solvents are chloroform, methylene chloride, di mary alkylamine (R-alkyl) at a temperature maintained methyl and diethyl ethers, tetrahydrofuran, cyclohexane, between -50 and 10° C. A normally liquid reaction etc. The amount of solvent, if any, is not critical and medium is preferably employed to assist in dissipating the it can equal or exceed the weight of reactants by many heat which is spontaneously generated when the reactants fold. are admixed. For optimum control of the reaction, it is To obtain optimum temperature control over the re preferred that all of the ammonia or primary alkylamine action, it is preferred to dissolve the hydrazoic acid in be added incrementally to a cold (-15° C. or less) solu the reaction medium, add the solution of acid to a reactor tion of polyhaloketone while the temperature of the re cooled, e.g., to -15° C. and then incrementally add all action mixture is maintained at or below -15° C. The the thioketone. After this addition is completed, the re desired product, i.e., the amino, hydroxy-substituted poly action mixture is warmed as described above until re haloalkane can be isolated, if desired, by conventional action is complete, as evidenced by cessation of gas evolu techniques. 3,226,439 3. Examples of polyhaloketones which can be employed in step (A) are perfluorodiethyl ketone, s-dichlorotetra (b) NH N-NH2 fluoroacetone, 1H,7H-dodecafluoroheptane-3-one, trichlo Deamination rotrifluoroacetone, perfluoroacetone, 1H,9H-hexadecafluo R-CF.--CF-Rs - Rh-CF-C-CF-Rh' rononane-5-one, 1, 16-dichloroperfluoropentadecane-8-one NH-NH and tetrachlorodifluoroacetone, all of which are known compounds. wherein Rh and Rh have their previously indicated mean Suitable amines (NHR) for step (A) are, e.g., methyl 1ngS. amine, butylamine, heptylamine, decylamine, dodecyla in step (a), a polyhaloalkylidene imine of this inven mine, tetradecylamine and octadecylamine, all of which O tion (R-H) is reacted with at least one molar equivalent are known compounds. of hydrazine at a temperature maintained between -50 In step (B), the intermediate from step (A), i.e., the and 10 C. For optimum control of the reaction, it is amino, hydroxy-substituted polyhaloalkane, is dehydrated preferred that all of the hydrazine be added incremental by warming a mixture of the intermediate, a dehydrating ly to a cold (-15° C. or less) solution of the polyhalo agent and an acid acceptor to at least its reflux tempera 15 alkylidene imine while the temperature of the reaction ture. The intermediate from step (A) can be employed mixture is maintained at or below -15° C. The amino, in this step either in its pure or crude form, i.e., the de hydrazino-substituted product can be isolated, if desired, hydrating agent and acid acceptor can be added directly by conventional techniques. to the porduct mixture from step (A). The desired imine In step (b), the amino, hydrazino-substituted interme can be removed from the product mixture either by per 20 diate from step (a) is de-aminated by heating it together mitting it to distill off during the dehydration step or by with a de-aminating agent to a temperature of 90 to 250 subsequently distilling the product mixture. The imine C. The de-aminating agent can be added directly to the may then be purified by fractional distillation. product mixture form step (a) or to the intermediate For optimum control of step (B), it is preferred that from that step after it has been isolated by conventional the dehydrating agent be incrementally added to the mix 25 techniques. ture of amino, hydroxy-substituted polyhaloalkane and The de-aminating agent can be any compound known acid acceptor and the resulting mixture then heated to to be useful in this capacity, e.g., the strong dehydrating reflux temperature, which will vary depending upon the agents mentioned above as being suitable for step (B) particular reactants employed and the nature of the added of the process for preparing the imines of this invention. reaction medium if any. 30 The preferred de-aminating agent is phosphorous pentox The dehydrating agent can be any compound known to ide. Although the amount of de-aminating agent is not be useful in this capacity, e.g., POCl3, POs, etc. Phos critical, best yields of polyhaloalkylhydrazone are ob phorous oxychloride (POCl3) is the preferred dehydrating tained when the molar ratio of de-aminated agent to in agent. termediate from step (a) is at least 1:1. Generally there Although it is not essential, the use of a liquid reaction 35 is no advantage in letting this ratio exceed 2:1. medium in steps (A) and (B) is preferred. The medium Although it is not essential, an inert normally liquid can either be a normally liquid tertiary amine, which func reaction medium is preferably employed in steps (a) tions both as a medium and as an acid acceptor, or it can and (b) to moderate the reaction. Suitable media are be any normally liquid medium which is inert to the re those mentioned above in connection with steps (A) and actants and products. Preferably the medium is a solvent 40 (B) of the process for preparing the polyhaloalkylidene for the reactants and products of steps (A) and (B).
