Mathematical Statistics, the Authors & Onker Describe Key Concepts from Statistics and Give a Mathematical Basis for Important Statistical Methods

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Statistics, the Authors & Onker Describe Key Concepts from Statistics and Give a Mathematical Basis for Important Statistical Methods B Statistics is the science that focuses on drawing conclusions from ijma data, by modeling and analyzing the data using probabilistic , J models. In An Introduction to Mathematical Statistics, the authors onker describe key concepts from statistics and give a mathematical basis for important statistical methods. Much attention is paid to & the sound application of those methods to data. V an An Introduction to The three main topics in statistics are estimators, tests, and der confidence regions. The authors illustrate these in many examples, V aart with a separate chapter on regression models, including linear Mathematical regression and analysis of variance. They also discuss the optimality of estimators and tests, as well as the selection of the best-fitting Statistics Mathematical to An Introduction model. Each chapter ends with a case study in which the described statistical methods are applied. Statistics This book assumes a basic knowledge of probability theory, calculus, and linear algebra. Fetsje Bijma worked as an assistant professor of mathematics at the Vrije Universiteit Amsterdam for 10 years. She studied mathematics at the University of Groningen and received a Ph.D. at the Faculty of Medicine of the Vrije Universiteit Amsterdam. She now works in industry. Fetsje Bijma Marianne Jonker is a biostatistician at the Radboud University Medical Center in Nijmegen. She studied mathematics and received her Ph.D. at the Marianne Jonker Vrije Universiteit Amsterdam, where she worked as an assistant professor Aad van der Vaart in mathematics for some time. She has done work as a biostatistician for the Leiden University Medical Center in Leiden and the VU University Medical Center in Amsterdam. Aad van der Vaart is a professor of stochastics at Leiden University and member of the Royal Netherlands Academy of Arts and Sciences. He studied mathematics and psychology at Leiden University and received a Ph.D. in mathematics at the same university. He held positions at universities in the United States and in Paris (France) and at the Vrije Universiteit Amsterdam. 9789462985100 Bijma - Mathematical Statistics - def - 02-05-2017.indd 1 2-5-2017 15:30:03 An Introduction to Mathematical Statistics An Introduction to Mathematical Statistics Fetsje Bijma, Marianne Jonker, Aad van der Vaart Amsterdam University Press Original publication: Fetsje Bijma, Marianne Jonker, Aad van der Vaart, Inleiding in de statistiek. Epsilon Uitgaven, 2016 [ISBN 978-90-5041-135-6] © Fetsje Bijma, Marianne Jonker, Aad van der Vaart, 2016 Translated by: Reinie Erné Cover design: V3-Services, Baarn Amsterdam University Press English-language titles are distributed in the US and Canada by the University of Chicago Press. ISBN 978 94 6298 510 0 e-ISBN 978 90 4853 611 5 (pdf) NUR 916 DOI 10.5117/9789462985100 © Fetsje Bijma, Marianne Jonker, Aad van der Vaart / Amsterdam University Press B.V., Amsterdam 2017 All rights reserved. Without limiting the rights under copyright reserved above, no part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the written permission of both the copyright owner and the author of the book. Every effort has been made to obtain permission to use all copyrighted illustrations reproduced in this book. Nonetheless, whosoever believes to have rights to this material is advised to contact the publisher. PREFACE This book gives an introduction into mathematical statistics. It was written for bachelor students in (business) mathematics, econometrics, or any other subject with a solid mathematical component. We assume that the student already has solid knowledge of probability theory to the extent of a semester course at the same level. In Chapter 1, we give the definition and several examples of a statistical model, the foundation of every statistical procedure. Some techniques from descriptive statistics that can assist in setting up and validating statistical models are discussed in Chapter 2. The following chapters discuss the three main topics in mathematical statistics: estimating, testing, and constructing confidence regions. These subjects are discussed in Chapters 3, 4, and 5, respectively. Next, Chapter 6 provides deeper theoretical insight, in particular into the question under what circumstances and in what sense certain statistical models are mathematically optimal. In Chapter 7, we describe several regression models that are commonly used in practice. The theory from the previous chapters is applied to estimate and test unknown model parameters and give confidence regions for them. Finally, in Chapter 8, we discuss model selection. In that chapter, various criteria are presented that can be used to find the