Mushrooms in Cyprus White

Total Page:16

File Type:pdf, Size:1020Kb

Mushrooms in Cyprus White General Reproduction of mushrooms Lactarius deliciosus “Saffron Milk Cap” Pleurotus eryngii var. ferulae The so called “Giant Fennel Mushroom”. Mushrooms belong to a larger group of organisms, known as Mushrooms in Nature are reproduced by spores which are A common and delicious fungi. Unlike the chlorophyll bearing plants, fungi can produced in vast numbers on the fruit body. At the mushroom of Cyprus. It A common mushroom of not photosynthesize, therefore, they have to feed upon typical umbrella shaped mushrooms, the spores are born appears during autumn in Cyprus. It is a very deli- organic substances produced by other organisms. on the gills situated on the lower surface of the cap pine forests and shrub- cious and plummy mushro- beries. om. It appears during A few years ago, fungi were considered to belong to the (figure) and when the fruit body matures, they are spring and autumn growing plant kingdom. Today, scientists classify them in their released. on the roots of the Giant own unique kingdom. The number of their species in nature Fennel (Ferula communis). is estimated around 1.500.000. Of them, only about Coprinus comatus “Shaggy Ink-cap” 75.000 have been scientifically studied so far. A common mushroom of Fungi are classified into three large categories, Tricholoma caligatum Cyprus. It is edible al- according to their feeding habits: saprophytes, though Cypriots are not A delicious and plummy parasites and symbiotic. Saprophytic fungi depend on the very fond of it. It ap- mushroom. It appears in decomposion of dead organic matter of plant or animal pears during rainy au- autumn in pine forests. origin. Parasitic fungi live upon other living organisms, tumns mainly across mea- sucking nutrients from them. Many fungi that are known dows, forest road edges to cause diseases to humans, animals and plants, fall in and recently disturbed soil. this category. Finally, symbiotic fungi have developed a special relationship with other organisms, which is When the spores reach a proper substratum e.g. dead Lactarius torminosus “Woolly Milk-cap” beneficial to both organisms. The fungus obtains Agaricus campestris “Field Mushroom” readymade organic substances, but also helps its partner organic matter, with suitable moisture and temperature A poisonous mushroom espe- Common edible mushroom. It in various ways. In the case of plants for example, a conditions, they grow producing thread-like structures cially if consumed raw. It appears during autumn in special symbiosis is achieved with fungi called called mycelia. A mycelium in order to be productive, looks like “Saffron Milk gardens and fields. ‘myccorrhiza’. Through this symbiosis, the plants, among apart from suitable environmental conditions, it also Cap”, however, at the others, are supported in the absorption of mineral needs two compatible mycelia derived from spores with upper part of the cap it substances from the ground. Many mushrooms belong to different polarity to join. bears hairs and the color the category of saprophytic fungi, while others are of the latex remains parasitic or symbiotic. Mushrooms in Cyprus white. In contrary, the “Saffron Milk Cap” is glabrous and Morchella conica “Morel” the latex is orange-coloured. Unfortunately, mushrooms have not been properly studied A delicious and plummy What mushrooms are in Cyprus until now with the exception of a small number mushroom. It appears du- Suilus granulatus Ancient people could not explain the apparently sudden of species that have been identified by the Forestry ring spring in recently appearance of mushrooms. They have often linked it with Department. However, it is expected that in the follo- burned areas, forests, A common mushroom of various phenomena like lightning, or traces of the wing years this gap in our knowledge will be filled. meadows and wasteland. Cyprus. Although edible, footsteps of witches or even with evil actions. it is not considered of In many places of Cyprus ecological conditions are good quality. It appears Ancient Greeks used to know pretty well the suitable for mushroom growth. Most species appear in in autumn in pine forests. characteristics of some mushroom species and they could late autumn, when there is adequate rainfall and the distinguish between edible and poisonous species. The use temperature is at appropriate levels. The appearance of Russula delica “Milk-white Russula” of mushrooms as food was very important during times of mushrooms continues throughout winter, especially at low A common mushroom of war and starvation, especially for the ordinary people. and medium altitudes and in spring as well. Not rarely, Cyprus. Although edible, Chroogomphus rutilus Mushrooms as we see them above soil are the visible part some species appear for short periods of time in summer, it is not appreciated as Edible mushroom but not of a group of fungi, specifically the