Sns College of Technology

Total Page:16

File Type:pdf, Size:1020Kb

Sns College of Technology SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) DEPARTMENT OF AERONAUTICAL ENGINEERING Subject Code & Name: 16AE409 ROCKETS AND MISSILES Date: 10.07.19 DAY: 07 UNIT: 1: BASICS OF LAUNCH VEHICLES AND MISSILES TOPIC: 7: Various Indian missiles: Astra, Akash, Prithvi, Brahmos Various Indian missiles Prithvi It is India’s first indigenously built tactical “surface to surface” missile. It has a maximum range of 300 Km. It was first test fired in year 1988 from Sriharikota. It was induced into Indian Army in year 1994. Prithvi I is considered as India’s first indigenous ballistic missile. Naval variant of the Prithvi missiles are called Dhanush. The weight of Prithvi missile is about 4.5 to 5 Tons and it is designed to carry warhead of 0.5 Ton. All the variants of Prithvi can carry nuclear warheads. Prithvi I and Prithvi II are based on liquid fuels which increases set-up time before launching thus making these missiles redundant. Prithvi III uses solid fuel which is more reliable as it reduces operational set-up time. Prithvi III has range 350 Km plus which is considerably more than Agni I and Agni II. This is in service from year 2004. Trishul It is a short range “surface to air” missile. It was designed for the primary function of defending naval ships against any missile attack, although it can be used to intercept low flying targets on land also. It has a range of 5 to 9 Km. The weight of the missile is 130 Kg and it can carry warhead up to 5 Kg. It was first successfully test launched in year 1988. This missile has been removed from service in year 2008. Akash The fully mobile Akash Missiles K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES It is a medium range multi target surface to air missile. It has capability of maximum range of 25 Km and altitude of 18 Km. Its primary use is to destroy flying targets in air like Fighter jets, and cruise missiles etc. It was successfully test launched in 1990. This missile was first designed by DRDO and it is being produced by Ordnance factories in collaboration with Bharat Dynamics and Bharat Electronics. Its designed weight is 720 Kg and it can carry war head of 60 Kg. It has inbuilt radar system which is used to intercept not only fighter jets but can also neutralise the cruise missiles. It has a speed range of Mach 3. It is fully mobile system and its launching platform is developed in such a way that it can be fitted both on a wheel and track type vehicle. Brahmos It is named on Indian river Brahmaputra and Russian river Moskva. It earns the reputation of World’s fastest cruise missile. It was developed as a joint venture between DRDO and Russia. It has speed Range of 3 Mach and range of 300 to 500 Km. Its weight is 3 Tons and it can carry 200 KGs of conventional or nuclear warhead. It has three variants- i) land based, ii) Naval based, iii) Air and Submarine based. The land based and Naval based are already inducted in service while the Air and submarine based variants are still in development stage. The land based variant was first test fired in 2001 at Chandipur while the Naval based variant was test fired on 5 March 2008 from INS Rajput. Nirbhay It is India’s indigenously developed subsonic Cruise Missile. Its range is more than 1000 Km. this missile has the flexibility to be launched from land, air and naval base. The unique feature which distinguishes it from others is that it is completely stealth. The first launch of land based variant failed as it diverted from its trajectory. The second launch was successful on 17 Oct 2014. K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES K.NEHRU, M.Tech.,(Ph.D) Assistant Professor 16AE409 ROCKETS AND MISSILES .
Recommended publications
  • DRDO Successfully Tests Armour-Piercing Nag Missiles At
    Tue, 09 July 2019 DRDO successfully tests armour-piercing Nag Missiles at Pokhran range The Defence Acquisition Council in 2018 had approved the procurement of DRDO designed and developed NAG Missile System (NAMIS) at a cost of Rs 524 crore New Delhi: Moving closer toward the induction of the Nag anti-tank guided missiles into the Army, Defence Research and Development Organisation (DRDO) on Sunday carried out three successful test firings of the missiles in the Pokhran firing ranges. "The missiles were test-fired during both day and night on Sunday during the trials. All three tests were successful," DRDO officials said. Government sources said the missile is in the final stages of being inducted into the Army which will use it by mounting them on modified armoured vehicles. The Defence Acquisition Council in 2018 had approved the procurement of DRDO-designed- and-developed NAG Missile System (NAMIS) at a cost of Rs 524 crore. The system includes a third-generation Anti-Tank Guided Missile, the NAG, along with the Missile Carrier Vehicle (NAMICA). The NAG missile is a third-generation anti-tank guided missile, which has top attack capabilities that can effectively engage and destroy all known enemy tanks during both day and night operations. The successful induction of NAG missile into the Army is expected to give a quantum boost to the Army's capability against enemy armour. NAG was one of the first five strategic missiles planned to be developed under the Integrated Missile Development Programme initiated in the 1980s. The other missiles developed under the project include Agni, Prithvi and Akash, and all three have been successfully developed and inducted into the armed forces.
