Model-Based Design and Optimization of Solar Energy Technologies

Total Page:16

File Type:pdf, Size:1020Kb

Model-Based Design and Optimization of Solar Energy Technologies Model-based design and optimization of solar energy technologies Raymond A. Adomaitis Chapter 0 1/27 Who am I? Ray Adomaitis Professor, University of Maryland Department of Chemical & Biomolecular Engineering Institute for Systems Research Maryland NanoCenter Maryland Energy Innovation Institute Background: BS, PhD Illinois Institute of Technology; postdoc at Princeton University Research: Simulation-based design of thin-film processes for energy and spacecraft applications Teaching: Solar energy, chemical engineering process design, computations Globex: I have taught this class at PKU in 2013, 2016, and now in 2019 2/27 27,000 undergraduate and 11,000 graduate students, 4200 faculty map university of maryland college park - Google Maps 6/30/13 12:46 PM To see all the details that are visible on the screen, use the "Print" linkFounded next to the map. in 1856 https://maps.google.com/maps?client=safari&oe=UTF-8&q=map+dc&ie=UTF-8&hq=&hnear=0x8…f6e45b:0xc2524522d4885d2a,Washington,+DC&ei=8V_QUci5OsrOkwX1g4DgBA&ved=0CCsQ8gEwAA Page 1 of 2 3/27 Course overview Course management Homework, exams, grading Textbook Software Motivation for this course Course content Draft schedule 4/27 Course management See class syllabus 5/27 Course notes Course lecture notes will evolve while the class is taught. The starting point for this class will be classNotes.pdf. A look at the textbook, current version 6/27 Course software Course software is written in Python and was converted to a web-based interface in summer of 2013. It continues to be upgraded and can be found at http://dev.eng.umd.edu/adomaiti Name: solar Password: PKUsolar2013 7/27 Class description The emphasis of the class is on developing a conceptual understanding of the device physics and manufacturing processes of crystalline and thin-film photovoltaic cells, and to develop elementary computational skills necessary to quantify solar cell efficiency. The class material includes detailed, system-level energy balances necessary to understand how solar energy fits into the complete energy generation, conversion, and storage picture. Quantitative comparisons of PV technology to solar chemical conversion processes and biofuels are made. 8/27 Energy - basic concepts The conversion of solar radiant energy to electrical, chemical, or kinetic energy is central to our class... ....so starting with a review of the basics of energy, power, and radiant intensity unit definitions makes sense. First, consider the central focus of this class: 9/27 The architecture of a typical Si PV cell hυ e- n0 - n 1 + - n-type n2 + + + h e + - - - - emitter + - h e Ie,sc h+ e- p-type I h,sc h+ e- base + 10/27 2 How do we develop mathematical models describing the electrical power produced by PV cells? 3 How do we engineer the PV cell components to optimize cell performance? 4 How do we expand our fundamental knowledge of solid-state PV devices to electrochemical and biological systems? PV cell issues Basic questions we seek to answer include 1 How do we relate photon energy and flux to the electrical power produced by the PV cell? 11/27 3 How do we engineer the PV cell components to optimize cell performance? 4 How do we expand our fundamental knowledge of solid-state PV devices to electrochemical and biological systems? PV cell issues Basic questions we seek to answer include 1 How do we relate photon energy and flux to the electrical power produced by the PV cell? 2 How do we develop mathematical models describing the electrical power produced by PV cells? 11/27 4 How do we expand our fundamental knowledge of solid-state PV devices to electrochemical and biological systems? PV cell issues Basic questions we seek to answer include 1 How do we relate photon energy and flux to the electrical power produced by the PV cell? 2 How do we develop mathematical models describing the electrical power produced by PV cells? 3 How do we engineer the PV cell components to optimize cell performance? 11/27 PV cell issues Basic questions we seek to answer include 1 How do we relate photon energy and flux to the electrical power produced by the PV cell? 2 How do we develop mathematical models describing the electrical power produced by PV cells? 3 How do we engineer the PV cell components to optimize cell performance? 