best-fitting model from a collection of (regression) models. Sections and examples markedwitha*aremoredifficult and do not belong to the basic subject matter of mathematical statistics. Every chapter concludes with a summary. In Appendix A, we recall elements from probability theory that are relevant for understanding the subject matter of this book. In Appendix B, we discuss properties of the multivariate normal distribution, which is used in several sections. Appendix C contains tables with values of distribution and quantile functions of several distributions to which we refer in the text. These are meant to be used at home or during problem sessions. In “real life,” these tables are no longer used: the computer is faster, more accurate, and easier to use. The statistical package R, for example, contains standard functions for the distribution function, the density function, and the quantile function of all standard distributions. The mathematical style of this book is more informal than that of many mathematics books. Theorems and lemmas are not always proved or may be formulated in an informal manner. The reason is that a pure mathematical treatment is only possible using measure theory, of which we do not assume any knowledge. On the other hand, the relevance and motivation of the theorems are also clear without going into all the details. Each chapter concludes with a case study. It often contains a statistical problem that is answered as well as possible based on the collected data, using the statistical techniques and methods available at that point in the book. The R-code and data of these applications, as well as the data of several case studies described in the book, are available and can be downloaded from the book’s webpage at http://www.aup.nl. Though this book includes examples, practice is indispensable to gain insight into the subject matter. The exercises at the end of each chapter include both theoretical and more practically oriented problems. Appendix D contains short answers to most v exercises. Solutions that consist of a proof are not included. FURTHER READING The book has taken form over a period of 20 years. It was originally written in Dutch and used yearly for the course “Algemene Statistiek” (General Statistics) for (business) mathematics and econometrics students given by the mathematics Reference [1] is an introduction to many aspects of statistics, somewhat comparable department of VU University Amsterdam. The various lecturers of the course to An Introduction to Mathematical Statistics. References [3] and [4] are standard contributed to the book to a greater or lesser extent. One of them is Bas Kleijn. We books that focus more on mathematical theory, and estimation and tests, respec- want to thank him for his contribution to the appendix on probability theory. More than tively. Reference [6] describes the use of asymptotic methods in statistics, on a 2000 students have studied the book. Their questions on the subject and advice on the higher mathematical level, and gives several proofs left out in An Introduction to presentation have helped give the book its present form. They have our thanks. The Mathematical Statistics. Reference [5] is a good starting point for whoever wants to starting point of the book was the syllabus “Algemene Statistiek” (General Statistics) delve further into the Bayesian thought process, and reference [7] provides the same of J. Oosterhoff, professor of mathematical statistics at VU University Amsterdam for nonparametric methods, which are mentioned in An Introduction to Mathematical until the mid-’90s. We dedicate this book to him. Statistics but perhaps less prominently than in current practice. Reference [2] In 2013, the first edition of this book was published in Dutch, and three elaborates on the relevance of modeling using regression models, for example to draw years later, in 2016, the second Dutch edition came out. This second edition has causal conclusions in economic or social sciences. been translated into English, with some minor changes. We thank Reinie Ern´efor translation. [1] Davison, A.C., (2003). Statistical models. Cambridge University Press. Amsterdam and Leiden, March 2017 [2] Freedman, D., (2005). Statistical models: theory and applications. Cambridge University Press. [3] Lehmann, E.L. and Casella, G., (1998). Theory of point estimation. Springer. [4] Lehmann, E.L. and Romano, J.P., (2005). Testing statistical hypotheses. Springer. [5] Robert, C.P., (2001). The Bayesian choice. Springer-Verlag. [6] van der Vaart, A.W., (1998). Asymptotic statistics. Cambridge University Press. [7] Wasserman, L., (2005). All of nonparametric statistics. Springer. vi vii exercises. Solutions that consist of a proof
Recommended publications
  • Mathematical Statistics