    [Show full text]
  • 0 January to July 2021
    0 www.journalsofindia.com January to July 2021 SCIENCE & TECH ............................................................................................................................................................... 6 1. REUSABLE LAUNCH VEHICLE TECHNOLOGY DEMONSTRATION PROGRAMME(RLV-TD) ................................................. 6 2. GAGANYAAN MISSION ..................................................................................................................................................... 6 3. MARS ORBITER MISSION (MOM) ..................................................................................................................................... 6 4. CHANDRAYAAN MISSION................................................................................................................................................. 7 5. SOLAR MISSION ............................................................................................................................................................... 8 6. ARTEMIS ACCORD ............................................................................................................................................................ 9 7. NATIONAL MISSION ON INTERDISCIPLINARY CYBER-PHYSICAL SYSTEM (NMICPS) ....................................................... 10 8. SMART ANTI-AIRFIELD WEAPON (SAAW) ...................................................................................................................... 10 9. AQUAPONICS ................................................................................................................................................................
    [Show full text]
  • 18Th July to 24Th July, 2021
    O F F I C E R S ' P U L S E Issue no. 08| 18th July to 24th July, 2021 NOTHING GREAT COMES EASY A T A G L A N C E & I N D E P T H . Polity and Social Issues C O V E R A G E . The Hindu Economy The Indian Express International Relations PIB Environment Rajya Sabha TV Science and Tech All India Radio Culture CURRENT AFFAIRS WEEKLY THE PULSE OF UPSC AT YOUR FINGER TIPS 1 News @ a glance POLITY ................................................................................. 3 2) Asian Development Bank ................................... 14 1) Privilege Motion ........................................................ 3 SCIENCE AND TECHNOLOGY ................................. 16 2) Personal Data Protection Bill, 2019 ................ 4 1) AI tool NBDriver ..................................................... 16 3) Mid-Day Meal Scheme ............................................ 5 2) Project 75-I ................................................................ 16 3) Lokpal ............................................................................. 6 DEFENCE .......................................................................... 17 ENVIRONMENT ............................................................... 9 1) Indian Multirole Helicopter .............................. 17 1) Nil to 48 in 20 years; Assam’s Manas sees 2) Akash-NG and MPATGM ..................................... 17 amazing rise in tiger numbers ............................ 9 PIB ANALYSIS................................................................. 20 2) Microplastics in
    [Show full text]
  • SIPRI Yearbook 2018: Armaments, Disarmament and International
    world nuclear forces 267 VI. Indian nuclear forces shannon n. kile and hans m. kristensen India is estimated to have a growing arsenal of 130–40 nuclear weapons (see table 6.7). This figure is based on calculations of India’s inventory of weapon-grade plutonium and the number of operational nuclear-capable delivery systems. India is widely believed to be gradually expanding the size of its nuclear weapon stockpile as well as its infrastructure for producing nuclear warheads. Military fissile material production India’s nuclear weapons are believed to be plutonium-based. The plutonium was produced at the Bhabha Atomic Research Centre (BARC) in Trombay, Mumbai, by the 40-megawatt-thermal (MW(t)) heavy water CIRUS reactor, which was shut down at the end of 2010, and the 100-MW(t) Dhruva heavy water reactor. India operates a plutonium reprocessing plant for military purposes at the BARC.1 India plans to build six fast breeder reactors by the 2030s, which will significantly increase its capacity to produce plutonium that could be used for building weapons.2 An unsafeguarded 500-megawatt-electric (MW(e)) prototype fast breeder reactor (PFBR) is being built at the Indira Gandhi Centre for Atomic Research (IGCAR) complex at Kalpakkam, Tamil Nadu. The PFBR is expected to be commissioned in mid-2018 following a series of technical delays.3 The IGCAR has announced that a fast reactor fuel cycle facility will be built at Kalpakkam to reprocess spent fuel from the PFBR and future fast breeder reactors. The plant is scheduled to be commissioned by 2022.4 India is currently expanding its uranium enrichment capabilities.
