Web-Based Computational Chemistry Calculations in Education and Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GPAW, Gpus, and LUMI
GPAW, GPUs, and LUMI Martti Louhivuori, CSC - IT Center for Science Jussi Enkovaara GPAW 2021: Users and Developers Meeting, 2021-06-01 Outline LUMI supercomputer Brief history of GPAW with GPUs GPUs and DFT Current status Roadmap LUMI - EuroHPC system of the North Pre-exascale system with AMD CPUs and GPUs ~ 550 Pflop/s performance Half of the resources dedicated to consortium members Programming for LUMI Finland, Belgium, Czechia, MPI between nodes / GPUs Denmark, Estonia, Iceland, HIP and OpenMP for GPUs Norway, Poland, Sweden, and how to use Python with AMD Switzerland GPUs? https://www.lumi-supercomputer.eu GPAW and GPUs: history (1/2) Early proof-of-concept implementation for NVIDIA GPUs in 2012 ground state DFT and real-time TD-DFT with finite-difference basis separate version for RPA with plane-waves Hakala et al. in "Electronic Structure Calculations on Graphics Processing Units", Wiley (2016), https://doi.org/10.1002/9781118670712 PyCUDA, cuBLAS, cuFFT, custom CUDA kernels Promising performance with factor of 4-8 speedup in best cases (CPU node vs. GPU node) GPAW and GPUs: history (2/2) Code base diverged from the main branch quite a bit proof-of-concept implementation had lots of quick and dirty hacks fixes and features were pulled from other branches and patches no proper unit tests for GPU functionality active development stopped soon after publications Before development re-started, code didn't even work anymore on modern GPUs without applying a few small patches Lesson learned: try to always get new functionality to the -
Free and Open Source Software for Computational Chemistry Education
Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching. -
User Guide of Computational Facilities
Physical Chemistry Unit Departament de Quimica User Guide of Computational Facilities Beta Version System Manager: Marc Noguera i Julian January 20, 2009 Contents 1 Introduction 1 2 Computer resources 2 3 Some Linux tools 2 4 The Cluster 2 4.1 Frontend servers . 2 4.2 Filesystems . 3 4.3 Computational nodes . 3 4.4 User’s environment . 4 4.5 Disk space quota . 4 4.6 Data Backup . 4 4.7 Generation of SSH keys for automatic SSH login . 4 4.8 Submitting jobs to the cluster . 5 4.8.1 Typical queue system commands . 6 4.8.2 HomeMade scripts . 6 4.8.3 Create your own submit script . 6 4.8.4 Submitting Parallel Calculations . 7 5 Available Software 9 5.1 Chemisty software . 9 5.2 Development Software . 10 5.3 How to use the software . 11 5.4 Non-default environments . 11 6 Your Linux Workstation 11 6.1 Disk space on your workstation . 12 6.2 Workstation Data Backup . 12 6.3 Running virtual Windows XP . 13 6.3.1 The Windows XP Environment . 13 6.4 Submitting calculations to your dekstop . 13 6.5 Network dependent structure . 14 7 Your WindowsXP Workstation 14 7.1 Workstation Data Backup . 14 8 Frequently asked questions 14 1 Introduction This User Guide is aimed to the standard user of the computer facilities in the ”Unitat de Quimica Fisica” in the Universitat Autnoma de Barcelona. It is not assumed that you have a knowledge of UNIX/Linux. However, you are 1 encouraged to take a close look to the linux guides that will be pointed out. -
Integrated Tools for Computational Chemical Dynamics
UNIVERSITY OF MINNESOTA Integrated Tools for Computational Chemical Dynamics • Developpp powerful simulation methods and incorporate them into a user- friendly high-throughput integrated software su ite for c hem ica l d ynami cs New Models (Methods) → Modules → Integrated Tools UNIVERSITY OF MINNESOTA Development of new methods for the calculation of potential energy surface UNIVERSITY OF MINNESOTA Development of new simulation methods UNIVERSITY OF MINNESOTA Applications and Validations UNIVERSITY OF MINNESOTA Electronic Software structu re Dynamics ANT QMMM GCMC MN-GFM POLYRATE GAMESSPLUS MN-NWCHEMFM MN-QCHEMFM HONDOPLUS MN-GSM Interfaces GaussRate JaguarRate NWChemRate UNIVERSITY OF MINNESOTA Electronic Structure Software QMMM 1.3: QMMM is a computer program for combining quantum mechanics (QM) and molecular mechanics (MM). MN-GFM 3.0: MN-GFM is a module incorporating Minnesota DFT functionals into GAUSSIAN 03. MN-GSM 626.2:MN: MN-GSM is a module incorporating the SMx solvation models and other enhancements into GAUSSIAN 03. MN-NWCHEMFM 2.0:MN-NWCHEMFM is a module incorporating Minnesota DFT functionals into NWChem 505.0. MN-QCHEMFM 1.0: MN-QCHEMFM is a module incorporating Minnesota DFT functionals into Q-CHEM. GAMESSPLUS 4.8: GAMESSPLUS is a module incorporating the SMx solvation models and other enhancements into GAMESS. HONDOPLUS 5.1: HONDOPLUS is a computer program incorporating the SMx solvation models and other photochemical diabatic states into HONDO. UNIVERSITY OF MINNESOTA DiSftDynamics Software ANT 07: ANT is a molecular dynamics program for performing classical and semiclassical trajjyectory simulations for adiabatic and nonadiabatic processes. GCMC: GCMC is a Grand Canonical Monte Carlo (GCMC) module for the simulation of adsorption isotherms in heterogeneous catalysts. -
