Quick viewing(Text Mode)

A Precambrian History of Cratonic North American Crust Beneath The

A Precambrian History of Cratonic North American Crust Beneath The

A PRECAMBRIAN OF CRATONIC 1

NORTH AMERICAN CRUST BENEATH THE SNAKE RIVER PLAIN, IDAHO 2

3

4

5

6

7

8

by 9

Emerald Kirke Shirley 10

11

12

13

A thesis 14

submitted in partial fulfillment 15

of the requirements for the degree of 16

Master of Sciences in Geology 17

Boise State University 18

19

December 2013 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

© 2013 38

Emerald Kirke Shirley 39

ALL RIGHTS RESERVED 40

BOISE STATE UNIVERSITY GRADUATE COLLEGE 41 42 43 DEFENSE COMMITTEE AND FINAL READING APPROVALS 44 45 46 of the thesis submitted by 47 48 49 Emerald Kirke Shirley 50 51 52 Thesis Title: A Precambrian history of cratonic North American crust beneath the 53 Snake River Plain, Idaho 54 55 Date of Final Oral Examination: 09 October 2013 56 57 The following individuals read and discussed the thesis submitted by student Emerald 58 Kirke Shirley, and they evaluated her presentation and response to questions during the 59 final oral examination. They found that the student passed the final oral examination. 60 61 Mark Schmitz, Ph.D. Chair, Supervisory Committee 62 63 Karen Viskupik, Ph.D. Member, Supervisory Committee 64 65 Craig White, Ph.D. Member, Supervisory Committee 66 67 The final reading approval of the thesis was granted by Mark Schmitz, Ph.D., Chair of 68 the Supervisory Committee. The thesis was approved for the Graduate College by John 69 R. Pelton, Ph.D., Dean of the Graduate College. 70 71

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Mark Schmitz for providing me with the opportunity to develop this thesis. His guidance and support greatly added to the quality of this thesis. I would also like to thank my committee members, Dr. Karen Viskupic and

Dr. Craig White for their valuable suggestions, assistance, and encouragement throughout my master’s program.

Dr. James Crowley, Debra Pierce, and Dr. Paul Olin were instrumental in the collection of data. Without their instruction and patience, this thesis would not have been completed. I would also like to thank the Washington State University Radiogenic

Isotope and Geochronology Laboratory for assistance in data collection.

The Department of Geosciences at Boise State is an incredibly friendly environment. A thank-you is owed to the students, staff, and professors who make it a space that encourages learning and exploration, as well as a place to find good conversation and fun people. I thank the members of the Geosciences department for making it easy and enjoyable for me to come to work each day. The National Science

Foundation GK-12 program and the Department of Geosciences at Boise State

University provided funding for this research.

And finally, I thank my parents, siblings, and fiancé, for their unwavering support throughout my master’s program.

iv

ABSTRACT 92

93

Granulite xenoliths erupted in Neogene basalts, and a rare outcrop of Precambrian 94 basement along the northern margin of the Snake River Plain (SRP), can be used as 95 windows into the origin and stabilization of the lower crust of southern Idaho. Previous 96 work to determine the nature of the lower crust beneath the Snake River Plain was 97 conducted on a suite of xenoliths exposed in Southern Idaho at Square Mountain (SM), 98

Craters of the Moon National Monument and Preserve (CRMO), and the Spencer-Kilgore 99

(SK) area (Leeman, 1979; Leeman et al., 1985; Matty, 1984; Wolf et al., 2005), as well 100 as on a basement outcrop at House Mountain, near Mountain Home, ID (Alexander, 101

2006). This study uses U/Pb geochronology and Hf isotope geochemistry to determine 102 the history of formation and stabilization of the lower crust of the SRP within the context 103 of other surrounding Precambrian basement terranes of North America. 104