    Mathematical Statistics MAS 713 Chapter 1.2 Previous subchapter 1 What is statistics ? 2 The statistical process 3 Population and samples 4 Random sampling Questions? Mathematical Statistics (MAS713) Ariel Neufeld 2 / 70 This subchapter Descriptive Statistics 1.2.1 Introduction 1.2.2 Types of variables 1.2.3 Graphical representations 1.2.4 Descriptive measures Mathematical Statistics (MAS713) Ariel Neufeld 3 / 70 1.2 Descriptive Statistics 1.2.1 Introduction Introduction As we said, statistics is the art of learning from data However, statistical data, obtained from surveys, experiments, or any series of measurements, are often so numerous that they are virtually useless unless they are condensed ; data should be presented in ways that facilitate their interpretation and subsequent analysis Naturally enough, the aspect of statistics which deals with organising, describing and summarising data is called descriptive statistics Mathematical Statistics (MAS713) Ariel Neufeld 4 / 70 1.2 Descriptive Statistics 1.2.2 Types of variables Types of variables Mathematical Statistics (MAS713) Ariel Neufeld 5 / 70 1.2 Descriptive Statistics 1.2.2 Types of variables Types of variables The range of available descriptive tools for a given data set depends on the type of the considered variable There are essentially two types of variables : 1 categorical (or qualitative) variables : take a value that is one of several possible categories (no numerical meaning) Ex. : gender, hair color, field of study, political affiliation, status, ... 2 numerical (or quantitative)
    [Show full text]
  • Projections of Education Statistics to 2022 Forty-First Edition
    Projections of Education Statistics to 2022 Forty-first Edition 20192019 20212021 20182018 20202020 20222022 NCES 2014-051 U.S. DEPARTMENT OF EDUCATION Projections of Education Statistics to 2022 Forty-first Edition FEBRUARY 2014 William J. Hussar National Center for Education Statistics Tabitha M. Bailey IHS Global Insight NCES 2014-051 U.S. DEPARTMENT OF EDUCATION U.S. Department of Education Arne Duncan Secretary Institute of Education Sciences John Q. Easton Director National Center for Education Statistics John Q. Easton Acting Commissioner The National Center for Education Statistics (NCES) is the primary federal entity for collecting, analyzing, and reporting data related to education in the United States and other nations. It fulfills a congressional mandate to collect, collate, analyze, and report full and complete statistics on the condition of education in the United States; conduct and publish reports and specialized analyses of the meaning and significance of such statistics; assist state and local education agencies in improving their statistical systems; and review and report on education activities in foreign countries. NCES activities are designed to address high-priority education data needs; provide consistent, reliable, complete, and accurate indicators of education status and trends; and report timely, useful, and high-quality data to the U.S. Department of Education, the Congress, the states, other education policymakers, practitioners, data users, and the general public. Unless specifically noted, all information contained herein is in the public domain. We strive to make our products available in a variety of formats and in language that is appropriate to a variety of audiences. You, as our customer, are the best judge of our success in communicating information effectively.
    [Show full text]
  • Use of Statistical Tables
    TUTORIAL | SCOPE USE OF STATISTICAL TABLES Lucy Radford, Jenny V Freeman and Stephen J Walters introduce three important statistical distributions: the standard Normal, t and Chi-squared distributions PREVIOUS TUTORIALS HAVE LOOKED at hypothesis testing1 and basic statistical tests.2–4 As part of the process of statistical hypothesis testing, a test statistic is calculated and compared to a hypothesised critical value and this is used to obtain a P- value. This P-value is then used to decide whether the study results are statistically significant or not. It will explain how statistical tables are used to link test statistics to P-values. This tutorial introduces tables for three important statistical distributions (the TABLE 1. Extract from two-tailed standard Normal, t and Chi-squared standard Normal table. Values distributions) and explains how to use tabulated are P-values corresponding them with the help of some simple to particular cut-offs and are for z examples. values calculated to two decimal places. STANDARD NORMAL DISTRIBUTION TABLE 1 The Normal distribution is widely used in statistics and has been discussed in z 0.00 0.01 0.02 0.03 0.050.04 0.05 0.06 0.07 0.08 0.09 detail previously.5 As the mean of a Normally distributed variable can take 0.00 1.0000 0.9920 0.9840 0.9761 0.9681 0.9601 0.9522 0.9442 0.9362 0.9283 any value (−∞ to ∞) and the standard 0.10 0.9203 0.9124 0.9045 0.8966 0.8887 0.8808 0.8729 0.8650 0.8572 0.8493 deviation any positive value (0 to ∞), 0.20 0.8415 0.8337 0.8259 0.8181 0.8103 0.8206 0.7949 0.7872 0.7795 0.7718 there are an infinite number of possible 0.30 0.7642 0.7566 0.7490 0.7414 0.7339 0.7263 0.7188 0.7114 0.7039 0.6965 Normal distributions.