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020 Supporting Information How to Select Ionic Liquids as Extracting Agent Systematically? Special Case Study for Extractive Denitrification Process Shurong Gaoa,b,c,*, Jiaxin Jina,b, Masroor Abroc, Ruozhen Songc, Miao Hed, Xiaochun Chenc,* a State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China b Research Center of Engineering Thermophysics, North China Electric Power University, Beijing, 102206, China c Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China d Office of Laboratory Safety Administration, Beijing University of Technology, Beijing 100124, China * Corresponding author, Tel./Fax: +86-10-6443-3570, E-mail: [email protected], [email protected] 1 COSMO-RS Computation COSMOtherm allows for simple and efficient processing of large numbers of compounds, i.e., a database of molecular COSMO files; e.g. the COSMObase database. COSMObase is a database of molecular COSMO files available from COSMOlogic GmbH & Co KG. Currently COSMObase consists of over 2000 compounds including a large number of industrial solvents plus a wide variety of common organic compounds. All compounds in COSMObase are indexed by their Chemical Abstracts / Registry Number (CAS/RN), by a trivial name and additionally by their sum formula and molecular weight, allowing a simple identification of the compounds. We obtained the anions and cations of different ILs and the molecular structure of typical N-compounds directly from the COSMObase database in this manuscript. -
GROMACS: Fast, Flexible, and Free
GROMACS: Fast, Flexible, and Free DAVID VAN DER SPOEL,1 ERIK LINDAHL,2 BERK HESS,3 GERRIT GROENHOF,4 ALAN E. MARK,4 HERMAN J. C. BERENDSEN4 1Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, S-75124 Uppsala, Sweden 2Stockholm Bioinformatics Center, SCFAB, Stockholm University, SE-10691 Stockholm, Sweden 3Max-Planck Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany 4Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands Received 12 February 2005; Accepted 18 March 2005 DOI 10.1002/jcc.20291 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simula- tions. The package includes about 100 utility and analysis programs. -
Aqueous Pka Prediction for Tautomerizable Compounds Using Equilibrium Bond Lengths
ARTICLE https://doi.org/10.1038/s42004-020-0264-7 OPEN Aqueous pKa prediction for tautomerizable compounds using equilibrium bond lengths Beth A. Caine1,2, Maddalena Bronzato3, Torquil Fraser3, Nathan Kidley3, Christophe Dardonville 4 & ✉ Paul L.A. Popelier 1,2 1234567890():,; The accurate prediction of aqueous pKa values for tautomerizable compounds is a formidable task, even for the most established in silico tools. Empirical approaches often fall short due to a lack of pre-existing knowledge of dominant tautomeric forms. In a rigorous first-principles approach, calculations for low-energy tautomers must be performed in protonated and deprotonated forms, often both in gas and solvent phases, thus representing a significant computational task. Here we report an alternative approach, predicting pKa values for her- bicide/therapeutic derivatives of 1,3-cyclohexanedione and 1,3-cyclopentanedione to within just 0.24 units. A model, using a single ab initio bond length from one protonation state, is as accurate as other more complex regression approaches using more input features, and outperforms the program Marvin. Our approach can be used for other tautomerizable spe- cies, to predict trends across congeneric series and to correct experimental pKa values. 1 Department of Chemistry, University of Manchester, Manchester, UK. 2 Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, UK. 3 Syngenta AG, Jealott’s Hill, Warfield, Bracknell RG42 6E7, UK. 4 Instituto de Química Médica, IQM–CSIC, C/Juan de la Cierva 3, Madrid 28006, Spain. ✉ email: [email protected] COMMUNICATIONS CHEMISTRY | (2020) 3:21 | https://doi.org/10.1038/s42004-020-0264-7 | www.nature.com/commschem 1 ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-020-0264-7 pproximately 21% of the compounds that make up (http://vcclab.org), Marvin (http://www.chemaxon.com) and pharmaceutical databases are said to exist in two or more Pallas (www.compudrug.com)) on 248 compounds of the Gold A 1 12 tautomeric forms . -