    [Show full text]
  • Akash Missile and Economic Growth
    Akash missile and economic growth Why in news? \n\n The indigenously produced Akash missile system will helps modernisation of defence and boosts economic growth. \n\n What are the significance of Akash missile? \n\n \n Akash is a medium-range, surface-to-air missile defence system. \n It is developed by the Defence Research and Development Organisation (DRDO). \n The missile system can target aircraft up to 30 km away, at altitudes up to 18,000 m. \n It consists of a Rohini radar that detects incoming aircraft at ranges out to 120 km and relays the information to a command post. \n It has the capability to "neutralise aerial targets like fighter jets, cruise missiles and air-to-surface missiles" as well as ballistic missiles. \n It is in operational service with the Indian Army and the Indian Air Force. \n \n\n What are the issues with Akash production? \n\n \n The production of Akash missiles is not under single body, DRDO develops only foundational technologies. \n Numerous private sector companies will develop crucial sub-systems. \n While 330 smaller private firms feed into the Akash’s production as Tier-2 and Tier-3 vendors. \n Two defence public sector undertakings Bharat Electronics Ltd (BEL) and Bharat Dynamics Ltd (BDL) will function as “systems integrators” that put the entire system together. \n The Akash production chain stands empty as the defence ministry bargains with BEL over the cost of its next order. \n Due to various norms the indigenous manufacturers face many difficulties in production.
    [Show full text]
  • Current Affairs February 2021
    Page | 1 CURRENT AFFAIRS FEBRUARY 2021 Copyright © by Classic IAS Academy All rights are reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of Classic IAS Academy. Classic IAS Academy |UG 33-34 Ansal Chamber-1Bhikaji Cama Place | New Delhi 110066 011-45069494 | [email protected] | www.classiciasacademy.com Table of Contents Page | 2 1. Global Energy and Environment 23. Private Banks to Participate in Leadership Award Government Business 2. IAF gifts 1971 war helicopter to 24. Cabinet approves President’s Bangladesh Rule in Puducherry 3. Facebook lifts news blockade in 25. ICOLD Symposium on Australia Sustainable Development 4. Opportunities and Challenges 26. ARHMD System for Indian for Bamboo in India Army 5. Guru Ravidas Jayanti 27. Cabinet approves PLI Scheme 6. G20 Central Bank Governors’ for IT hardware & pharma sectors Meet 28. President inaugurates world’s 7. ISRO’s PSLV-C51/Amazonia-1 largest stadium in Gujarat Mission 29. Australia’s oldest Aboriginal 8. Saras Aajeevika Mela-2021 rock Art Starts 30. New Alpine Plant Species 9. NSO’s GDP Forecast- Highlights Discovered 10. CSE’s State of Environment 31. Two Years of PM KISAN Report- Highlights Scheme 11. Significant social media 32. U.S’ International Anti- intermediary corruption Champions Award 12. Task force on river-linking 33. Draft National Migrant Labour approves Policy 13. Pakistan to remain on Grey 34. Japan Appoints Loneliness List of FATF Minister to Check Suicide Rate 14. RBI’s Report on Currency and 35.