fruiting body of the at the highest altitudes, after strong rainfalls that much as the “Saffron Milk very much recommended. fungus. The spores, that correspond to the seeds of preserve humidity of organic matter for at least 15 - 20 Cap”. It appears in autumn It is unusual in Cyprus and flowering plants, are found on this part of the fungus. days. Some of the most common mushrooms of the various in pine forests. appears in autumn in pine The classification of a fungus as a mushroom is not based habitats of Cyprus are presented in the following pages, forests. on taxonomic criteria, but rather on the presence of the along with certain basic information for each. globose or umbrella-shaped fruit body. Ganoderma applanatum ”Bracket” following rules should be followed: important to know that in case of mushroom poisoning, we This is a hard, woody and a. Only edible mushrooms should be collected and as such should immediately seek medical advice. Our first actions perennial mushroom which should be considered the mushrooms that are should be the following: parasites (also saprophy- traditionally collected. Experiments and speculations G Cause vomit. tes) on planes and other like “edible mushrooms are those which are affected G Keep vomit so that the kind of poison is identified and trees. Due to its large by worms” or “those mushrooms that produce a milky to proceed with the right therapy. size the production of liquid when cut are poisonous” are very dangerous and spores reaches astronomic can be fatal. G Record the details of the development of symptoms. numbers. b. Only the mature fruit bodies that have already given out their spores for reproduction should be Epilogue Volvariella speciosa var. gloiocephala collected; the young, unripe mushrooms should be left Mushrooms like every other living organism, have their intact. It is an edible mushroom of own, very important role to play in nature. We therefore Cyprus. In the past it was c. The removal of organic matter should be avoided since have to appreciate their value and importance and we a common species but it results in the drying of the mycelia and their should act in such a way so that we contribute to their presently it seems that exposure to the sun and air. Mushrooms should be protection. The best way to show our appreciation is to its numbers have been carefully removed either by cutting them off with a avoid disturbance of their habitats by handling them reduced. It appears du- small knife or pulling them off the ground by moving correctly. The key to their protection is the understan- ring autumn in gardens and them back and forth. ding of the natural environment’s functions, something that requires both study and training. fields. d. The use of a rake to remove the organic matter over a large area so that a number of mushrooms are brought Rhizopogon luteolus to surface is unacceptable and catastrophic. This method damages the reproduction process of The fruit bodies of this mushrooms in the affected area and shows lack of fungus are spherical and respect to nature and the ecosystem. The information contained in this leaflet is general and should are produced below the not be used as an identification guide for mushrooms. surface of the ground emerging during maturity Mushrooms edibility stage. Although edible at Mushrooms are divided into three groups according to the younger stage it is their edibility: the edible ones, the uncertain and the not considered of much importance. It appears in autumn poisonous. in pine forests. Edible are the mushrooms that when consumed do not affect human health. The safer way to identify them is the verification of their species by an experienced The Collection of mushrooms collector. The use of books for the identification of species is acceptable under certain conditions, but can Cypriots are generally keen collectors of wild mushrooms also be dangerous. Empirical methods such as taste and as they consider them very delicious titbits. Not rarely smell can be even more dangerous, since some poisonous P r they drive along great distances to reach a location i mushrooms have pleasant taste and smell. Uncertain are n t e d where mushrooms have appeared. It is noted that certain the species that when eaten cause disorders to health. o n r village inhabitants sell them and receive a good, e The severity of symptoms varies from case to case. c y c l additional yearly income. The most commonly collected e d Even though the very poisonous species of mushrooms are p a mushroom is ‘Saffron Milk Cap’ (Lactarius deliciosus), the p e ‘Milk-white Russula’ (Russula delica) and the so called few, they have caused, not unjustifiably, fear amongst r ‘mushroom of the Giant Fennel’ (Pleurotus eryngii var. people. Their resemblance to certain edible species is in ferula). The less collected ones are the Tricholoma some cases great and the collector may very easily be caligatum, morels (Morchella sp.), and ‘Field Mushrooms’ confused.