Recommended publications
  • Development of Metal-Catalyzed Reactions of Allenes with Imines and the Investigation of Brθnsted Acid Catalyzed Ene Reactions
    DEVELOPMENT OF METAL-CATALYZED REACTIONS OF ALLENES WITH IMINES AND THE INVESTIGATION OF BRΘNSTED ACID CATALYZED ENE REACTIONS BY LINDSEY O. DAVIS A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Chemistry December 2009 Winston-Salem, North Carolina Approved By: Paul B. Jones, Ph.D., Advisor ____________________________ Examining Committee: Christa L. Colyer, Ph.D., chair ____________________________ S. Bruce King, Ph. D. _______________________________ Dilip K. Kondepudi, Ph.D. _______________________________ Suzanne L. Tobey, Ph.D. _______________________________ ACKNOWLEDGMENTS I must first acknowledge my family for their support throughout my education. My mother has always encouraged me to ask questions and seek answers, which has guided my inquisitive nature as a scientist. My grandparents have taught me the importance of character and my father taught me the value in hard work. I’d also like to thank my husband for moving away from Georgia, a sacrifice I greatly appreciate. Also, his cheerful disposition helped me stay relatively positive, especially when I had bad research days. My friends also played a very important role in keeping me positive during my time at Wake. Particularly my roommates put up with me more than most. I’d like to thank Lauren Eiter for her sense of humor, Tara Weaver for her taste in books and movies, and Jenna DuMond, for her encouragement and loyalty. Also I’ve made lifetime friends with Meredith and Kavita, and even though they left me at Wake, they were always willing to offer their support.
    [Show full text]
  • Download (4MB)
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] SYNTHETIC AND BIOSYNTHETIC STUDIES ON SULPHUR-CONTAINING HETEROCYCLES A Thesis presented in part fulfilment of the requirement for the Degree of Doctor of Philosophy by Robert Andrew Lewis Department of Chemistry University of Glasgow September 1989 © ROBERT LEWIS 1989 ProQuest Number: 11003345 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11003345 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC.
    [Show full text]
  • ||||||||IHIII US005 130345A United States Patent (19) 11) Patent Number: 5,130,345 Li Et Al
    ||||||||IHIII US005 130345A United States Patent (19) 11) Patent Number: 5,130,345 Li et al. 45) Date of Patent: Jul. 14, 1992 (54) METHOD OF PREPARING FOAM USINGA 4,529,744 7/1985 Wood .................................. 521/1.31 PARTIALLY FLUORINATED ALKANE 4,624,970 1 1/1986 Dwyer et al. ....................... 521/13 HAVING ATERTARY STRUCTURE ASA OTHER PUBLICATIONS BLOWENGAGENT "The Perfluoro-ta-butyl Anion in the Synthesis of 75) Inventors: Chien C. Li, East Aurora, NY; Organofluorine Compounds"-Dyatkin et al. pard Sukornick, Cooper City, "How to Fix the CFC Mix', Chemicalweek/Oct. 18, 1989. 73) Assignee: AlliedSignal Inc. Morris Township, Pina Examiner-John Kight, III Morris County, N.J. Assistant Examiner-John M. Cooney, Jr. (21) Appl. No.: 546,173 Attorney, Agent, or Firm-Melanie L. Brown; Jay P. (22 Filed: Jun. 29, 1990 Friedenson CT 51 int.C.' ........................ co8J 9/14; cosGC08G 18/00,18/06 A method for ABSTRApreparing polyurethane and 52 U.S.C. ...................................... 521/131; 521/98; polyisocyanurate foams which comprises reacting and 521/155; 52 1/163.521/170 foaming a mixture of ingredients which will react to (58) Field of Search ................. 521/131,98, 155, 163, form the polyurethane or polyisocyanurate foams in the 52/170 presence of a blowing agent comprising a partially fluo 5 C rinated alkane having four or five carbon atoms and a (56) References Cited tertiary structure. The method is advantageous because U.S. PATENT DOCUMENTS partially fluorinated alkanes having a tertiary structure 3,183,92 5/1965 Bauer .................................. sy have zero ozone depletion potentials, are nonflamma 4,076,644 2/1978 Burnt et al.