    [Show full text]
  • Indian Army Successfully Carries out Trials of Third Generation NAG Missiles
    Sat, 20 July 2019 Indian Army successfully carries out trials of third generation NAG missiles The trials of the missiles, developed by the Defence Research and Development Organisation (DRDO), were conducted between July 7 to July 18, 2019 By Manjeet Singh Negi The Indian Army has successfully carried out its summer user trials of third Generation Anti-Tank Guided Missile NAG at Pokhran Field Firing Ranges. The trials of the missiles, developed by the Defence Research and Development Organisation (DRDO), were conducted between July 7 to July 18, 2019. Defence Minister Rajnath Singh congratulated the user-evaluation teams and the DRDO for the successful completion of the user trials. The NAG missile has been developed to engage highly fortified enemy tanks in all weather conditions with day and night capabilities and with a minimum range of 500m and maximum range of 4 km. It is a third-generation fire-and-forget-class missile and uses an imaging infrared seeker in lock-on- before-launch mode. The missile is launched from the NAG missile carrier (NAMICA) which is capable of carrying up to six combat missiles. The robust imaging algorithm has made the missile hit the target at a distance of 4 km even in severe summer desert conditions which is unique in its class. As part of the NAG summer user trials, six missions were conducted under extreme temperature conditions of the Pokhran Ranges. All the missiles have met the mission objectives including minimum range, maximum range, indirect attack as well as top attack modes and achieved a direct hit on the target.
    [Show full text]
  • Director Operations (Other Units)
    Annexure - I Details of Experience Director Operations (Other Units) As a member of Board of Directors of BEL (Navratna PSU, Schedule ‘A’ company), principal job involved heading the Eight operational units Pan India. The primary responsibility as a director involved ensuring that BEL achieves operational excellence and is constantly moving towards fulfilling its short-term and long-term goals in line with the Vision and Mission of the Company and strategic directives laid down by the Board of Directors and the Ministry of Defence. Responsibilities: To ensure efficient functioning of Eight Units of BEL (excluding Bangalore) and the Company by closely monitoring the operating/ financial results against MoU targets, Roll on Plans and Annual Budget. 1. To develop and implement operational strategies that reflects long term objectives and priorities established by the Board, in line with the strategic business plans of the Company. 3. To liaise with various regulatory authorities, Ministries, customers, etc., in order to strengthen business ties and open diverse and new business opportunities for the Company. 4. To provide greater thrust on indigenization through enhanced R&D efforts and strengthening collaborative partnerships with design partners like DRDO, LRDE, DRDL, etc. and as well with Private Vendors. 5. To manage market leads and explore the possibilities of diversification both in terms of market segments and products. 6. To promote self-reliance through ‘Make in India’ initiatives and indigenization. Significant Contribution: 1. The OU (Other Units) achieved highest ever top line of INR 6300 Cr cumulative for the eight units under my span of control. Maintained a growth of 16%-18% YoY and maintained profitability at 19%.
    [Show full text]
  • Escalation Control and the Nuclear Option in South Asia
    Escalation Control and the Nuclear Option in South Asia Michael Krepon, Rodney W. Jones, and Ziad Haider, editors Copyright © 2004 The Henry L. Stimson Center All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior permission in writing from the Henry L. Stimson Center. Cover design by Design Army. ISBN 0-9747255-8-7 The Henry L. Stimson Center 1111 19th Street NW Twelfth Floor Washington, DC 20036 phone 202.223.5956 fax 202.238.9604 www.stimson.org Table of Contents Preface ................................................................................................................. v Abbreviations..................................................................................................... vii Introduction......................................................................................................... ix 1. The Stability-Instability Paradox, Misperception, and Escalation Control in South Asia Michael Krepon ............................................................................................ 1 2. Nuclear Stability and Escalation Control in South Asia: Structural Factors Rodney W. Jones......................................................................................... 25 3. India’s Escalation-Resistant Nuclear Posture Rajesh M. Basrur ........................................................................................ 56 4. Nuclear Signaling, Missiles, and Escalation Control in South Asia Feroz Hassan Khan ...................................................................................
    [Show full text]
  • Shaurya Missile
    Shaurya Missile drishtiias.com/printpdf/shaurya-missile Why in News Recently, a successful trial of the nuclear-capable Shaurya missile was conducted by India. Also, Brahmos land attack cruise missile was tested a few days before this testing. Key Points Shaurya Missile: Shaurya is a land variant of short-range Submarine Launched Ballistic Missile (SLBM) K-15 Sagarika, which has a range of at least 750 kilometers. It is capable of carrying payloads of 200 kg to 1000 kg. It is a surface-to-surface tactical missile. These ballistic missiles belong to the K missile family - codenamed after late Dr. APJ Abdul Kalam - which are launched from Arihant class of nuclear submarines. Shaurya, like many of the modern missiles, is a canister-based system, which means that it is stored and operated from specially designed compartments. The missile is less vulnerable to anti-ballistic missile defence systems due to its high maneuverability. 1/3 The K Family of Missiles: The K family of missiles are primarily Submarine Launched Ballistic Missiles (SLBMs). These have been indigenously developed by Defence Research and Development Organisation (DRDO). The development of these missiles began in the late 1990s as a step towards completing India’s nuclear triad. Nuclear triad is the capability of launching nuclear weapons from land, sea and air-based assets. Because these missiles are to be launched from submarines, they are lighter, smaller and stealthier than their land-based counterparts - the Agni series of missiles which are medium and intercontinental range nuclear capable ballistic missiles. India has also developed and successfully tested multiple times the K-4 missiles from the family which has a range of 3500 km.