Recommended publications
  • An Antiproliferative Ribonuclease from Fruiting Bodies of the Wild Mushroom Russula Delica
    J. Microbiol. Biotechnol. (2010), 20(4), 693–699 doi: 10.4014/jmb.0911.11022 First published online 30 January 2010 An Antiproliferative Ribonuclease from Fruiting Bodies of the Wild Mushroom Russula delica Zhao, Shuang1,2, Yong Chang Zhao3, Shu Hong Li3, Guo Qing Zhang1, He Xiang Wang1*, and Tzi Bun Ng4* 1State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China 2Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China 3Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming 650223, China 4School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Received: November 20, 2009 / Revised: December 21, 2009 / Accepted: December 25, 2009 An antiproliferative ribonuclease with a new N-terminal The mushroom family Russulaceae is composed of two sequence was purified from fruiting bodies of the edible genera, Russula and Lactarius, the former being the wild mushroom Russula delica in this study. This novel majority. To date, only a ribonuclease [34] and a protein ribonuclease was unadsorbed on DEAE-cellulose, but with anti-HIV-1 reverse transcriptase activity [38] have absorbed on SP-Sepharose and Q-Sepharose. It had a been isolated from mushrooms of the genus Russula. Only molecular mass of 14 kDa, as judged by fast protein liquid four reports on Lactarius lectin [6, 10, 24, 26] and one chromatography on Superdex 75 and SDS-polyacrylamide report on a Lactarius enzyme [17] are available. Russula gel electrophoresis. Its optimal pH and optimal temperature delica is a wild mushroom on which few literatures have were pH 5 and 60oC, respectively.
    [Show full text]
  • Lactarius Deliciosus
    © Saffron milk cap (Lactarius deliciosus) The saffron milk cap mushroom (Lactarius deliciosus) has been eaten in Europe since Roman times and is still greatly appreciated around the Meditteranean, particularly Spain, Portugal, Germany and elsewhere, for its fruity aroma and a “crisp flesh with nutty, earthy, and woodsy flavours”. It made the accidental journey to Australia probably on the roots of imported trees by early European settlers and is found in pine forests throughout the southeastern part of the country where it is collected for the restaurant and gourmet trade. It is easily recognised by the saffron-coloured sap it bleeds when damaged, the concentric rings of salmon-coloured blotches on the surface of the cap, and its tendency to turn green with age or after being handled. Grade 1 saffron milk cap typically wholesales for NZ$30 and A$40/kg whereas in exclusive shops in Europe prices can be higher. dry summers and removing low branches. The profitability of the plantation can be further boosted if the mushrooms are harvested and transported to the market corectly. Woven baskets with the mushrooms upside down (left) are used by a wild mushroom collectors near Melbourne. The first New Zealand saffron milk cap mycorrhized trees were planted in August 2000 and mushrooms were produced in coastal North Otago after only 18 months. The first commercial crop was sold in 2003 by Hannes and Theres Krummenacher near Nelson (Neudorf Mushrooms). In 2009 this plantation averaged 6 kg per tree and the total mushrooms produced per tree since planting far exceeds the value of the timber produced by a 30 year old well pruned radiata pine.
    [Show full text]
  • Non-Wood Forest Products in Europe
    Non-Wood Forest Products in Europe Ecologyand management of mushrooms, tree products,understory plants andanimal products Outcomes of theCOST Action FP1203 on EuropeanNWFPs Edited by HARALD VACIK, MIKE HALE,HEINRICHSPIECKER, DAVIDE PETTENELLA &MARGARIDA TOMÉ Bibliographicalinformation of Deutsche Nationalbibliothek [the German National Library] Deutsche Nationalbibliothek [the German National Library] hasregisteredthispublication in theGermanNationalBibliography. Detailed bibliographicaldatamay be foundonlineathttp: //dnb.dnb.de ©2020Harald Vacik Please cite this referenceas: Vacik, H.;Hale, M.;Spiecker,H.; Pettenella, D.;Tomé, M. (Eds)2020: Non-Wood Forest Products in Europe.Ecology andmanagementofmushrooms, tree products,understoryplantsand animal products.Outcomesofthe COST Action FP1203 on EuropeanNWFPs, BoD, Norderstedt,416p. Coverdesign, layout,produced andpublished by:BoD –Books on Demand GmbH, In de Tarpen 42,22848 Norderstedt ISBN:978-3-7526-7529-0 Content 5 1. Introduction.......................................................11 1.1Non-wood forest products.....................................11 1.2Providingevidencefor NWFP collection andusage within Europe ......................................14 1.3Outline of thebook...........................................15 1.4References ...................................................17 2. Identificationand ecologyofNWFPspecies........................19 2.1Introduction.................................................19 2.2 Theidentification of NWFP in Europe. ........................