4 How do we expand our fundamental knowledge of solid-state PV devices to electrochemical and biological systems? 11/27 Renewable power 09/02/13 09/02/13 2500 45000 geothermal demand wind scaled renewables solar 2000 40000 1500 35000 MW MW 1000 30000 500 25000 0 20000 5 10 15 20 5 10 15 20 time of day time of day Renewable energy production (left) and overall electricity demand (right) in California during a 24 hour period in late summer 2013. Source of data 12/27 Energy - basic concepts We note: 1 Renewable energy sources introduce a high degree of dynamic (in time) variability in the power supply: 1 wind variations 2 clouds passing between the sun and solar modules 2 The temporal variations have multiple time-scales: 1 higher-frequency fluctuations with time scales measured in seconds or minutes 2 diurnal variations that take place over the day 3 There is a strong incentive to include energy storage elements in the overall design to reduce the power fluctuations and to allow for peak power delivery at the 5 pm demand peak. Bottom line: 1 PV and other elements cannot be studied in isolation 2 renewable resources require integration of a number of energy generation, conversion, and storage technologies 13/27 Chapter 1: Energy and thermodynamics review Account for wide range of student backgrounds Course motivation Elementary review of thermodynamics Base SI units Derived units of energy and power, with emphasis on quantities relevant to electric circuit analysis and radiant energy 14/27 Chapter 2: The sun The logical starting point Solar spectrum Radiant flux as a function of time, date, and latitude Spectral irradiance, irradiance, insolation Atmospheric absorption models Time-averaged quantities, NREL and other insolation data 15/27 Chapter 3: Transient energy balances Crucial to modeling PV cells and energy conversion systems Conservation of energy - steady versus dynamic processes Modeling PV and energy storage systems Modeling solar thermal systems, closed and open 16/27 Chapter 4: PV device physics Following the charge carriers Band structure of metals, semiconductors, and insulators p-n junctions and derivation of the diode equation Charge carrier diffusion and drift Photon interactions with semiconductors 17/27 Chapter 5: Cell architecture and manufacturing The mc-Si PV cell Manufacturing the Si substrate Manufacturing steps for an elementary PV cell Advanced cell architectures Thin-film PV Amorphous Si CIGS - Copper indium gallium (di)selenide CdTe - Cadmium telluride 18/27 Chapter 6: The equivalent circuit model Computing PV cell power Cell current-voltage characteristics; the equivalent circuit Using module measurements to identify PV cell model parameters Real cells: modeling nonidealities 19/27 Chapter 7: Quantum efficiency How effectively are photons converted to electrical power? Internal/external quantum efficiencies Theoretical computations Multijunction devices Anti-reflection coatings 20/27 Chapter 8: Arrays of PV cells PV cell interconnection and unexpected behavior Arrays of cells, modules Shaded cells Blocking diodes and other electrical elements 21/27 Chapter 9: Dye-sensitized PV cells A move towards electrochemical systems and alternate charge-separation mechanisms Electrochemistry overview Operating principles The equivalent circuit model 22/27 Chapter 10: Photoelectrochemical cells Use solar energy to directly create storable fuels Electrolysis PEC cell electrochemistry for solar water splitting Modeling PEC cell performance 23/27 Chapter 11: Photosynthesis and biofuels Comparing nature to engineering Overview of natural and artificial processes Ethanol and other biofuel production technologies Comparative mass and energy balances for biofuel production routes: what is the overall efficiency? 24/27 Chapter 12: Review of numerical techniques This is an engineering class, so quantitative solutions are expected Interpolation and quadrature Finite differences and the Euler integrator Newton's method Solution of elementary differential equations Note: You are free to use what software you like (MatLab, Python, C, VB, Excel, etc.) =) You may want to review your computing/plotting skills asap 25/27 How will we cover all this? Again, see class syllabus and HW assignment schedule 26/27 Next lecture Objective: review Chapter 1 concepts and terminology. Base and derived units Basic thermodynamics review 27/27.
