The Extraordinary Phases of Liquid 3He*
The extraordinary phases of liquid 3He* David M. Lee Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853 [S0034-6861(97)00403-0] INTRODUCTION peratures where the thermal de Broglie wavelength be- comes greater than the mean interparticle distance. Modern low-temperature physics began with the liq- A remarkable phase transition was discovered in liq- uefaction of helium by Kamerlingh Onnes (1908) and uid 4He under saturated vapor pressure at 2.17 K. As the discovery of superconductivity (Kamerlingh Onnes, the liquid cooled through this temperature, all boiling 1911) at the University of Leiden in the early part of the ceased and the liquid became perfectly quiescent (At- 20th century. There were really two surprises that came kins, 1959). We now know that this effect occurs because out of this early work. One was that essentially all of the the liquid helium becomes an enormously good heat electrical resistance of metals like mercury, lead, and tin conductor so that thermal inhomogeneities which can abruptly vanished at definite transition temperatures. give rise to bubble nucleation are absent. The specific This was the first evidence for superconductivity. The 4 other surprise was that, in contrast to other known liq- heat vs temperature curve of liquid He was shaped like uids, liquid helium never solidified under its own vapor the Greek letter lambda, characteristic of a second- pressure. Helium is an inert gas, so that the interactions order phase transition at 2.17 K. This temperature is between the helium atoms are very weak; thus the liquid called the lambda point (Atkins, 1959; Keesom and Clu- phase itself is very weakly bound and the normal boiling sius, 1932; Keesom and Keesom, 1932).
[Show full text]