    [Show full text]
  • <I>Russula Atroaeruginea</I> and <I>R. Sichuanensis</I> Spp. Nov. from Southwest China
    ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/124.173 Volume 124, pp. 173–188 April–June 2013 Russula atroaeruginea and R. sichuanensis spp. nov. from southwest China Guo-Jie Li1,2, Qi Zhao3, Dong Zhao1, Shuang-Fen Yue1,4, Sai-Fei Li1, Hua-An Wen1a* & Xing-Zhong Liu1b* 1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, China 4College of Life Science, Capital Normal University, Xisihuanbeilu 105, Haidian District, Beijing 100048, China * Correspondence to: a [email protected] b [email protected] Abstract — Two new species of Russula are described from southwestern China based on morphology and ITS1-5.8S-ITS2 rDNA sequence analysis. Russula atroaeruginea (sect. Griseinae) is characterized by a glabrous dark-green and radially yellowish tinged pileus, slightly yellowish context, spores ornamented by low warts linked by fine lines, and numerous pileocystidia with crystalline contents blackening in sulfovanillin. Russula sichuanensis, a semi-sequestrate taxon closely related to sect. Laricinae, forms russuloid to secotioid basidiocarps with yellowish to orange sublamellate gleba and large basidiospores with warts linked as ridges. The rDNA ITS-based phylogenetic trees fully support these new species. Key words — taxonomy, Macowanites, Russulales, Russulaceae, Basidiomycota Introduction Russula Pers. is a globally distributed genus of macrofungi with colorful fruit bodies (Bills et al. 1986, Singer 1986, Miller & Buyck 2002, Kirk et al.
    [Show full text]
  • Preliminary Investigations of the Content And
    R-09 PRELIMINARY INVESTIGATIONS OF THE CONTENT AND LOCALIZATION OF CHITIN IN SELECTED SPECIES OF PILEUS FUNGI Janina Fiema, Janusz Kalbarczyk1, Bernarda Piskorz–Bińczycka2 The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland 1 Fruits and Vegetables Processing Department, Agriculture Academy, ul. Skromna 8, 20-704 Lublin, Poland 2 Faculty of Biology and Agriculture, University of Rzeszów, ul. Ćwiklińskiej, Rzeszów, Poland 1. Introduction From literature data concerning the level of the content of radioactive cesium (137Cs) and potassium (40K) in the fungi it follows that Xerocomus badius was one of the more polluted species of fungi in Poland (data from the year 1998) [1]. It will be interesting to explain the existing differentiation as well as the protective mechanism among the various fungi against the environmental pollution. From the authors’ own investigations [4, 5] as well as from other literature data it follows that looking for an answer should be concentrated on the investigation of the structure of the cell walls, which form a barrier between the inside of the cell and the outer environment especially on such parts of the component walls – certain polysaccharides such as chitin and chitosan, From the recent reports it is already known that: 1) chitosan may be the sorbent of noble metals [2]. 2) absorption of toxic substances by the mycorrhize fungi is related with the composition of their cell walls [3]. 3) increased content of chitin in the cell walls of Aspergillus giganteus mut. alba in cultures grown in light [4, 5] protects the fungi against the detrimental influence of metals [6].
    [Show full text]
  • Phd. Thesis Sana Jabeen.Pdf
    ECTOMYCORRHIZAL FUNGAL COMMUNITIES ASSOCIATED WITH HIMALAYAN CEDAR FROM PAKISTAN A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY by SANA JABEEN DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN JUNE 2016 TABLE OF CONTENTS CONTENTS PAGE NO. Summary i Dedication iii Acknowledgements iv CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 5 Aims and objectives 11 CHAPTER 3 Materials and methods 12 3.1. Sampling site description 12 3.2. Sampling strategy 14 3.3. Sampling of sporocarps 14 3.4. Sampling and preservation of fruit bodies 14 3.5. Morphological studies of fruit bodies 14 3.6. Sampling of morphotypes 15 3.7. Soil sampling and analysis 15 3.8. Cleaning, morphotyping and storage of ectomycorrhizae 15 3.9. Morphological studies of ectomycorrhizae 16 3.10. Molecular studies 16 3.10.1. DNA extraction 16 3.10.2. Polymerase chain reaction (PCR) 17 3.10.3. Sequence assembly and data mining 18 3.10.4. Multiple alignments and phylogenetic analysis 18 3.11. Climatic data collection 19 3.12. Statistical analysis 19 CHAPTER 4 Results 22 4.1. Characterization of above ground ectomycorrhizal fungi 22 4.2. Identification of ectomycorrhizal host 184 4.3. Characterization of non ectomycorrhizal fruit bodies 186 4.4. Characterization of saprobic fungi found from fruit bodies 188 4.5. Characterization of below ground ectomycorrhizal fungi 189 4.6. Characterization of below ground non ectomycorrhizal fungi 193 4.7. Identification of host taxa from ectomycorrhizal morphotypes 195 4.8.