Results of this investigation reveal that two distinct terranes comprise the lower 105 crust of Southern Idaho. The Kilgore-Craters terrane formed and stabilized >2.7 Ga and 106 the Square Mountain terrane at >2.5 Ga. Hf isotope ratios and U-Pb geochronology of 107 inherited cores of zircons reveal that the Snake River Plain formed in part from older, 108 reworked crust. Archean geologic events and Hf signatures of the Snake River Plain 109 match those of the Wyoming Province, indicating the Snake River Plain is a westward 110 extension of the Wyoming Province. The Kilgore-Craters terrane is equivalent to the 111

v

northern Beartooth-Bighorn magmatic zone and the Montana Metasedimentary province 112 area, and the Square-Mountain/Grouse Creek terrane is a westward extension of the 113

Southern Accreted Terranes of the Wyoming Province. 114

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...... iv

ABSTRACT ...... v

LIST OF TABLES ...... x

LIST OF FIGURES ...... xi

LIST OF EQUATIONS ...... xv

CHAPTER ONE: FORMATION AND STABILIZATION OF THE SNAKE RIVER PLAIN, IDAHO ...... 1

Introduction ...... 1

Geologic Background ...... 7

Sample Materials ...... 8

Spencer-Kilgore ...... 9

Craters of the Moon National Monument and Preserve ...... 11

Square Mountain ...... 13

House Mountain ...... 14

Analytical Methods ...... 15

U/Pb Geochronology ...... 15

Laser Ablation Inductively Coupled Mass Spectrometry ...... 18

Identifying Age Populations and Calculating Ages ...... 19

Results ...... 22

Spencer-Kilgore ...... 22

vii Craters of the Moon National Monument and Preserve ...... 31

Square Mountain ...... 42

House Mountain ...... 48

Discussion ...... 52

The Use of Trace Element Geochemistry ...... 52

Use of Ti-in-Zircon ...... 56

Formation of the Kilgore-Craters Terrane ...... 57

Neoarchean Metamorphism of the Kilgore-Craters Terrane ...... 64

Boundaries of the Kilgore-Craters Terrane ...... 67

Formation of the Square Mountain Terrane ...... 68

Boundaries of the Square Mountain Terrane ...... 71

Paleogene Reactivation ...... 72

Conclusion ...... 74

CHAPTER TWO: THE SNAKE RIVER PLAIN AND THE WYOMING CRATON ...... 76

Introduction ...... 76

Geologic Background ...... 78

Wyoming Province ...... 78

Sample Materials ...... 82

Analytical Methods ...... 82

Zircon 176fHf/177Hf Ratio Analysis ...... 82

Zircon U/Pb Geochronology ...... 86

Results ...... 88

viii Hf Isotope Analysis ...... 88

Discussion ...... 97

Recycled Crust in the Lower Crust of the Snake River Plain ...... 97

The Eastern Snake River Plain and the Wyoming Craton ...... 98

Open System Zircon Growth During the Paleogene ...... 100

REFERENCES ...... 103

APPENDIX ...... 114

ix

LIST OF TABLES

Table 1: Rock types and mineralogy of samples collected in all field areas .... 10

Table 2: Lower crust of the Snake River Plain zircon growth events ...... 59

Table 2: (cont.) Lower crust of the Snake River Plain zircon growth events .. 60

Table 3: Epsilon Hf results for samples from Spencer Kilgore, Craters of the Moon, and Square Mountain. If an analysis from WSU did not record a U/Pb age, an age from the same crystal and growth domain from BSU analysis was used, and is in italics ...... 93

x

LIST OF FIGURES

Figure 1: Location map of the sample areas for this study, and the surround -ing Archean terranes and provinces. Sample locations for this study are marked with red stars. HM = House Mountain; SM = Square Mountain; CRMO = Craters of the Moon National Monument and Preserve; SK = Spencer Kilgore; Grey areas are outcroppings of Archean rock. Modified from Foster et al. (2006), Chamberlain et al. (2003), Frost and Mueller (2006) and Gaschnig et al. (2013) ...... 6