Recommended publications
  • 7. Gamma and X-Ray Interactions in Matter
    Photon interactions in matter Gamma- and X-Ray • Compton effect • Photoelectric effect Interactions in Matter • Pair production • Rayleigh (coherent) scattering Chapter 7 • Photonuclear interactions F.A. Attix, Introduction to Radiological Kinematics Physics and Radiation Dosimetry Interaction cross sections Energy-transfer cross sections Mass attenuation coefficients 1 2 Compton interaction A.H. Compton • Inelastic photon scattering by an electron • Arthur Holly Compton (September 10, 1892 – March 15, 1962) • Main assumption: the electron struck by the • Received Nobel prize in physics 1927 for incoming photon is unbound and stationary his discovery of the Compton effect – The largest contribution from binding is under • Was a key figure in the Manhattan Project, condition of high Z, low energy and creation of first nuclear reactor, which went critical in December 1942 – Under these conditions photoelectric effect is dominant Born and buried in • Consider two aspects: kinematics and cross Wooster, OH http://en.wikipedia.org/wiki/Arthur_Compton sections http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=22551 3 4 Compton interaction: Kinematics Compton interaction: Kinematics • An earlier theory of -ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of h or • The failure of the Thomson theory to describe high-energy photon scattering necessitated the • Inelastic collision • After the collision the electron departs
    [Show full text]
  • Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 Kev to 100 Gev*
    1 of Stanaaros National Bureau Mmin. Bids- r'' Library. Ml gEP 2 5 1969 NSRDS-NBS 29 . A111D1 ^67174 tioton Cross Sections, i NBS Attenuation Coefficients, and & TECH RTC. 1 NATL INST OF STANDARDS _nergy Absorption Coefficients From 10 keV to 100 GeV U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS T X J ". j NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation’s central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology. The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and com- merce. The Institute consists of an Office of Measurement Services and the following technical divisions: Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molec- ular Physics—Radio Physics -—Radio Engineering -—Time and Frequency -—Astro- physics -—Cryogenics.
    [Show full text]
  • Chapter 30: Quantum Physics ( ) ( )( ( )( ) ( )( ( )( )
    Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered a blackbody radiator. Use Wien’s Displacement Law (equation 30-1) to find the peak frequency of the radiation from the tungsten filament. −− 10 1 1 1. (a) Solve Eq. 30-1 fTpeak =×⋅(5.88 10 s K ) for the peak frequency: =×⋅(5.88 1010 s−− 1 K 1 )( 2850 K) =× 1.68 1014 Hz 2. (b) Because the peak frequency is that of infrared electromagnetic radiation, the light bulb radiates more energy in the infrared than the visible part of the spectrum. 10. The image shows two oxygen atoms oscillating back and forth, similar to a mass on a spring. The image also shows the evenly spaced energy levels of the oscillation. Use equation 13-11 to calculate the period of oscillation for the two atoms. Calculate the frequency, using equation 13-1, from the inverse of the period. Multiply the period by Planck’s constant to calculate the spacing of the energy levels. m 1. (a) Set the frequency T = 2π k equal to the inverse of the period: 1 1k 1 1215 N/m f = = = =4.792 × 1013 Hz Tm22ππ1.340× 10−26 kg 2. (b) Multiply the frequency by Planck’s constant: E==×⋅ hf (6.63 10−−34 J s)(4.792 × 1013 Hz) =× 3.18 1020 J 19. The light from a flashlight can be considered as the emission of many photons of the same frequency. The power output is equal to the number of photons emitted per second multiplied by the energy of each photon.