    [Show full text]
  • This History of Modern Mathematical Statistics Retraces Their Development
    BOOK REVIEWS GORROOCHURN Prakash, 2016, Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times, Hoboken, NJ, John Wiley & Sons, Inc., 754 p. This history of modern mathematical statistics retraces their development from the “Laplacean revolution,” as the author so rightly calls it (though the beginnings are to be found in Bayes’ 1763 essay(1)), through the mid-twentieth century and Fisher’s major contribution. Up to the nineteenth century the book covers the same ground as Stigler’s history of statistics(2), though with notable differences (see infra). It then discusses developments through the first half of the twentieth century: Fisher’s synthesis but also the renewal of Bayesian methods, which implied a return to Laplace. Part I offers an in-depth, chronological account of Laplace’s approach to probability, with all the mathematical detail and deductions he drew from it. It begins with his first innovative articles and concludes with his philosophical synthesis showing that all fields of human knowledge are connected to the theory of probabilities. Here Gorrouchurn raises a problem that Stigler does not, that of induction (pp. 102-113), a notion that gives us a better understanding of probability according to Laplace. The term induction has two meanings, the first put forward by Bacon(3) in 1620, the second by Hume(4) in 1748. Gorroochurn discusses only the second. For Bacon, induction meant discovering the principles of a system by studying its properties through observation and experimentation. For Hume, induction was mere enumeration and could not lead to certainty. Laplace followed Bacon: “The surest method which can guide us in the search for truth, consists in rising by induction from phenomena to laws and from laws to forces”(5).
    [Show full text]
  • On the Meaning and Use of Kurtosis
    Psychological Methods Copyright 1997 by the American Psychological Association, Inc. 1997, Vol. 2, No. 3,292-307 1082-989X/97/$3.00 On the Meaning and Use of Kurtosis Lawrence T. DeCarlo Fordham University For symmetric unimodal distributions, positive kurtosis indicates heavy tails and peakedness relative to the normal distribution, whereas negative kurtosis indicates light tails and flatness. Many textbooks, however, describe or illustrate kurtosis incompletely or incorrectly. In this article, kurtosis is illustrated with well-known distributions, and aspects of its interpretation and misinterpretation are discussed. The role of kurtosis in testing univariate and multivariate normality; as a measure of departures from normality; in issues of robustness, outliers, and bimodality; in generalized tests and estimators, as well as limitations of and alternatives to the kurtosis measure [32, are discussed. It is typically noted in introductory statistics standard deviation. The normal distribution has a kur- courses that distributions can be characterized in tosis of 3, and 132 - 3 is often used so that the refer- terms of central tendency, variability, and shape. With ence normal distribution has a kurtosis of zero (132 - respect to shape, virtually every textbook defines and 3 is sometimes denoted as Y2)- A sample counterpart illustrates skewness. On the other hand, another as- to 132 can be obtained by replacing the population pect of shape, which is kurtosis, is either not discussed moments with the sample moments, which gives or, worse yet, is often described or illustrated incor- rectly. Kurtosis is also frequently not reported in re- ~(X i -- S)4/n search articles, in spite of the fact that virtually every b2 (•(X i - ~')2/n)2' statistical package provides a measure of kurtosis.