Figure 2: Photomicrograph of sample SK11-02. Samples collected from Spencer- Kilgore are mostly charnokites, composed of qtz + fsp + pyx + op. Sample SK11-07 also contains garnet ...... 11

Figure 3: Photomicrographs of CRMO11-05. Xenoliths collected from Craters of the Moon are either charnokites (qtz + fsp + pyx + op) or are granites (qtz + fsp + am) ...... 12

Figure 4: Photomicrograph of SM10-C3. Three of the five samples collected at SM are charnokites (qtz + fsp + pyx + op). One sample is a granite (SM10-C4) and one sample is a metagabbro (SM10-C1) ...... 14

Figure 5: Linearized probability plot. To determine the age of a zircon growth event within a sample, spots with a discordance of greater than 30% (SK, CRMO and HM) or 40% (SM) are discarded. A linearized probability plot is then used to discard outliers due to ancient Pb loss and inheritance. A linearized probability plot is similar to a gaussian curve (a) but uses cumulative probability (b) to display a regression through data that represents a single Gaussian distribution (c). Outliers, shown in hollow circles, are discarded. The dates of filled circles are averaged with errors weighted to determine the age of the event (d)...... 21

Figure 6: Examples of CL images from Spencer-Kilgore samples. Paleoarchean dates, indicated with a 1, are recorded in cores of grains. dates, indicated with a 2, are recorded in domains with oscillatory and blurred oscillatory zoning, as well as domains with no zoning. All samples contain grains recording Mesoarchean dates. Neoarchean dates, indicated with a 3, are overgrowths and grains that do not exhibit zoning ...... 23

xi Figure 7: Ages of zircon crystallization in samples from Spencer Kilgore and Craters of the Moon. Grey boxes indicate episodes of igneous activity, perhaps related to orogenic cycles during the growth of the North American continent. Error bars are 2 ...... 24

Figure 8: A normal REE pattern for zircon crystalized in a continental crust environment. REE patterns for both igneous and metamorphic zircons record enrichment in HREE (Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and depletion in LREE (La, Ce, Pr, Nd, Pm, Sm) (a). The slope of enrichment of HREE can be displayed by dividing the concentration of Gd by the concentration of Yb (b). In continental crust environments, zircon records a positive Ce anomaly (a) due to the presence of oxygen. If zircon grows in the presence of plagioclase, a negative Eu anomaly is recorded (a). The intensity of the Eu anomaly can be displayed by dividing Eu by radiogenic Eu (Eu*) (b) ...... 27

Figure 9: Trace element and trace element ratio plots for SK11-01 and SK11-08 ...... 28

Figure 10: Trace element and trace element ratio plots for SK11-07, SK11-01 and SK11- 02 ...... 29

Figure 11: Ti-in-Zr temperatures recorded in zircons from Spencer-Kilgore and Craters of the Moon. Samples are listed in order of decreasing means. Dots are the median temperatures for each sample. Samples without dots recorded only two temperatures ...... 30

Figure 12: Examples of CL images and age growth domains from CRMO samples. Paleoarchean dates (1) are recorded in cores of grains. Mesoarchean dates (2) are recorded in grains with no zoning or with blurred oscillatory zoning. Neoarchean dates (3) are recorded in grains and overgrowths with no zoning, as well as in the cores of the grains that also record a younger Neoarchean growth (4). Paleogene dates (5) were recorded in three granitoid samples, all in domains with oscillatory zoning, as well as an overgrowth and an individual grain with no zoning in one Archean sample ...... 32

Figure 13: Trace element and trace element ratio plots for CRMO11-03, CRMO11-04, and CRMO11-19 ...... 37

Figure 14: Trace element and trace element ratio plots for CRMO11-01, CRMO11-07, and CRMO11-13 ...... 38

Figure 15: Trace element and trace element ratio plots for CRMO11-05, CRMO11-12, and CRMO11-14 ...... 39

xii Figure 16: Trace element and trace element ratio plots CRMO11-16 and CRMO11-17 ...... 40