    [Show full text]
  • Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] CYCLOADDITION REACTIONS OF THIOXOACETATE ESTERS WITH UNSYMMETRICAL DIENES A thesis presented in part fulfilment of the requirements for the degree of M.Sc. by BRAHIM KOUISSA Department of Chemistry University of Glasgow November 1987 ProQuest Number: 10997899 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10997899 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.
    [Show full text]
  • Fluorine in Organic Chemistry Final Proof 7.8.2004 10:34Am Page I
    Chambers: Fluorine in Organic Chemistry Final Proof 7.8.2004 10:34am page i Fluorine in Organic Chemistry Fluorine in Organic Chemistry Richard D. Chambers © 2004 Blackwell Publishing Ltd. ISBN: 978-1-405-10787-7 Chambers: Fluorine in Organic Chemistry Final Proof 7.8.2004 10:34am page iii Fluorine in Organic Chemistry Richard D. Chambers FRS Emeritus Professor of Chemistry University of Durham, UK Chambers: Fluorine in Organic Chemistry Final Proof 7.8.2004 10:34am page iv ß 2004 by Blackwell Publishing Ltd Editorial offices: Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK Tel: þ44 (0)1865 776868 Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton, Victoria 3053, Australia Tel: þ61 (0)3 8359 1011 ISBN 1-4051-0787-1 Published in the USA and Canada (only) by CRC Press LLC, 2000 Corporate Blvd., N.W., Boca Raton, FL 33431, USA Orders from the USA and Canada (only) to CRC Press LLC USA and Canada only: ISBN 0-8493-1790-8 The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated.
    [Show full text]
  • Recent Synthesis of Thietanes
    Recent synthesis of thietanes Jiaxi Xu Review Open Access Address: Beilstein J. Org. Chem. 2020, 16, 1357–1410. State Key Laboratory of Chemical Resource Engineering, Department doi:10.3762/bjoc.16.116 of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China Received: 29 March 2020 Accepted: 26 May 2020 Email: Published: 22 June 2020 Jiaxi Xu - [email protected] Associate Editor: B. Nay Keywords: © 2020 Xu; licensee Beilstein-Institut. cycloaddition; cyclization; ring contraction; ring expansion; thietane; License and terms: see end of document. thiotherification Abstract Thietanes are important aliphatic four-membered thiaheterocycles that are found in the pharmaceutical core and structural motifs of some biological compounds. They are also useful intermediates in organic synthesis. Various synthetic methods of thietanes have been developed, including inter- and intramolecular nucleophilic thioetherifications, photochemical [2 + 2] cycloadditions, ring expansions and contractions, nucleophilic cyclizations, and some miscellaneous methods. The recently developed methods provide some new strategies for the efficient preparation of thietanes and their derivatives. This review focuses on the synthetic methods to construct thietane backbones developed during 1966 to 2019. Review 1. Introduction Thietanes are a class of important aliphatic four-membered thia- acyclic and heterocyclic compounds [10,11]. Several synthetic heterocycles. Some simple alkyl and dialkyl thietanes
    [Show full text]
  • Organic Seminar Abstracts
