Orchid Conservation News September 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Five Established Orchids Ophrys Apifera Var
FIVE ESTABLISHED ORCHIDS OPHRYS APIFERA VAR. CHLORANTHA, AURITA, PURPUREA, PURPUREA. F. ALBA. AND FLAVESCENS (ORCHIDACEAE) IN LEBANON AS PART OF THE NATIVE FLORA. ADDAM K.*1, TAKKOUSH J.1, BOU-HAMDAN M.2 AND ITANI J.3 1Faculty of Business Administration, Research department, Arts, Sciences and Technology University in Lebanon, AUL 2Clinker Production Unit at Ciment De Sibline (LCF: Lebanese Cement Factory). 3Faculty of Sciences and Fine Arts, Arts, Sciences and Technology University in Lebanon, AUL *Corresponding Author: Email- [email protected] Received: November 11, 2015; Revised: November 16, 2015; Accepted: November 17, 2015 Citation: Addam K., et al., (2015) Five Established Orchids Ophrys apifera var. Chlorantha, Aurita, Purpurea, Purpurea. F. Alba. and Flavescens (Orchidaceae) in Lebanon as Part of the Native Flora. Journal of Ecology and Environmental Sciences, ISSN: 0976-9900 & E-ISSN: 0976-9919, Volume 6, Issue 2, pp.-163-169. Copyright: Copyright©2015 Addam K., et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Introduction species became a total of 130. [6] Six years later (2001), he raised the number to Among all the angiosperm plants, the family of the Orchidaceae is considered to 215 species. This was the last classification set and accepted by him [4]. be the largest. It includes more than 22,000 accepted species in 880 genera. The great conflict and main problem of Orchids classification is still a worldwide Two principal large groups divide the Orchids: debate among the scientists and botanists who have dissimilar points of view in this field and without finding a solution for it till now [7]. -
Orchids: 2017 Global Ex Situ Collections Assessment
Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions. -
The Red Data List of Irish Plants
The Red Data List of Irish Plants The risks that species face are each very different, however, as a guide to the susceptibility of a given species, an agreed set of categories has been established internationally, and these are used to determine the potential risk that a species could become extinct. These categories are:- CRITICALLY ENDANGERED or CR - Species that are declining at a fast rate, and face imminent risk of extinction. ENDANGERED or E - Species that are declining, or grow in habitats likely to be disturbed, 'developed' or facing an ongoing degradation. VULNERABLE or V - Species that are currently not endangered, but would be extremely vulnerable if their habitats are disturbed in the future. There are seven species of plant that require immediate intervention (CR) if we are to save them from joining the fate of 11 other species that are now known to be extinct in Ireland. A number of these are already extinct in the Republic, and are not therefore legally protected under the 1999 Flora Protection Act. In the list below, 188 species of plant are listed, of which 64 are flowering plants, 4 ferns, 14 mosses, 4 liverworts, 1 lichen and 2 algae. Protected=1999 Flora Protection Order; (protected)= formerly protected by 1987 Order; {protected}= formerly protected by 1980 Order; (NI)= protected in Northern Ireland only. EXTINCT (9) Pheasant's-eye Adonis annua -- Corncockle Agrostemma githago Cogal Corn Chamomile Anthemis arvensis Fíogadán goirt Purple Spurge Euphorbia peplis Spuirse dhearg Sea Stock Matthiola sinuata Tonóg chladaigh -
Ants Tend Ghost Orchids: Patrolling of Dendrophylax Lindenii (Orchidaceae) by Crematogaster Ashmeadi in Florida
Ants tend ghost orchids: patrolling of Dendrophylax lindenii (Orchidaceae) by Crematogaster ashmeadi in Florida Peter R. Houlihan1,5,*, Andrea Lucky2, Mike Owen3, and Thomas C. Emmel1,2,4,6 Abstract Myriad symbioses exist between insects and orchids, especially in tropical forests where the majority of species are epiphytic. Relationships be- tween ants and rare epiphytic orchids are underrepresented in the scientific literature. The natural history and ecological entomology of Florida’s endangered and epiphytic ghost orchid, Dendrophylax lindenii (Lindley) Bentham ex Rolfe (Orchidaceae), remain limited. Widely recognized for long-standing hypotheses concerning the species’ pollination ecology, that documentation recently overturned, other interactions between insects and ghost orchids are scarce. Here we describe the first associations between ants, Crematogaster ashmeadi Mayr (Hymenoptera: For- micidae), and D. lindenii. Ghost orchid roots provide facultative and opportunistic structures for arboreal ants to use in nesting. Furthermore, excrement from ant colonies within the root mass can increase nutrient availability in the orchid’s nutrient-poor substrate; the proximity of these ants permits patrolling to defend the plant and exert control over possible extra floral nectaries that require further inquiry. This study presents novel observations that expand the known insect associations with ghost orchids, elucidating the complex ecology of one of Florida’s rarest and most endangered species. Key Words: ants; arboreal; ecology; epiphyte; Everglades; Fakahatchee Resumen Existen incontables números de simbiosis entre insectos y orquídeas, especialmente en los bosques tropicales donde la mayoría de las especies son epífitas. Las relaciones entre las hormigas y las orquídeas epífitas más raras están subrepresentadas en la literatura científica. -