Figure 17: Trace element and trace element ratio plots for CRMO11-15 and CRMO11- 18 ...... 41

Figure 18: Examples of CL images from SM. Paleoarchean and Mesoarchean dates (1) were recorded in the cores of samples and in samples with l ow uranium and no zoning. Neoarchean dates (2) are recorded in zircon growth domains with oscillatory zoning and with a mottled pattern. Mottling often cuts across oscillatory zoning, which is preserved in the tips of many grains. Paleogene dates (4) are recorded in oscillatory overgrowths of grains in sample SM10-C4 ...... 43

Figure 19: Trace element and trace element ratio plots of SM10-A3 and SM10-C3 ...... 46

Figure 20: Trace element and trace element ratio plots of SM10-C2 and SM10-C4 ...... 47

Figure 21: Examples of CL images from HM. Paleoarchean and Mesoarchean dates (1) are recorded in cores of grains. Neoarchean dates (2) are recorded in oscillatory zoned domains and in domains with no zoning pattern. Paleoproterozoic dates (3) are recorded in unzoned domains. Paleogene dates (4) are recorded in domains with oscillatory zoning ...... 48

Figure 22: Trace element and trace element ratio plots of HM11-01 and HM11-06 ...... 50

Figure 23: Terranes of the lower crust of southern Idaho. The lower crust of Southern Idaho is composed of two terranes; the Kilgore-Craters terrane in the west and the Square Mountain terrane in the east. The Kilgore- Craters terrane stabilized by 2.8 Ga and Square Mountain terrane by 2.5 Ga. The boundary between the two terranes is likely the contact between Paleozoic sediments and Tertiary volcanics and Cretaceous and Tertiary intrusives. This contact also aligns with magnetic anomalies from Sims et al. (2005) ...... 68

Figure 24: Precambrian crust of Idaho, Wyoming and Montana. The Kilgore-Craters terrane is a westward extension of the northern cratonic core of the Wyoming Province. The Grouse Creek Block and the Square Mountain terrane are extensions of the Southern Accreted Terranes of the Wyoming Province. Gray areas are Archean outcrops. Figure modified

xiii from Foster et al. (2006) and Gaschnig et al. (2012), and uses elements of Sims et al. (2005) ...... 77

Figure 25: A general 176Hf/177Hf vs Age chart (a) and a general epsilon Hf chart where 176Hf/177Hf of a sample is normalized to CHUR (b). Lu and Hf are incompatible elements, however Hf is more incompatible than Lu and during mantle melting more Hf enters the melt than Lu. 176Lu decays to 176Hf, resulting in a depleted 176Hf/177Hf crust and an enriched 176Hf/177Hf mantle (a). Zircon easily incorporates Hf into its structure, due to charge and size, compared to Lu. This results in negligible ingrowth of 176Hf in zircon. Because 176Hf/177Hf ratios vary only in their 4th and 5th decimal places, epsilon Hf notation is used to magnify differences between ratios (b). TDM is the time the source melted from the depleted mantle (b) ...... 84

Figure 26: Stacked probability chart of Precambrian 207Pb/206Pb ages from Washington State University (WSU) and Boise State University (BSU) for zircons from Spencer-Kilgore (SK), Craters of the Moon (CRMO) and Square Mountain (SM). The same zircons were used in data collection at both institutions. All data collected at WSU are used. Due to the large amount of data collected at BSU, only dates that were not found as outliers were used (see Chapter 1: Methods for details on outliers) ...... 87

Figure 27: Initial epsilon Hf values for Precambrian aged zircon domains from SK, CRMO and SM, as well as for inherited zircons from the S. Atlanta lobe of the Idaho Batholith (Gaschnig et al. (2012). Black outlined fields are results from σ zircons from Snake River Plain xenoliths analyzed by Dufrane et al. (2007). Open shapes are interpreted to be ages of inherited zircon growth domains, dark filled shapes to be ages of igneous growth zones, and dark outlined and light filled shapes to be ages of metamorphic growth ...... 89