    UNIVERSITY OF IILINOIS LIBRARY AT U ^.NA-CHAMPAIGN Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemi1979821univ 1 SEMINAR TOPICS X- I Semester 1979-80 — ^ Generation and Synthetic Utility of Carbanions Stabilized by Divalent Sulfur Peter Becker The Design, Synthesis, and Biology of Intercalating Agents David W. Robertson r HERTZBERG - NEW METHOD, INC. EAST VANDALIA ROAD, JACKSONVILLE, ILL. 62650 J - Q_ , TITUE NO. ACCOUNT NO. LOT AND TICKET NO. ...13 B ]• 22 : NRTK« 31 5>79~82*PT Q* 547*IG»L< 33 CLOTH COLOR CHARGING INFORMATION .... 36 STUBBING FRONT COVER HAND SEW NO TR IM THRU SEW PAGES LAMINATED THRU SEW ON TAPE EXTRA THICKNESS ... .46 HAND ADHESIVE MAP POCKET PAPER LENGTHWISE MAP POCKET CLOTH SPECIAL WORK AND PREP. FOREIGN TITLE SPECIAL WORK LINES OF LETTERING 56 Phosphorus uompouiiub Stephen D. Harper Vanadium- and Molybdenum-Catalyzed of Olefins with Epoxidations 59 Alkyl Hydroperoxides - John R. Hurst Characterization of Certain Detection and 68 Carbon Diradicals Via ESR and CIDNP... G. H. Slocum 76 Enzymic Catalysis in Organic Synthesis Venkatesalu Bakthavachalam in the Reactions of Regioselectivity 86 Hetero-Substituted Allylic Carbanions, Dale Kempf SEMINAR TOPICS I Semester 1979-80 - T* Generation and Synthetic Utility of Carbanions Stabilized by Divalent Sulfur 1 Peter Becker The Design, Synthesis, and Biology of Intercalating Agents 3 David W. Robertson Modification of Olefins with Organo- Selenium Reagents 13 Larry D. Boardman Synthetic Methods for the Preparation of Sterically Hindered Olefins 22 Ronald S. Michalak Mechanistic Considerations in 1,3-Dipolar Cycloadditions 31 Clark Cummins Applications of Lasers in Organic Chemistry 33 Rick Gdanski Magnetic Field Effects on Chemical Reactions in Solution 36 Paul Gelburd Synthetic Approaches to Biotin 46 Jack Muskopf Stable Hexacoordinate Organo- Phosphorus Compounds 56 Stephen D.
    [Show full text]
  • Organic Seminar Abstracts
    HOBWwBfiwBflEt 1 '..., ;;;••.:•• |nraffl{ -;:!; ffiffl < In ffi X I B RARY OF THE U N IVERSITY Of ILLINOIS 8. 547 UGs 965-66 pt.l Return this book on or before the Latest Date stamped below. Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University. University of Illinois Library WftrH 1917 L161— O-1096 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemi1965661univ ORGANIC SEMINAR ABSTRACTS I965-66 Semester I Department of Chemistry and Chemical Engineering University of Illinois SEMINAR TOPICS I Semester I965-I966 Preparation and Reactions of Perfluorothiocarbonyl Compounds Lennon H. McKendry 1 Organosilylalkali -Metal Compounds Marvin Coon. 10 Heterocyclic Aromatic Sulfur Compounds Adriane Gurak 17 Recent Advances in Polynucleotide Synthesis D. T. Browne 26 Olefin Induced Initiation of Free Radical Reactions Buren Ree 35 The Photochemical Lability of Aryl and Vinyl Esters . Robert J. Schacht : . 4U Optically Active Sulfoxides Ronald J. Trancik ......... 52 The Mechanism of Symmetrization of Organomercuric Halides Z. M. Holubec . 60 Cycloalkyne Intermediates Manley R. Johnston 69 Tetracyanoethylene Oxide and Related Epoxides Hayden Lipp 78 Hexaalkylbenzenes Mildred McDaniel 86 Reactions and Synthesis With Noble Metals Robert A. Gardiner 9k An Extended Hlickel Theory— Some Applications in the Field of Organic Chemistry Robert E. Cunningham, Jr 103 Study of Free Radicals by Flow Systems and ESR Dennis Chamot 112 Cyclodecapentaene s Kenneth Zahn 121 The Peroxide Oxgenation of Aromatic Compounds by Ionic Pathways Bill Foglesong 129 Structure Correlations by Gas Chromatography (The Kovats Retention Index System) Roy Swaringen 138 -2- Phosphoric Acid Ester Synthesis Carl L.