“Dynamic Speciation Processes in the Mediterranean Orchid Genus Ophrys L
“DYNAMIC SPECIATION PROCESSES IN THE MEDITERRANEAN ORCHID GENUS OPHRYS L. (ORCHIDACEAE)” Tesi di Dottorato in Biologia Avanzata, XXIV ciclo (Indirizzo Sistematica Molecolare) Universitá degli Studi di Napoli Federico II Facoltá di Scienze Matematiche, Fisiche e Naturali Dipartimento di Biologia Strutturale e Funzionale 1st supervisor: Prof. Salvatore Cozzolino 2nd supervisor: Prof. Serena Aceto PhD student: Dott. Hendrik Breitkopf 1 Cover picture: Pseudo-copulation of a Colletes cunicularius male on a flower of Ophrys exaltata ssp. archipelagi (Marina di Lesina, Italy. H. Breitkopf, 2011). 2 TABLE OF CONTENTS GENERAL INTRODUCTION CHAPTER 1: MULTI-LOCUS NUCLEAR GENE PHYLOGENY OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS L. (ORCHIDACEAE) CHAPTER 2: ANALYSIS OF VARIATION AND SPECIATION IN THE OPHRYS SPHEGODES SPECIES COMPLEX CHAPTER 3: FLORAL ISOLATION IS THE MAIN REPRODUCTIVE BARRIER AMONG CLOSELY RELATED SEXUALLY DECEPTIVE ORCHIDS CHAPTER 4: SPECIATION BY DISTURBANCE: A POPULATION STUDY OF CENTRAL ITALIAN OPHRYS SPHEGODES LINEAGES CONTRIBUTION OF CO-AUTHORS ACKNOWLEDGEMENTS 3 GENERAL INTRODUCTION ORCHIDS With more than 22.000 accepted species in 880 genera (Pridgeon et al. 1999), the family of the Orchidaceae is the largest family of angiosperm plants. Recently discovered fossils document their existence for at least 15 Ma. The last common ancestor of all orchids has been estimated to exist about 80 Ma ago (Ramirez et al. 2007, Gustafsson et al. 2010). Orchids are cosmopolitan, distributed on all continents and a great variety of habitats, ranging from deserts and swamps to arctic regions. Two large groups can be distinguished: Epiphytic and epilithic orchids attach themselves with aerial roots to trees or stones, mostly halfway between the ground and the upper canopy where they absorb water through the velamen of their roots. -
Orchid Floral Fragrances and Their Niche in Conservation
Florida Orchid Conservation Conference 2011 THE SCENT OF A GHOST Orchid Floral Fragrances and Their Niche in Conservation James J. Sadler WHAT IS FLORAL FRAGRANCE? It is the blend of chemicals emitted by a flower to attract pollinators. These chemicals sometimes cannot be detected by our nose. 1 Florida Orchid Conservation Conference 2011 WHY STUDY FLORAL FRAGRANCE? Knowing the floral compounds may help improve measures to attract specific pollinators, increasing pollination and fruit-set to augment conservation. Chemical compounds can be introduced to increase pollinator density. FLORAL FRAGRANCE: BACKGROUND INFORMATION 90 plant families worldwide have been studied for floral fragrance, especially the Orchidaceae6 > 97% of orchid species remain unstudied7 Of all plants studied so far, the 5 most prevalent compounds are: limonene (71%), (E)-β-ocimene (71%), myrcene (70%), linalool (70%), and α-pinene (67%)6 2 Florida Orchid Conservation Conference 2011 POSSIBLE POLLINATORS BEES Found to pollinate via mimicry POSSIBLE POLLINATORS WASPS Similar as bees 3 Florida Orchid Conservation Conference 2011 POSSIBLE POLLINATORS FLIES Dracula spp. produce a smell similar to fungus where the eggs are laid POSSIBLE POLLINATORS MOTHS Usually white, large and fragrant at night 4 Florida Orchid Conservation Conference 2011 CASE STUDY The Ghost Orchid State Endangered1 Dendrophylax lindenii THE GHOST ORCHID Range: S Florida to Cuba Epiphyte of large cypress domes and hardwood hammocks Often affixed to pond apple or pop ash Leafless Flowers May-August 5 Florida -
How to Grow the Ghost Orchid