An Efficient Hardware-Software Approach to Network Fault Tolerance with Infiniband
An Efficient Hardware-Software Approach to Network Fault Tolerance with InfiniBand Abhinav Vishnu1 Manoj Krishnan1 and Dhableswar K. Panda2 Pacific Northwest National Lab1 The Ohio State University2 Outline Introduction Background and Motivation InfiniBand Network Fault Tolerance Primitives Hybrid-IBNFT Design Hardware-IBNFT and Software-IBNFT Performance Evaluation of Hybrid-IBNFT Micro-benchmarks and NWChem Conclusions and Future Work Introduction Clusters are observing a tremendous increase in popularity Excellent price to performance ratio 82% supercomputers are clusters in June 2009 TOP500 rankings Multiple commodity Interconnects have emerged during this trend InfiniBand, Myrinet, 10GigE …. InfiniBand has become popular Open standard and high performance Various topologies have emerged for interconnecting InfiniBand Fat tree is the predominant topology TACC Ranger, PNNL Chinook 3 Typical InfiniBand Fat Tree Configurations 144-Port Switch Block Diagram Multiple leaf and spine blocks 12 Spine Available in 144, 288 and 3456 port Blocks combinations 12 Leaf Blocks Multiple paths are available between nodes present on different switch blocks Oversubscribed configurations are becoming popular 144-Port Switch Block Diagram Better cost to performance ratio 12 Spine Blocks 12 Spine 12 Spine Blocks Blocks 12 Leaf 12 Leaf Blocks Blocks 4 144-Port Switch Block Diagram 144-Port Switch Block Diagram Network Faults Links/Switches/Adapters may fail with reduced MTBF (Mean time between failures) Fortunately, InfiniBand provides mechanisms to handle -
Spoken Tutorial Project, IIT Bombay Brochure for Chemistry Department
Spoken Tutorial Project, IIT Bombay Brochure for Chemistry Department Name of FOSS Applications Employability GChemPaint GChemPaint is an editor for 2Dchem- GChemPaint is currently being developed ical structures with a multiple docu- as part of The Chemistry Development ment interface. Kit, and a Standard Widget Tool kit- based GChemPaint application is being developed, as part of Bioclipse. Jmol Jmol applet is used to explore the Jmol is a free, open source molecule viewer structure of molecules. Jmol applet is for students, educators, and researchers used to depict X-ray structures in chemistry and biochemistry. It is cross- platform, running on Windows, Mac OS X, and Linux/Unix systems. For PG Students LaTeX Document markup language and Value addition to academic Skills set. preparation system for Tex typesetting Essential for International paper presentation and scientific journals. For PG student for their project work Scilab Scientific Computation package for Value addition in technical problem numerical computations solving via use of computational methods for engineering problems, Applicable in Chemical, ECE, Electrical, Electronics, Civil, Mechanical, Mathematics etc. For PG student who are taking Physical Chemistry Avogadro Avogadro is a free and open source, Research and Development in Chemistry, advanced molecule editor and Pharmacist and University lecturers. visualizer designed for cross-platform use in computational chemistry, molecular modeling, material science, bioinformatics, etc. Spoken Tutorial Project, IIT Bombay Brochure for Commerce and Commerce IT Name of FOSS Applications / Employability LibreOffice – Writer, Calc, Writing letters, documents, creating spreadsheets, tables, Impress making presentations, desktop publishing LibreOffice – Base, Draw, Managing databases, Drawing, doing simple Mathematical Math operations For Commerce IT Students Drupal Drupal is a free and open source content management system (CMS). -
The Norbornene Mystery Revealed
Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 Electronic Supporting Information The Norbornene Mystery Revealed Stephan N. Steinmann, Pierre Vogel, Yirong Mo, and Clémence Corminboeuf* To be published in Chemical Communication. The supplementary Data were prepared on June 22, 2010 and contains 14 pages. Contents: Method Section Figure S1: Molecules used for the comparisons between known experimental 1 Jcc-coupling constants (in Hertz) and the computed values. 1 Table S1 JCC-coupling comparison between experiment and computation. 1 Table S2: JCC-coupling constants for all compounds considered. Cartesian coordinates: B3LYP/6-311+G(d,p) (BLW and canonical) optimized structures for all compounds considered in the article. Contents: Computational Details 1 Table S1: JCC-coupling constants for all compounds considered. 