    [Show full text]
  • NBO 2016 – 2008 References Compiled by Ariel Andrea on 8/31/2018
    NBO 2016 – 2008 references Compiled by Ariel Andrea on 8/31/2018 Aal, S. A. Reactivity of boron- and nitrogen-doped carbon nanotubes functionalized by (Pt, Eu) atoms toward O-2 and CO: A density functional study International Journal of Modern Physics C, (27) 2016. 10.1142/s0129183116500753 Abbat, S.; Bharatam, P. V. Electronic structure and conformational analysis of P218: An antimalarial drug candidate International Journal of Quantum Chemistry, (116): 1362-1369. 2016. 10.1002/qua.25189 Abbenseth, J.; Finger, M.; Wurtele, C.; Kasanmascheff, M.; Schneider, S. Coupling of terminal iridium nitrido complexes Inorganic Chemistry Frontiers, (3): 469-477. 2016. 10.1039/c5qi00267b Abboud, J. L. M.; Alkorta, I.; Davalos, J. Z.; Koppel, I. A.; Koppel, I.; Lenoir, D.; Martinez, S.; Mishima, M. The Thermodynamic Stability of Adamantylideneadamantane and Its Proton- and Electron-Exchanges. Comparison with Simple Alkenes Bulletin of the Chemical Society of Japan, (89): 762-769. 2016. 10.1246/bcsj.20160026 Abdalrazaq, S. M.; Cabir, B.; Gumus, S.; Agirtas, M. S. Synthesis of metallophthalocyanines with four oxy-2,2-diphenylacetic acid substituents and their structural and electronic properties Heterocyclic Communications, (22): 275-280. 2016. 10.1515/hc-2016-0120 Abdelmoulahi, H.; Ghalla, H.; Nasr, S.; Bahri, M.; Bellissent-Funel, M. C. Hydrogen-bond network in liquid ethylene glycol as studied by neutron scattering and DFT calculations Journal of Molecular Liquids, (220): 527-539. 2016. 10.1016/j.molliq.2016.04.111 Abdelmoulahi, H.; Ghalla, H.; Nasr, S.; Darpentigny, J.; Bellissent-Funel, M. C. Intermolecular associations in an equimolar formamide-water solution based on neutron scattering and DFT calculations Journal of Chemical Physics, (145) 2016.
    [Show full text]
  • Organo-Fluorine Chemistry II
    Organo-fluorine chemistry II Edited by David O'Hagan Generated on 04 October 2021, 05:56 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Organo-fluorine chemistry II David O'Hagan Editorial Open Access Address: Beilstein Journal of Organic Chemistry 2010, 6, No. 36. School of Chemistry, University of St Andrews, Fife, KY16 9ST, doi:10.3762/bjoc.6.36 United Kingdom Received: 12 April 2010 Email: Accepted: 12 April 2010 David O'Hagan - [email protected] Published: 20 April 2010 Guest Editor: D. O'Hagan © 2010 O'Hagan; licensee Beilstein-Institut. License and terms: see end of document. It is a pleasure to be able to introduce this second Thematic I am delighted that all of the authors have agreed to submit such Series on ‘organo-fluorine chemistry’ within the Beilstein high quality contributions to render this Thematic Series Journal of Organic Chemistry. The series now embeds the substantial and make it such a success. subject firmly as a special interest area of the journal.