    [Show full text]
  • A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms
    International Journal of Environmental Research and Public Health Review A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms 1, 2,3, Dagmara Strumi ´nska-Parulska * and Jerzy Falandysz y 1 Toxicology and Radiation Protection Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland 2 Environmental Chemistry & Ecotoxicology Laboratory, Faculty of Chemistry, University of Gda´nsk, 80-308 Gda´nsk,Poland; [email protected] 3 Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia * Correspondence: [email protected]; Tel.: +48-58-5235254 Jerzy Falandysz is visiting professor at affiliation 3. y Received: 22 September 2020; Accepted: 3 November 2020; Published: 6 November 2020 Abstract: Alpha-emitting radioisotopes are the most toxic among all radionuclides. In particular, medium to long-lived isotopes of the heavier metals are of the greatest concern to human health and radiological safety. This review focuses on the most common alpha-emitting radionuclides of natural and anthropogenic origin in wild mushrooms from around the world. Mushrooms bio-accumulate a range of mineral ionic constituents and radioactive elements to different extents, and are therefore considered as suitable bio-indicators of environmental pollution. The available literature indicates that the natural radionuclide 210Po is accumulated at the highest levels (up to 22 kBq/kg dry weight (dw) in wild mushrooms from Finland), while among synthetic nuclides, the highest levels of up to 53.8 Bq/kg dw of 239+240Pu were reported in Ukrainian mushrooms. The capacity to retain the activity of individual nuclides varies between mushrooms, which is of particular interest for edible species that are consumed either locally or, in some cases, also traded on an international scale.
    [Show full text]
  • Prospecting Russula Senecis: a Delicacy Among the Tribes of West Bengal
    Prospecting Russula senecis: a delicacy among the tribes of West Bengal Somanjana Khatua, Arun Kumar Dutta and Krishnendu Acharya Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India ABSTRACT Russula senecis, a worldwide distributed mushroom, is exclusively popular among the tribal communities of West Bengal for food purposes. The present study focuses on its reliable taxonomic identification through macro- and micro-morphological features, DNA barcoding, confirmation of its systematic placement by phylogenetic analyses, myco-chemicals and functional activities. For the first time, the complete Internal Transcribed Spacer region of R. senecis has been sequenced and its taxo- nomic position within subsection Foetentinae under series Ingratae of the subgen. Ingratula is confirmed through phylogenetic analysis. For exploration of its medic- inal properties, dried basidiocarps were subjected for preparation of a heat stable phenol rich extract (RusePre) using water and ethanol as solvent system. The an- tioxidant activity was evaluated through hydroxyl radical scavenging (EC50 5 µg/ml), chelating ability of ferrous ion (EC50 0.158 mg/ml), DPPH radical scavenging (EC50 1.34 mg/ml), reducing power (EC50 2.495 mg/ml) and total antioxidant activity methods (13.44 µg ascorbic acid equivalent/mg of extract). RusePre exhibited an- timicrobial potentiality against Listeria monocytogenes, Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, diVerent parameters were tested to investigate its chemical composition, which revealed the presence of appreciable quantity of phenolic compounds, along with carotenoids and ascorbic acid. HPLC- UV fingerprint indicated the probable existence of at least 13 phenolics, of which 10 were identified (pyrogallol > kaempferol > quercetin > chlorogenic acid > ferulic Submitted 29 November 2014 acid, cinnamic acid > vanillic acid > salicylic acid > p-coumaric acid > gallic acid).