Figure 28: Regression of (Hf) values for igneous growth zones to the timing of when source melt separated from the mantle (TDM). Shaded polygons indicate the epsilon Hf values of the melt from which the zircons crystalized, based on average mid-crustal concentrations. A younging of depleted mantle ages is seen from the west (SK) to the east (SM). SK and CRMO share very similar epsilon Hf values, as well as DM ages. Depleted mantle curve assumes a 176Lu/177Hf ratio of 0.038130, and a 176Hf/1776Hf ratio of 0.2832 ...... 92

Figure 29: A new configuration of the Wyoming Province. The Wyoming Province can be split into two zones, one that is older than 2.8 Ga and one that is older than 2.5 Ga ...... 101

xiv

LIST OF EQUATIONS 332

Equations 1-3: U/Pb decay schemes ...... 15 333

Equation 4: 207Pb/206Pb age ...... 17 334

Equation 5: Hf notation ...... 83 335

336

xv 1

CHAPTER ONE: FORMATION AND STABILIZATION OF 337

THE SNAKE RIVER PLAIN, IDAHO 338

339

340

Introduction 341 342

There has long been a question mark as to the basement structure of southern 343

Idaho and its context in the formation of the North American continent (e.g. Leeman, 344

1979; Armstrong, 1977; Chamberlain et al., 2003; Wolf et al., 2005; Frost and Mueller, 345

2006; Foster et al., 2006; Sims et al., 2005; Gaschnig et al., 2012). This is in large part 346 due to a thick covering of lava erupted during Miocene hotspot propagation and 347 associated Neogene Basin and Range subsidence and sedimentation (Suppe et al., 1975; 348

Rogers, 1990; Brott et al., 1981; Blackwell et al., 1992; McQuarrie and Rodgers, 1998), 349 making it difficult to study the crystalline basement of the region. However, granulite 350 xenoliths erupted in Neogene basalts of the Eastern Snake River Plain (ESRP) and 351 occasional Precambrian outcrops at the uplifted southern margin of the Idaho Batholith 352 can be used as windows into the origin and stabilization of the crystalline basement of 353 southern Idaho. 354

Previous work to determine the nature of the deep crust beneath the Snake River 355

Plain (SRP) was conducted on a suite of xenoliths erupted in Neogene basalts at Square 356

2

Mountain (SM), Craters of the Moon National Monument and Preserve (CRMO), and the 357

Spencer-Kilgore (SK) area (fig 1). The xenoliths of the ESRP are dominantly 358 intermediate to felsic granulite gneisses (Leeman, 1979; Matty, 1984; Leeman et al., 359

1985; this study), and range in size from a few centimeters to over a meter in diameter. 360

Many are banded and exhibit a granoblastic texture. Leeman et al. (1985) presented 361 neodymium and lead isotopic data on ESRP xenoliths that indicated metamorphic ages of 362

2.8 Ga, supporting preliminary Pb isotopic data from Leeman (1979) that reported 363

Archean ages. A Sm-Nd isochron also suggested an older date of 3.1-3.4 Ga for the 364 protoliths of the xenoliths (Leeman et al., 1985). Wolf et al. (2005) confirmed a range of 365

Archean ages (3.5 Ga to 2.5 Ga) using LA-ICPMS zircon analyses. 366

Jacob (1985) and Alexander (2007) identified Precambrian outcrops on the 367 uplifted southern margin of the Atlanta lobe of the Idaho Batholith, north of Mountain 368

Home, Idaho. This is the westernmost Precambrian exposure that has been identified in 369 southern Idaho. Three dominant gneissic lithologies were identified in outcrop: a bimodal 370 suite of banded tonalite and amphibolite orthogneisses and a muscovite bearing 371 paragneiss, which together were mapped as Orthogneiss B (Jacob, 1985; Alexander 372