    [Show full text]
  • The Basic Interactions Between Photons and Charged Particles With
    Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No
    [Show full text]
  • Photons Outline
    1 Photons Observational Astronomy 2019 Part 1 Prof. S.C. Trager 2 Outline Wavelengths, frequencies, and energies of photons The EM spectrum Fluxes, filters, magnitudes & colors 3 Wavelengths, frequencies, and energies of photons Recall that λν=c, where λ is the wavelength of a photon, ν is its frequency, and c is the speed of light in a vacuum, c=2.997925×1010 cm s–1 The human eye is sensitive to wavelengths from ~3900 Å (1 Å=0.1 nm=10–8 cm=10–10 m) – blue light – to ~7200 Å – red light 4 “Optical” astronomy runs from ~3100 Å (the atmospheric cutoff) to ~1 µm (=1000 nm=10000 Å) Optical astronomers often refer to λ>8000 Å as “near- infrared” (NIR) – because it’s beyond the wavelength sensitivity of most people’s eyes – although NIR typically refers to the wavelength range ~1 µm to ~2.5 µm We’ll come back to this in a minute! 5 The energy of a photon is E=hν, where h=6.626×10–27 erg s is Planck’s constant High-energy (extreme UV, X-ray, γ-ray) astronomers often use eV (electron volt) as an energy unit, where 1 eV=1.602176×10–12 erg 6 Some useful relations: E (erg) 14 ⌫ (Hz) = 1 =2.418 10 E (eV) h (erg s− ) ⇥ ⇥ c hc 1 1 1 λ (A)˚ = = = 12398.4 E− (eV− ) ⌫ ⌫ E (eV) ⇥ Therefore a photon with a wavelength of 10 Å has an energy of ≈1.24 keV 7 If a photon was emitted from a blackbody of temperature T, then the average photon energy is Eav~kT, where k = 1.381×10–16 erg K–1 = 8.617×10–5 eV K–1 is Boltzmann’s constant.
    [Show full text]
  • Ionizing Photon Production from Massive Stars
    Ionizing Photon Production from Massive Stars Michael W. Topping CASA, Department of Astrophysical & Planetary Sciences, University of Colorado, Boulder, CO 80309 [email protected] ABSTRACT Ionizing photons are important ingredients in our understanding of stellar and interstellar processes, but modeling their properties can be difficult. This paper examines methods of modeling Lyman Continuum (LyC) photon production us- ing stellar evolutionary tracks coupled to a grid of model atmospheres. In the past, many stellar models have not been self-consistent and have not been able to accurately reproduce stellar population spectra and ionizing photon luminosities. We examine new models of rotating stars at both solar and sub-solar metallicity and show that they increase accuracy of ionizing photon production and satisfy self-consistency relationships. Thesis Advisor: Dr. Michael Shull | Department of Astrophysical and Planetary Sciences Thesis Committee: Dr. John Stocke | Department of Astrophysical and Planetary Sciences Dr. William Ford | Department of Physics Dr. Emily Levesque | Department of Astrophysical and Planetary Sciences Defense Date: March 17, 2014 { 2 { Contents 1 INTRODUCTION 3 1.1 Background . .4 1.1.1 Evolutionary Tracks . .4 1.1.2 Model Atmospheres . .5 2 METHODS 6 2.1 EVOLUTIONARY TRACKS . .7 2.1.1 Old Non-Rotating Tracks (Schaller 1992) . .8 2.1.2 New Non-Rotating Tracks . .8 2.1.3 New Rotating Tracks . .8 2.2 Model Atmospheres . 12 2.2.1 Program Setup . 12 2.2.2 Initial Parameter Files . 12 2.2.3 Model Atmosphere Calculation . 13 2.2.4 Defining the Grid . 15 2.3 Putting It All Together . 15 3 RESULTS 20 3.1 Lifetime Integrated H I Photon Luminosities .