    [Show full text]
  • The Probability Lifesaver: Order Statistics and the Median Theorem
    The Probability Lifesaver: Order Statistics and the Median Theorem Steven J. Miller December 30, 2015 Contents 1 Order Statistics and the Median Theorem 3 1.1 Definition of the Median 5 1.2 Order Statistics 10 1.3 Examples of Order Statistics 15 1.4 TheSampleDistributionoftheMedian 17 1.5 TechnicalboundsforproofofMedianTheorem 20 1.6 TheMedianofNormalRandomVariables 22 2 • Greetings again! In this supplemental chapter we develop the theory of order statistics in order to prove The Median Theorem. This is a beautiful result in its own, but also extremely important as a substitute for the Central Limit Theorem, and allows us to say non- trivial things when the CLT is unavailable. Chapter 1 Order Statistics and the Median Theorem The Central Limit Theorem is one of the gems of probability. It’s easy to use and its hypotheses are satisfied in a wealth of problems. Many courses build towards a proof of this beautiful and powerful result, as it truly is ‘central’ to the entire subject. Not to detract from the majesty of this wonderful result, however, what happens in those instances where it’s unavailable? For example, one of the key assumptions that must be met is that our random variables need to have finite higher moments, or at the very least a finite variance. What if we were to consider sums of Cauchy random variables? Is there anything we can say? This is not just a question of theoretical interest, of mathematicians generalizing for the sake of generalization. The following example from economics highlights why this chapter is more than just of theoretical interest.
    [Show full text]
  • Applied Time Series Analysis
    Applied Time Series Analysis SS 2018 February 12, 2018 Dr. Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences CH-8401 Winterthur Table of Contents 1 INTRODUCTION 1 1.1 PURPOSE 1 1.2 EXAMPLES 2 1.3 GOALS IN TIME SERIES ANALYSIS 8 2 MATHEMATICAL CONCEPTS 11 2.1 DEFINITION OF A TIME SERIES 11 2.2 STATIONARITY 11 2.3 TESTING STATIONARITY 13 3 TIME SERIES IN R 15 3.1 TIME SERIES CLASSES 15 3.2 DATES AND TIMES IN R 17 3.3 DATA IMPORT 21 4 DESCRIPTIVE ANALYSIS 23 4.1 VISUALIZATION 23 4.2 TRANSFORMATIONS 26 4.3 DECOMPOSITION 29 4.4 AUTOCORRELATION 50 4.5 PARTIAL AUTOCORRELATION 66 5 STATIONARY TIME SERIES MODELS 69 5.1 WHITE NOISE 69 5.2 ESTIMATING THE CONDITIONAL MEAN 70 5.3 AUTOREGRESSIVE MODELS 71 5.4 MOVING AVERAGE MODELS 85 5.5 ARMA(P,Q) MODELS 93 6 SARIMA AND GARCH MODELS 99 6.1 ARIMA MODELS 99 6.2 SARIMA MODELS 105 6.3 ARCH/GARCH MODELS 109 7 TIME SERIES REGRESSION 113 7.1 WHAT IS THE PROBLEM? 113 7.2 FINDING CORRELATED ERRORS 117 7.3 COCHRANE‐ORCUTT METHOD 124 7.4 GENERALIZED LEAST SQUARES 125 7.5 MISSING PREDICTOR VARIABLES 131 8 FORECASTING 137 8.1 STATIONARY TIME SERIES 138 8.2 SERIES WITH TREND AND SEASON 145 8.3 EXPONENTIAL SMOOTHING 152 9 MULTIVARIATE TIME SERIES ANALYSIS 161 9.1 PRACTICAL EXAMPLE 161 9.2 CROSS CORRELATION 165 9.3 PREWHITENING 168 9.4 TRANSFER FUNCTION MODELS 170 10 SPECTRAL ANALYSIS 175 10.1 DECOMPOSING IN THE FREQUENCY DOMAIN 175 10.2 THE SPECTRUM 179 10.3 REAL WORLD EXAMPLE 186 11 STATE SPACE MODELS 187 11.1 STATE SPACE FORMULATION 187 11.2 AR PROCESSES WITH MEASUREMENT NOISE 188 11.3 DYNAMIC LINEAR MODELS 191 ATSA 1 Introduction 1 Introduction 1.1 Purpose Time series data, i.e.