    [Show full text]
  • Researches on Russulaceous Mushrooms-An Appraisal Reported to Provide Some Non-Nutritional Benefits to Tree 1932, 1940) and Beardslee (1918)
    63 KAVAKA47 : 63 - 82 (2016) Researches on Russulaceous Mushrooms-AnAppraisal N.S.Atri,Samidha Sharma* , Munruchi Kaur Sainiand Kanad Das ** Department of Botany, PunjabiUniversity, Patiala 147002, Punjab, India. *Department of Botany, Arya College, Ludhiana 141001, Punjab, India. **Botanical Survey of India, Cryptogamic Unit, P.O. BotanicGarden, Howrah 711103, India Corresponding author email: [email protected] (Submitted onAugust 10, 2016 ;Accepted on October 2, 2016) ABSTRACT Russulaceae is one among the large families of the basidiomycetous fungi. Some significant studies during the last decade on their systematics and molecularphylogenyresulted in splittingof well knownmilkcapgenusLactarius s.l.andinclusionof number of gastroid and resupinate members under its circumscription. Presently, there are seven genera (including agaricoid, gasteroid and resupinate members) in this family viz. RussulaPers. , Lactarius Pers. , Lactifluus (Pers.) Roussel, Cystangium Singer & A.H. Smith , Multifurca Buyck & Hofst., Boidinia Stalper & HjortstamandPseudoxenasma K.H.Larss.&Hjortstamspreadover 1248+ recognisedspeciestheworldover.Outof atotalofabout 259 + species/taxaofRussulacousmushrooms,146taxaofRussula ,83taxaof Lactarius ,27taxaof Lactifluus ,2speciesof Boidinia and1speciesof Multifurca are documented from India. In this manuscript an appraisal of the work done on various aspects of the members of the family Russulaceae including their taxonomic, molecular,phylogenetic, scanning electron microscopic, ectomycorrhizal, nutritional and nutraceutical aspects has been attempted. Keywords: Russulaceae, taxonomy, phylogeny, SEM, ECM, nutritional, nutraceutical, review INTRODUCTION taxa ofRussula and 83 taxa of Lactarius, 27 taxa of Lactifluus (Pers.) Roussel are known. (Atri et al ., 1994; Das and Sharma, The familyRussulaceae Lotsy is one of the 12 families under 2005; Bhattet al ., 2007; Das 2009; Das et al ., 2010, 2013, orderRussulales Krisel ex P.M. Kirk, P.F. Cannon & J.C. 2015; Das and Verbeken, 2011, 2012; Lathaet al ., 2016; David (Kirket al ., 2008).
    [Show full text]
  • Mushrooms Russia and History (Pdf)
    Mushrooms Russia and History by Valentina Pavlovna Wasson and R. Gordon Wasson Volume I and II Manufactured in Italy for the authors and Pantheon Books Inc. 333, Sixth Avenue, New York 14, N. Y. © 1957 by R. Gordon Wasson original text: http://www.newalexandria.org/archive/MUSHROOMS%20RUSSIA%20AND%20HISTORY%20Volume%201.pdf backup source: http://www.psilosophy.info/resources/MUSHROOMS%20RUSSIA%20AND%20HISTORY%20Volume%201.pdf original text: http://www.newalexandria.org/archive/MUSHROOMS%20RUSSIA%20AND%20HISTORY%20Volume%202.pdf backup source: http://www.psilosophy.info/resources/MUSHROOMS%20RUSSIA%20AND%20HISTORY%20Volume%202.pdf Changes to this edition: 1. Cyrillic has been added to the first occurrence of a simplified Russian pronunciation of a word. For example togrib , cyrillic is added in parenthesis - (гриб). 2. In chapter I. Mushrooms and the Russians, where authors mention about folk names for mushrooms, actual Latin name has been found and inserted into square brackets (but beside Appendix II where authors do this by themselves) for most of this names. Thus the name originally presented as volnushki will be volnushki (волнушки) [Lactarius torminosus]. 3. Footnotes are numbered continuously, contrary to original version where footnote number starts from 1 on each page. 4. Latin names have been italicized. 5. Some latin synonyms are actuallized beneath plates, eg. Psalliota campestris Fr. ex L. has in description additionaly [Agaricus campestris (Bull.)]. 6. Polish official names for mushrooms have been added beneath plates. 7. Couple of notes have been added and labeled as Note to this edition of the book on Psilosophy. 8. Illustrations have been whitened.