    [Show full text]
  • Russia: Arms Control, Disarmament and International Security
    PRIMAKOV NATIONAL RESEARCH INSTITUTE OF WORLD ECONOMY AND INTERNATIONAL RELATIONS RUSSIAN ACADEMY OF SCIENCES (IMEMO) RUSSIA: ARMS CONTROL, DISARMAMENT AND INTERNATIONAL SECURITY IMEMO SUPPLEMENT TO THE RUSSIAN EDITION OF THE SIPRI YEARBOOK 2017 Preface by Alexander Dynkin Editors Alexey Arbatov and Sergey Oznobishchev Assistant Editor Tatiana Anichkina Moscow IMEMO 2018 УДК 327 ББК 64.4(0) Rus95 Rus95 Russia: arms control, disarmament and international security. IMEMO supplement to the Russian edition of the SIPRI Yearbook 2017 / Ed. by Alexey Arbatov and Sergey Oznobishchev. – Moscow, IMEMO, 2018. – 201 p. ISBN 978-5-9535-0535-2 DOI: 10.20542/978-5-9535-0535-2 The volume provides IMEMO contributions to the Russian edition of the 2017 SIPRI Yearbook: Armaments, Disarmament and International Security. The contributors address the erosion of strategic stability regime, issues of multilateral nuclear deterrence, 2018 US Nuclear Posture Review, DPRK’s nuclear and missile potential, problems with verification of the Fissile Material Cut-off Treaty. This year’s edition also covers crisis of European security, evolution of Shanghai Cooperation Organisation, strategic relations between China, India, and Pakistan, Middle East conflicts and prospects of a Syrian settlement, and adjustment of the Russian State Armament programme. To view IMEMO publications, please visit our website at https://www.imemo.ru ISBN 978-5-9535-0535-2 ИМЭМО РАН, 2018 CONTENTS PREFACE..............................................................................................
    [Show full text]
  • Possession and Deployment of Nuclear Weapons in South Asia an Assessment of Some Risks
    Special articles Possession and Deployment of Nuclear Weapons in South Asia An Assessment of Some Risks This paper examines some of operational requirements and the dangers that come with the possibility that in the foreseeable future India and Pakistan may deploy their nuclear arsenals. The authors first describe the analytical basis for the inevitability of accidents in complex high-technology systems. Then they turn to potential failures of nuclear command and control and early warning systems as examples. They go on to discuss the possibility and consequences of accidental explosions involving nuclear weapons and their delivery systems. Finally some measures to reduce these risks are suggested. R RAJARAMAN, M V RAMANA, ZIA MIAN s citizens of nuclear armed states, ing periods of crises. Bruce Riedel, for- (DND) released by the National Security the people of India and Pakistan merly the Senior Director for Near East Advisory Board.4 It states that “India Amust confront the risks that go and South Asian Affairs at the US National shall pursue a doctrine of credible with possessing nuclear weapons. There Security Council, has disclosed that the minimum nuclear deterrence” and that is some public awareness of the holocaust “Pakistanis were preparing their nuclear this in turn requires that India maintain: that results when nuclear bombs are used arsenals for possible deployment” during (a) sufficient, survivable and operationally in warfare, a legacy of the ghastly attacks the 1999 Kargil crisis.1 Similarly, Raj prepared nuclear forces, (b) a robust com- by the US on the Japanese cities of Chengappa, a senior journalist with India mand and control system, (c) effective Hiroshima and Nagasaki over five decades Today with access to defence personnel, intelligence and early warning capabili- ago.
    [Show full text]