    [Show full text]
  • Chapter 4 Light and Matter-Waves And/Or Particles
    Chapter 4 Light and Matter-Waves and/or Particles Chapters 4 through 7, taken in sequence, aim to develop an elementary understanding of quantum chemistry: from its experimental and conceptual foundations (Chapter 4), to the one-electron atom (Chapter 5), to the many-electron atom (Chapter 6), andfinally to the molecule (Chapter 7). The present chapter builds to a point where the wave function and uncertainty principle emerge-heuristically, at least-as a way to reconcile the dualistic behavior of waves and particles. Electromagnetic waves undergo interference; so do electrons. “Pinging” atoms transfer energy and momentum; so do photons. A conjned wave develops standing modes; so does the electron in hydrogen. The hope is to instill, above all, a respectfor the manifold difference between a deterministic macroworld and a statistical microworld. The exercises have a further unashamedly practical goal: to help a reader become adept at handling some of the fundamental (yet mathematically simple) equations that underpin quantum mechanics. 1. The relationship connecting the wavelength, frequency, and speed of a wave (especially as applied to electromagnetic radiation): /z v = c 2. The arithmetic of interference, and the double-slit diffraction equation as a corollary: d sin6 = nil 3. The Planck-Einstein formula: E = h v 4. The momentum of a photon: p = i 87 I- . 90 Complete Solutions 3. A wave crest appears only once per cycle. To observe 7200 crests at one point in space is therefore to observe 7200 completed cycles. (a) Convert hours into seconds: 7200 cycles 1 h 1 min v= h x -60 min x -60 s = 2.0 cycles s-’ = 2.0 Hz Two cycles, on the average, are completed every second; thefrequency is 2.0 Hz.
    [Show full text]
  • Photon Energy Upconversion Through Thermal Radiation with the Power Efficiency Reaching 16%
    ARTICLE Received 30 May 2014 | Accepted 27 Oct 2014 | Published 28 Nov 2014 DOI: 10.1038/ncomms6669 Photon energy upconversion through thermal radiation with the power efficiency reaching 16% Junxin Wang1,*, Tian Ming1,*,w, Zhao Jin1, Jianfang Wang1, Ling-Dong Sun2 & Chun-Hua Yan2 The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is 3 þ achieved on Yb -doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices. 1 Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. 2 State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871, China. * These authors contributed equally to this work. w Present address: Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
    [Show full text]
  • Gamma-Ray Interactions with Matter
    2 Gamma-Ray Interactions with Matter G. Nelson and D. ReWy 2.1 INTRODUCTION A knowledge of gamma-ray interactions is important to the nondestructive assayist in order to understand gamma-ray detection and attenuation. A gamma ray must interact with a detector in order to be “seen.” Although the major isotopes of uranium and plutonium emit gamma rays at fixed energies and rates, the gamma-ray intensity measured outside a sample is always attenuated because of gamma-ray interactions with the sample. This attenuation must be carefully considered when using gamma-ray NDA instruments. This chapter discusses the exponential attenuation of gamma rays in bulk mater- ials and describes the major gamma-ray interactions, gamma-ray shielding, filtering, and collimation. The treatment given here is necessarily brief. For a more detailed discussion, see Refs. 1 and 2. 2.2 EXPONENTIAL A~ATION Gamma rays were first identified in 1900 by Becquerel and VMard as a component of the radiation from uranium and radium that had much higher penetrability than alpha and beta particles. In 1909, Soddy and Russell found that gamma-ray attenuation followed an exponential law and that the ratio of the attenuation coefficient to the density of the attenuating material was nearly constant for all materials. 2.2.1 The Fundamental Law of Gamma-Ray Attenuation Figure 2.1 illustrates a simple attenuation experiment. When gamma radiation of intensity IO is incident on an absorber of thickness L, the emerging intensity (I) transmitted by the absorber is given by the exponential expression (2-i) 27 28 G.