    [Show full text]
  • Mathematical Statistics the Sample Distribution of the Median
    Course Notes for Math 162: Mathematical Statistics The Sample Distribution of the Median Adam Merberg and Steven J. Miller February 15, 2008 Abstract We begin by introducing the concept of order statistics and ¯nding the density of the rth order statistic of a sample. We then consider the special case of the density of the median and provide some examples. We conclude with some appendices that describe some of the techniques and background used. Contents 1 Order Statistics 1 2 The Sample Distribution of the Median 2 3 Examples and Exercises 4 A The Multinomial Distribution 5 B Big-Oh Notation 6 C Proof That With High Probability jX~ ¡ ¹~j is Small 6 D Stirling's Approximation Formula for n! 7 E Review of the exponential function 7 1 Order Statistics Suppose that the random variables X1;X2;:::;Xn constitute a sample of size n from an in¯nite population with continuous density. Often it will be useful to reorder these random variables from smallest to largest. In reordering the variables, we will also rename them so that Y1 is a random variable whose value is the smallest of the Xi, Y2 is the next smallest, and th so on, with Yn the largest of the Xi. Yr is called the r order statistic of the sample. In considering order statistics, it is naturally convenient to know their probability density. We derive an expression for the distribution of the rth order statistic as in [MM]. Theorem 1.1. For a random sample of size n from an in¯nite population having values x and density f(x), the probability th density of the r order statistic Yr is given by ·Z ¸ ·Z ¸ n! yr r¡1 1 n¡r gr(yr) = f(x) dx f(yr) f(x) dx : (1.1) (r ¡ 1)!(n ¡ r)! ¡1 yr Proof.
    [Show full text]
  • Testing Hypotheses
    Chapter 7 Testing Hypotheses Chapter Learning Objectives Understanding the assumptions of statistical hypothesis testing Defining and applying the components in hypothesis testing: the research and null hypotheses, sampling distribution, and test statistic Understanding what it means to reject or fail to reject a null hypothesis Applying hypothesis testing to two sample cases, with means or proportions n the past, the increase in the price of gasoline could be attributed to major national or global event, such as the Lebanon and Israeli war or Hurricane Katrina. However, in 2005, the price for a Igallon of regular gasoline reached $3.00 and remained high for a long time afterward. The impact of unpredictable fuel prices is still felt across the nation, but the burden is greater among distinct social economic groups and geographic areas. Lower-income Americans spend eight times more of their disposable income on gasoline than wealthier Americans do.1 For example, in Wilcox, Alabama, individuals spend 12.72% of their income to fuel one vehicle, while in Hunterdon Co., New Jersey, people spend 1.52%. Nationally, Americans spend 3.8% of their income fueling one vehicle. The first state to reach the $3.00-per-gallon milestone was California in 2005. California’s drivers were especially hit hard by the rising price of gas, due in part to their reliance on automobiles, especially for work commuters. Analysts predicted that gas prices would continue to rise nationally. Declines in consumer spending and confidence in the economy have been attributed in part to the high (and rising) cost of gasoline. In 2010, gasoline prices have remained higher for states along the West Coast, particularly in Alaska and California.