1 Figure S1: Molecules for JCC-coupling comparison between experiment and computation. 1 Table S2: JCC-coupling comparison between experiment and computation. B3LYP/6-311+G(d,p) (BLW and canonical) optimized structures for all compounds considered in the article. Computational Details Standard geometries were optimized at the B3LYP1, 2/6-311+G** level using Gaussian 09.3 The BLW- constrained B3LYP/6-311+G** geometries (‘loc’) were optimized using a modified version of GAMESS-US (release 2008)4interfaced with the BLW-module.5, 6 Both the density and the J-coupling constants have been computed at the PBE7/IGLO-III level in Dalton 2.0.8 The BLW-eigenvalues and eigenvectors were optimized at the given DFT level with the SCF module of Dalton, SIRIUS, that has been interfaced with the BLW- module. -
Computational Chemistry for Chemistry Educators Shawn C
Volume 1, Issue 1 Journal Of Computational Science Education Computational Chemistry for Chemistry Educators Shawn C. Sendlinger Clyde R. Metz North Carolina Central University College of Charleston Department of Chemistry Department of Chemistry and Biochemistry 1801 Fayetteville Street, 66 George Street, Durham, NC 27707 Charleston, SC 29424 919-530-6297 843-953-8097 [email protected] [email protected] ABSTRACT 1. INTRODUCTION In this paper we describe an ongoing project where the goal is to The majority of today’s students are technologically savvy and are develop competence and confidence among chemistry faculty so often more comfortable using computers than the faculty who they are able to utilize computational chemistry as an effective teach them. In order to harness the student’s interest in teaching tool. Advances in hardware and software have made technology and begin to use it as an educational tool, most faculty research-grade tools readily available to the academic community. members require some level of instruction and training. Because Training is required so that faculty can take full advantage of this chemistry research increasingly utilizes computation as an technology, begin to transform the educational landscape, and important tool, our approach to chemistry education should reflect attract more students to the study of science. this. The ability of computer technology to visualize and manipulate objects on an atomic scale can be a powerful tool to increase both student interest in chemistry as well as their level of Categories and Subject Descriptors understanding. Computational Chemistry for Chemistry Educators (CCCE) is a project that seeks to provide faculty the J.2 [Physical Sciences and Engineering]: Chemistry necessary knowledge, experience, and technology access so that they can begin to design and incorporate computational approaches in the courses they teach. -
Starting SCF Calculations by Superposition of Atomic Densities
Starting SCF Calculations by Superposition of Atomic Densities J. H. VAN LENTHE,1 R. ZWAANS,1 H. J. J. VAN DAM,2 M. F. GUEST2 1Theoretical Chemistry Group (Associated with the Department of Organic Chemistry and Catalysis), Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands 2CCLRC Daresbury Laboratory, Daresbury WA4 4AD, United Kingdom Received 5 July 2005; Accepted 20 December 2005 DOI 10.1002/jcc.20393 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: We describe the procedure to start an SCF calculation of the general type from a sum of atomic electron densities, as implemented in GAMESS-UK. Although the procedure is well known for closed-shell calculations and was already suggested when the Direct SCF procedure was proposed, the general procedure is less obvious. For instance, there is no need to converge the corresponding closed-shell Hartree–Fock calculation when dealing with an open-shell species. We describe the various choices and illustrate them with test calculations, showing that the procedure is easier, and on average better, than starting from a converged minimal basis calculation and much better than using a bare nucleus Hamiltonian. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 926–932, 2006 Key words: SCF calculations; atomic densities Introduction hrstuhl fur Theoretische Chemie, University of Kahrlsruhe, Tur- bomole; http://www.chem-bio.uni-karlsruhe.de/TheoChem/turbo- Any quantum chemical calculation requires properly defined one- mole/),12 GAMESS(US) (Gordon Research Group, GAMESS, electron orbitals. These orbitals are in general determined through http://www.msg.ameslab.gov/GAMESS/GAMESS.html, 2005),13 an iterative Hartree–Fock (HF) or Density Functional (DFT) pro- Spartan (Wavefunction Inc., SPARTAN: http://www.wavefun.