    [Show full text]
  • Interactions of Photons with Matter
    22.55 “Principles of Radiation Interactions” Interactions of Photons with Matter • Photons are electromagnetic radiation with zero mass, zero charge, and a velocity that is always c, the speed of light. • Because they are electrically neutral, they do not steadily lose energy via coulombic interactions with atomic electrons, as do charged particles. • Photons travel some considerable distance before undergoing a more “catastrophic” interaction leading to partial or total transfer of the photon energy to electron energy. • These electrons will ultimately deposit their energy in the medium. • Photons are far more penetrating than charged particles of similar energy. Energy Loss Mechanisms • photoelectric effect • Compton scattering • pair production Interaction probability • linear attenuation coefficient, µ, The probability of an interaction per unit distance traveled Dimensions of inverse length (eg. cm-1). −µ x N = N0 e • The coefficient µ depends on photon energy and on the material being traversed. µ • mass attenuation coefficient, ρ The probability of an interaction per g cm-2 of material traversed. Units of cm2 g-1 ⎛ µ ⎞ −⎜ ⎟()ρ x ⎝ ρ ⎠ N = N0 e Radiation Interactions: photons Page 1 of 13 22.55 “Principles of Radiation Interactions” Mechanisms of Energy Loss: Photoelectric Effect • In the photoelectric absorption process, a photon undergoes an interaction with an absorber atom in which the photon completely disappears. • In its place, an energetic photoelectron is ejected from one of the bound shells of the atom. • For gamma rays of sufficient energy, the most probable origin of the photoelectron is the most tightly bound or K shell of the atom. • The photoelectron appears with an energy given by Ee- = hv – Eb (Eb represents the binding energy of the photoelectron in its original shell) Thus for gamma-ray energies of more than a few hundred keV, the photoelectron carries off the majority of the original photon energy.
    [Show full text]
  • Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom
    Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom In This Chapter… Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are arranged around atoms and how electrons are shared among atoms in molecules. Understanding physical and chemical properties of chemical compounds therefore relies on a detailed understanding of the arrangement of electrons in atoms and molecules. This chapter begins that exploration by examining what we know about atomic electronic structure and how we know it. This is the first of a series of chapters that, in turn, explore the arrangement of electrons in atoms with many electrons (Chapter 7), the manner in which chemical bonds form and control molecular structure (Chapter 8), and two theories of bonding (Chapter 9). In this chapter, we examine the ways we learn about the electronic structure of elements. This, for the most part, involves studying how electromagnetic radiation interacts with atoms. We therefore begin with the nature of electromagnetic radiation. Chapter Outline 6.1 Electromagnetic Radiation 6.2 Photons and Photon Energy 6.3 Atomic Line Spectra and the Bohr Model of Atomic Structure 6.4 Quantum Theory of Atomic Structure 6.5 Quantum Numbers, Orbitals, and Nodes Chapter Summary Chapter Summary Assignment 6.1 Electromagnetic Radiation Section Outline 6.1a Wavelength and Frequency 6.1b The Electromagnetic Spectrum Section Summary Assignment Electromagnetic radiation, energy that travels through space as waves, is made up of magnetic and electric fields oscillating at right angles to one another.
    [Show full text]
  • Recombination and the Cosmic Microwave Background
    M. Pettini: Introduction to Cosmology | Lecture 9 RECOMBINATION AND THE COSMIC MICROWAVE BACKGROUND Once Big Bang Nucleosynthesis is over, at time t ∼ 300 s and tempera- ture T ∼ 8 × 108 K, the Universe is a thermal bath of photons, protons, helium nuclei, traces of other light elements, and electrons, in addition to neutrinos and the unknown dark matter particle(s). The energy density is dominated by the relativistic component, photons and neutrinos. With the exception of neutrinos and the dark matter which by this time have decoupled from the plasma, all particle species have the same temperature which is established by interactions of charged particles with the photons. Photons interacted primarily with electrons through Thomson scattering: γ + e− ! γ + e− i.e. the elastic scattering of electromagnetic radiation by a free charged particle. Thomson scattering is the low-energy limit of Compton scattering and is a valid description in the regime where the photon energy is much less than the rest-mass energy of the electron. In this process, the electron can be thought of as being made to oscillate in the electromagnetic field of the photon causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered. An important feature of Thomson scattering is that it introduces polarization along the direction of motion of the electron (see Figure 9.1). The cross-section for Thomson scattering is tiny: 2 2 1 e −25 2 σT = 2 2 = 6:6 × 10 cm (9.1) 6π0 mec and therefore Thomson scattering is most important when the density of free electrons is high, as in the early Universe or in the dense interiors of stars.1 1 Photons are also scattered by free protons, but σT for proton scattering is smaller by a factor 2 (me=mp) (eq.
    [Show full text]