    [Show full text]
  • Nonparametric Multivariate Kurtosis and Tailweight Measures
    Nonparametric Multivariate Kurtosis and Tailweight Measures Jin Wang1 Northern Arizona University and Robert Serfling2 University of Texas at Dallas November 2004 – final preprint version, to appear in Journal of Nonparametric Statistics, 2005 1Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, Arizona 86011-5717, USA. Email: [email protected]. 2Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75083- 0688, USA. Email: [email protected]. Website: www.utdallas.edu/∼serfling. Support by NSF Grant DMS-0103698 is gratefully acknowledged. Abstract For nonparametric exploration or description of a distribution, the treatment of location, spread, symmetry and skewness is followed by characterization of kurtosis. Classical moment- based kurtosis measures the dispersion of a distribution about its “shoulders”. Here we con- sider quantile-based kurtosis measures. These are robust, are defined more widely, and dis- criminate better among shapes. A univariate quantile-based kurtosis measure of Groeneveld and Meeden (1984) is extended to the multivariate case by representing it as a transform of a dispersion functional. A family of such kurtosis measures defined for a given distribution and taken together comprises a real-valued “kurtosis functional”, which has intuitive appeal as a convenient two-dimensional curve for description of the kurtosis of the distribution. Several multivariate distributions in any dimension may thus be compared with respect to their kurtosis in a single two-dimensional plot. Important properties of the new multivariate kurtosis measures are established. For example, for elliptically symmetric distributions, this measure determines the distribution within affine equivalence. Related tailweight measures, influence curves, and asymptotic behavior of sample versions are also discussed.
    [Show full text]
  • Tests of Hypotheses Using Statistics
    Tests of Hypotheses Using Statistics Adam Massey¤and Steven J. Millery Mathematics Department Brown University Providence, RI 02912 Abstract We present the various methods of hypothesis testing that one typically encounters in a mathematical statistics course. The focus will be on conditions for using each test, the hypothesis tested by each test, and the appropriate (and inappropriate) ways of using each test. We conclude by summarizing the di®erent tests (what conditions must be met to use them, what the test statistic is, and what the critical region is). Contents 1 Types of Hypotheses and Test Statistics 2 1.1 Introduction . 2 1.2 Types of Hypotheses . 3 1.3 Types of Statistics . 3 2 z-Tests and t-Tests 5 2.1 Testing Means I: Large Sample Size or Known Variance . 5 2.2 Testing Means II: Small Sample Size and Unknown Variance . 9 3 Testing the Variance 12 4 Testing Proportions 13 4.1 Testing Proportions I: One Proportion . 13 4.2 Testing Proportions II: K Proportions . 15 4.3 Testing r £ c Contingency Tables . 17 4.4 Incomplete r £ c Contingency Tables Tables . 18 5 Normal Regression Analysis 19 6 Non-parametric Tests 21 6.1 Tests of Signs . 21 6.2 Tests of Ranked Signs . 22 6.3 Tests Based on Runs . 23 ¤E-mail: [email protected] yE-mail: [email protected] 1 7 Summary 26 7.1 z-tests . 26 7.2 t-tests . 27 7.3 Tests comparing means . 27 7.4 Variance Test . 28 7.5 Proportions . 28 7.6 Contingency Tables .
    [Show full text]
  • Understanding Statistical Hypothesis Testing: the Logic of Statistical Inference
    Review Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference Frank Emmert-Streib 1,2,* and Matthias Dehmer 3,4,5 1 Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland 2 Institute of Biosciences and Medical Technology, Tampere University, 33520 Tampere, Finland 3 Institute for Intelligent Production, Faculty for Management, University of Applied Sciences Upper Austria, Steyr Campus, 4040 Steyr, Austria 4 Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology (UMIT), 6060 Hall, Tyrol, Austria 5 College of Computer and Control Engineering, Nankai University, Tianjin 300000, China * Correspondence: [email protected]; Tel.: +358-50-301-5353 Received: 27 July 2019; Accepted: 9 August 2019; Published: 12 August 2019 Abstract: Statistical hypothesis testing is among the most misunderstood quantitative analysis methods from data science. Despite its seeming simplicity, it has complex interdependencies between its procedural components. In this paper, we discuss the underlying logic behind statistical hypothesis testing, the formal meaning of its components and their connections. Our presentation is applicable to all statistical hypothesis tests as generic backbone and, hence, useful across all application domains in data science and artificial intelligence. Keywords: hypothesis testing; machine learning; statistics; data science; statistical inference 1. Introduction We are living in an era that is characterized by the availability of big data. In order to emphasize the importance of this, data have been called the ‘oil of the 21st Century’ [1]. However, for dealing with the challenges posed by such data, advanced analysis methods are needed.
    [Show full text]