How to Grow the Ghost Orchid: DENDROPHYLAX lindenii is a rare plant in the wild as well as in collections. Hopefully, increased interest and uncovering some of its cultural secrets will lead to more of these jewels of nature being grown. The number one requirement for maintaining a healthy ghost orchid is finding a suitable substrate. Whatever is used must not decay for decades, must have some sort of patina such as moss and lichens, hold some moisture for a length of time after watering, and have a rough and variable texture. In the wild, these plants grow on live trees, and as long as the tree is alive, the bark that the plant is attached to maintains its integrity. Dendrophylax lindenii can be long lived and will take several years to develop into a blooming-size plant. For this reason, the substrate must also be long lasting or the grower will not see the 1 2 beloved plant live long enough to bloom consistently. In the wild, the tree’s bark restaurants that use real hickory for [1] A four-year-old seedling of Dlax. lindenii is covered with a mix of various lichens, cooking, mills that manufacture tool from flask mounted to a new hickory mosses and other hosts that add to the handles and salvaged trees from storm bark slab. Old roots showing new orchid’s microenvironment by providing damage. The bark is nearly impossible to growing tips and several new roots remove from fresh-cut trees. I leave the moisture directly to the roots, as well as emerging from crown can be seen. -
October 20182018
OrangeOrange CountyCounty OrchidOrchid SocietySociety OctoberOctober 20182018 COVER PHOTO: Aerides vanderum × Vanda amesiana. INSIDE COVER PHOTO: Aerides vanderum × Vanda amesiana. Grown by Janet Roberson Orange County Orchid Society, Inc. October 2018 Meeting Date Volume 72, Issue 10 October 17, 2018 (3rd Wednesday each month) Speaker: Ron Parsons Yorba Linda Public Library Topic: An Orchid Adventure in Community Room (Lower Level) the Philippines 18181 Imperial Highway Yorba Linda CA 92886 Ron writes, “Some years ago I was asked by my Australian friend, Doors Open & Set-Up ..................... 6:00 PM Plant Judging Set-Up ...................... 6:30 PM Jim Cootes, to meet him in the Plant Judging ................................. 7:00 PM Philippines to go looking for native Speaker ......................................... 7:30 PM orchids. Jim has written a couple Opportunity Table .......................... 9:00 PM books on orchids of this country, so I thought it was a great idea.” Officers “We traveled to the islands of President .................... Anne-Line Anderson, Mindoro, Leyte, Samar, Cebu, and Nohline L’Ecuyer, & Dana Seelig First Vice President .................... Committee Luzon, seeing wonderful sites and Second Vice President ........... Sharon Tanner flowers, and traveled around with Corporate Secretary ............. Janet Roberson some of Jim’s knowledgeable local Membership Secretary ............. Candy Jester Treasurer ............................ Susan Scheffler friends. It is an incredibly populated Directors country, and it was hard to be too Class of 2019 ....................... MaryAnn Burns remote in the places we visited, but & Jan Hennessey my talk presents the beautiful things Class of 2020 ........................... Peggie Berry I saw there.” & Michele Mitchell Class of 2021 ............................ Leroy Lance Ron Parsons has been growing & Dean Somerby Chairpersons AOS Rep ...................... Anne-Line Anderson © Ron Parsons; used with permission. -
Diversity and Roles of Mycorrhizal Fungi in the Bee Orchid Ophrys Apifera
Diversity and Roles of Mycorrhizal Fungi in the Bee Orchid Ophrys apifera By Wazeera Rashid Abdullah April 2018 A Thesis submitted to the University of Liverpool in fulfilment of the requirement for the degree of Doctor in Philosophy Table of Contents Page No. Acknowledgements ............................................................................................................. xiv Abbreviations ............................................................................ Error! Bookmark not defined. Abstract ................................................................................................................................... 2 1 Chapter one: Literature review: ........................................................................................ 3 1.1 Mycorrhiza: .................................................................................................................... 3 1.1.1Arbuscular mycorrhiza (AM) or Vesicular-arbuscular mycorrhiza (VAM): ........... 5 1.1.2 Ectomycorrhiza: ...................................................................................................... 5 1.1.3 Ectendomycorrhiza: ................................................................................................ 6 1.1.4 Ericoid mycorrhiza, Arbutoid mycorrhiza, and Monotropoid mycorrhiza: ............ 6 1.1.5 Orchid mycorrhiza: ................................................................................................. 7 1.1.5.1 Orchid mycorrhizal interaction: ...................................................................... -
THE IRISH RED DATA BOOK 1 Vascular Plants