    [Show full text]
  • Alba-TFM.Pdf (5.908Mb)
    “ENTRA A DESCUBRIR EL FASCINANTE MUNDO DE LOS HONGOS” ANÁLISIS DEL TURISMO MICOLÓGICO EN ANDALUCÍA Página 1 ÍNDICE 1. INTRODUCCIÓN 4 2. OBJETIVO GENERAL 5 3. OBJETIVOS ESPECÍFICOS 5 4. CONCEPTOS BÁSICOS, DEFINICIÓN DE MICOLOGÍA Y TURISMO MICOLÓGICO 5 5. HISTORIA DE LA MICOLOGÍA 8 6. EVOLUCIÓN DE LA ACTIVIDAD MICOLÓGICA EN ESPAÑA 12 6.1. ESTUDIO DE LA OFERTA DEL TURISMO MICOLÓGICO 13 6.2. ESTUDIO DE LA DEMANDA DEL TURISMO MICOLÓGICO 18 7. DIAGNÓSTICO DEL POTENCIAL DEL MICOTURISMO PARA EL DESARROLLO DEL MEDIO RURAL 20 8. INICIATIVAS DESARROLLADAS PARA EL APROVECHAMIENTO MICOLÓGICO EN ESPAÑA. PRINCIPALES PROYECTOS MICOLÓGICOS EN EL ÁMBITO 23 8.1. INICIATIVASS PUESTAS EN MARCHA PARA LA GESTIÓN ACTIVA DEL RECURSO MICOLÓGICO ANDALUZ 31 9. ESTUDIO DE ANDALUCÍA COMO DESTINO MICOLÓGICO 48 9.1 ANÁLISIS FÍSICO DE ANDALUCÍA, ESCENARIO DE NUESTRO TRABAJO 48 9.2. ANÁLISIS DE LA OFERTA MICOTURÍSTICA EXISTENTE EN ANDALUCÍA 53 9.3. ASOCIACIONES MICOLÓGICAS, SOCIEDADES MICOLÓGICAS, Y AGRUPACIONES MICOLÓGICAS EXISTENTES EN ANDALUCIA 76 10. ANÁLISIS DE UN DESTINO MICOLÓGICO CONSOLIDADO – CASTILLA Y LEÓN 96 11. REPERCUSIÓN SOCIAL Y ECONÓMICA DEL APROVECHAMIENTO MICOLÓGICO 132 12. PROPUESTA DE INICIATIVAS DE DESARROLLO LOCAL A TRAVÉS DE LA PUESTA EN VALOR DEL RECURSO ENDÓGENO 133 12. CONCLUSIONES 136 ANÁLISIS DEL TURISMO MICOLÓGICO EN ANDALUCÍA Página 2 ANEXOS 138 BIBLIOGRAFÍA 172 BIBLIOWEB 173 ANÁLISIS DEL TURISMO MICOLÓGICO EN ANDALUCÍA Página 3 1. INTRODUCCIÓN En los últimos años, la sociedad Española ha experimentado una mayor sensibilidad hacia los temas medioambientales, debiéndose esto a la confluencia de una serie de factores que están cambiando el rumbo del medio rural.
    [Show full text]
  • Effect of Different Drying Method on Volatile Flavor Compounds Of
    rocess P ing od & o T F e f c Huang et al., J Food Process Technol 2016, 7:8 o h l n a o n l r o Journal of Food DOI: 10.4172/2157-7110.1000615 u g o y J ISSN: 2157-7110 Processing & Technology Research Article Open Access Effect of Different Drying Method on Volatile Flavor Compounds of Lactarius deliciosus Qun Huang, Lei Chen, Hong-bo Song*, Feng-ping An, Hui Teng and Mei-yu Xu College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China Abstract The effect of different drying methods on volatile flavor compounds of Lactarius deliciosus was investigated, such as hot- air drying, vacuum freeze drying and sunshine drying. By adopting the solid-phase micro-extraction method, volatile flavor compounds were extracted from lactarius deliciosus, then analyzed and identified through the application of gas chromatography- mass spectrometer (GC-MS). Results indicated that different drying methods could lead to large differences in volatile flavor compounds. Main volatile flavor compounds of fresh Lactarius deliciosus involved acids and aldehydes, which accounted for 86.31%; Hot-air dried Lactarius deliciosus mainly included acids and alkene, which accounted for 87.16%; Lactarius deliciosus dried with vacuum freezed Lactarius deliciosus was mostly composed of acids, esters and aromatic substance, which accounted for 94.74%; Lactarius deliciosus dried with sunshine was constituted by acid and aldehydes, which was as high as 90.67%. Keywords: Lactarius deliciosus; Volatile flavor compounds; Drying deliciosus by extracting with head space solid phase micro extraction method; Gas chromatography-mass spectrometer (GC-MS) (SPME) technique and analyzing with gas chromatography-mass spectrometry (GC-MS).
    [Show full text]