    [Show full text]
  • Methods for Hexafluoroacetone Production
    Journal content Methods for hexafluoroacetone production (1,1,1,3,3,3-hexafluoropropanone-2) T.E.Fiodorova Introduction For the first time hexafluoroacetone (HFA) was produced in 1941 by N.Fukuhara and L.A.Bigelow by direct fluorination of acetone. HFA is an extremely toxic reactive compound with the following main physical characteristics: Molecular mass 166.03 (1) Boiling point (760 mm of mercury column) 27.5oC Melting point -125.45 -129oC (1) Nonflammable HFA is an active electrophile and reacts with alkenes, ketenes, aromatic compounds, compounds containing active hydrogen atom etc. HFA does not form homopolymers but is readily copolymerized with various monomers to form chemically and heat resistant polymers. A field of HFA application is wide enough: production of solvents ( hexafluoroiso- propanol, for example), pharmaceuticals and agrochemicals, anticorrosive coatings, emulsifiers, dyes etc. 1.HFA production from acetone and its derivatives 1.1. HFA production by direct fluorination of acetone In 1941 N. Fukuhara and L.A.Bigelow reported about a process of gas-phase fluorination of acetone by fluorine-nitrogen mixture at different ratios of F2:CH3COCH3:N2. According to the authors, it was easy to fluorinate acetone in a reactor packed with copper gauze. The reaction products were separated and identified. The main reaction products were: HFA, monofluoroacetone, trifluoroacetyl fluoride, oxalyl fluoride, carbonyl fluoride and tetrafluoromethane. The fraction (b.p. -35- -16oC) containing HFA was separated in amount of 5-10% of the whole liquid volume (4). The reaction of direct fluorination is dangerous and difficult to control, therefore this method was not spread widely but it is still of interest.
    [Show full text]
  • Generation and Reactions of Thiocarbonyl S-(2,2,2-Trifluoroethanides)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Generation and reactions of thiocarbonyl S-(2,2,2-trifluoroethanides). Synthesis of trifluoromethylated 1,3-dithiolanes, thiiranes and alkenes Kowalski, Marcin K ; Obijalska, Emilia ; Mlostoń, Grzegorz ; Heimgartner, Heinz Abstract: The ‘in situ’ generated 1,1,1-trifluorodiazoethane reacts with thioketones as C=S dipolarophiles in a two-phase system (DCM/H2O) at room temperature to yield trifluoromethylated 2,5-dihydro-1,3,4- thiadiazoles. Whereas stable crystalline products were obtained with cyclobutanethiones, the reaction with aromatic and heteroaromatic thioketones occured with spontaneous elimination of nitrogen. The for- mation of sterically crowded 4,4,5,5-tetrahetaryl-1,3-dithiolanes indicates that thiocarbonyl S-methanides are formed immediately and entered formal [3+2]-cycloaddition as diradical species with the starting thioketone. A protocol for the preparation of 3,3,3-trifluoropropene derivatives starting from correspond- ing thioketones and 1,1,1-trifluorodiazoethane is also presented. DOI: https://doi.org/10.1016/j.jfluchem.2017.06.009 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-138054 Journal Article Accepted Version The following work is licensed under a Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. Originally published at: Kowalski, Marcin K; Obijalska, Emilia; Mlostoń, Grzegorz; Heimgartner, Heinz (2017). Generation and reactions of thiocarbonyl S-(2,2,2-trifluoroethanides). Synthesis of trifluoromethylated 1,3-dithiolanes, thiiranes and alkenes. Journal of Fluorine Chemistry, 200:102-108.
    [Show full text]