THE IRISH RED DATA BOOK 1 Vascular Plants T.G.F.Curtis & H.N. McGough Wildlife Service Ireland DUBLIN PUBLISHED BY THE STATIONERY OFFICE 1988 ISBN 0 7076 0032 4 This version of the Red Data Book was scanned from the original book. The original book is A5-format, with 168 pages. Some changes have been made as follows: NOMENCLATURE has been updated, with the name used in the 1988 edition in brackets. Irish Names and family names have also been added. STATUS: There have been three Flora Protection Orders (1980, 1987, 1999) to date. If a species is currently protected (i.e. 1999) this is stated as PROTECTED, if it was previously protected, the year(s) of the relevant orders are given. IUCN categories have been updated as follows: EN to CR, V to EN, R to V. The original (1988) rating is given in brackets thus: “CR (EN)”. This takes account of the fact that a rare plant is not necessarily threatened. The European IUCN rating was given in the original book, here it is changed to the UK IUCN category as given in the 2005 Red Data Book listing. MAPS and APPENDIX have not been reproduced here. ACKNOWLEDGEMENTS We are most grateful to the following for their help in the preparation of the Irish Red Data Book:- Christine Leon, CMC, Kew for writing the Preface to this Red Data Book and for helpful discussions on the European aspects of rare plant conservation; Edwin Wymer, who designed the cover and who, as part of his contract duties in the Wildlife Service, organised the computer applications to the data in an efficient and thorough manner. -
Orchid Observers
Phenology of UK Plants Orchids and Zooniverse Mark Spencer & Kath Castillo Department of Life Sciences Natural History Museum Agrimonia eupatoria Robbirt & al. 2011 and UK specimens of Ophrys sphegodes Mill NHM Origins and Evolution Initiative: UK Phenology Project • 20,000 herbarium sheets imaged and transcribed • Volunteer contributed taxonomic revision, morphometric and plant/insect pollinator data compiled • Extension of volunteer work to extract additional phenology data from other UK museums and botanic gardens • 7,000 herbarium sheets curated and mounted • Collaboration with BSBI/Herbaria@Home • Preliminary analyses of orchid phenology underway Robbirt & al. (2011) . Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J. Ecol. Brooks, Self, Toloni & Sparks (2014). Natural history museum collections provide information on phenological change in British butterflies since the late-nineteenth century. Int. J. Biometeorol. Johnson & al. (2011) Climate Change and Biosphere Response: Unlocking the Collections Vault. Bioscience. Specimens of Gymnadenia conopsea (L.) R.Br Orchid Observers Phenology of UK Plants Orchids and Zooniverse Mark Spencer & Kath Castillo Department of Life Sciences Natural History Museum 56 species of wild orchid in the UK 29 taxa selected for this study Anacamptis morio Anacamptis pyramidalis Cephalanthera damasonium Coeloglossum viride Corallorhiza trifida Dactylorhiza fuchsii Dactylorhiza incarnata Dactylorhiza maculata Dactylorhiza praetermissa Dactylorhiza purpurella Epipactis palustris Goodyera repens Gymnadenia borealis Gymnadenia conopsea Gymnadenia densiflora Hammarbya paludosa Herminium monorchis Neotinea ustulata Neottia cordata Neottia nidus-avis Neottia ovata Ophrys apifera Ophrys insectifera Orchis anthropophora Orchis mascula Platanthera bifolia Platanthera chlorantha Pseudorchis albida Spiranthes spiralis Fly orchid (Ophrys insectifera) Participants: 1. -
University of Florida Thesis Or Dissertation Formatting
FLORAL FRAGRANCE, POLLINATION, AND SEED GERMINATION OF TWO NATIVE, EPIPHYTIC ORCHIDS IN SOUTH FLORIDA By HALEIGH AMANDA RAY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Haleigh A. Ray To my family and friends who have been tremendously encouraging ACKNOWLEDGMENTS I am extremely grateful for all of my friends and family members who have given endless amounts of love, support, and encouragement as I have progressed through my Ph.D. completion. Without them, this degree would not have been possible. I would like to thank my committee chair and advisor, Dr. Jennifer L. Gillett-Kaufman, for all of the support and advice she has provided during my time here. Thank you for your patience and motivation throughout my dissertation research, it has helped prepare me for my all of my future work in addition to everything that I have completed here at the University of Florida. Additional thanks to my committee members, Dr. Michael Kane, Dr. Charles Stuhl, Dr. Jaret Daniels, and Dr. Jaime Ellis for their feedback on my research. Dr. Kane was always available to help with my seed germination, from the use of his laboratory to troubleshooting research obstacles. Dr. Stuhl provided tremendous assistance in processing of floral fragrance samples and working with me to fully describe the resulting data. I am also very appreciative to the members of the Gillett-Kaufman laboratory, including Dr. Morgan Byron, Eleanor Phillips, Dr. Lawrence Reeves, Omotola Dosunmu, Dr.