2007). 373

Although it has been known for decades that the deep crust of the ESRP is likely 374

Archean (Leeman, 1979; Leeman, 1985; Wolf et al., 2005), there has been no 375 comprehensive geochronological study of the xenoliths and the Precambrian history they 376 record. The first aim of this study is to use in situ geochronology, trace element 377 geochemistry, and CL maps of zircons to interpret the protolith formation, metamorphism 378 and inheritance patterns of a large suite of granulite xenoliths, and establish whether and 379

3 how their ages vary throughout the SRP. This information will clarify how the ESRP 380 xenoliths compare to the basement beneath the western extent of the SRP via the study of 381 the westernmost outcrops of Precambrian gneisses at House Mountain. 382

The second focus of this study is to interpret how the crystalline basement of 383 southern Idaho correlates to surrounding provinces, in particular the Precambrian terranes 384 mapped in the adjacent Wyoming Province. The western margin of the Wyoming 385

Province has been poorly constrained due to lack of outcrop, and it has been suggested 386 that the western margin may extend into the ESRP (Wolf et al., 2005). Alternatively, to 387 the south of the SRP lies the Archean Grouse Creek Block and to the north of the ESRP 388 lies the Selway Terrane, composed of juvenile arcs that helped to suture Archean 389 provinces during the Trans-Hudson orogen (Foster et al., 2006). It is possible that the 390 basement beneath southern Idaho to be composed of one or more distinct 391 microcontinents, is an integral part of the nearby Wyoming province, or is a combination 392 of distinct microcontinents and sections of surrounding provinces. 393

Uranium-lead geochronology of zircon crystals is the ideal tool to use when 394 investigating Precambrian-aged rocks due to the long half-life of uranium, the 395 incorporation of uranium into zircon to the exclusion of lead, the slow diffusion rates of 396 both uranium and lead in the zircon lattice, the ubiquity of zircon in intermediate to felsic 397 granitoids, and the participation of zircon in metamorphic reactions. Internal domains of 398 zircons can be identified by cathodoluminescence imaging, and dated in situ using laser 399 ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Dating numerous 400 zones in a zircon creates a of the zircon’s growth, which can be used as a proxy 401 for the geologic history of the rock it is sourced from. Rare earth element and other 402

4 incompatible trace element concentrations are collected at the same time as U/Pb data, 403 and can be used in identifying populations within samples, which sometimes correlate to 404 geologic events. Trace element chemistry is also useful in recognizing the petrologic 405 setting of zircon crystallization. In this study, zircons were extracted from approximately 406

30 ESRP xenoliths and from outcrops at House Mountain. 407

To determine how the geologic history of the Snake River Plain compares to 408 surrounding Archean provinces, hafnium (Hf) isotope data were collected. The unstable 409 radionuclide 176Lu decays to stable 176Hf by β- decay, creating an isotope tracer that can 410 be used in several applications. Isotopes can trace crust formation and differentiation 411 because Lu-Hf fractionation occurs during magma generation (Patchett et al., 1981, 412

Kinny and Maas, 2003). Both Lu and Hf are incompatible elements, however, Hf is more 413 incompatible than Lu. During melting, more Hf enters the melt than Lu creating a crust 414 with lower time integrated Lu/Hf and 176Hf/177Hf, and a complementary high Lu/Hf, high 415

176Hf/177Hf residual mantle (Patchett et al., 1981). In zircon, Hf readily substitutes for 416 zirconium (Zr) because of their similar size and charge, while Lu does not easily enter 417 into the crystal lattice, producing an even more severe fractionation of Lu and Hf in 418 zircon. This results in a very low Lu/Hf ratio in zircons, so low that the amount of 176Lu 419 that decays to 176Hf is negligible. Thus, the initial 176Hf/177Hf ratio of the source 420 environment is preserved in the zircon. This initial ratio can be used to calculate a model 421 age, and if a crystallization age of the zircon is known, the epsilon(Hf) value can be 422 calculated and compared in a crustal evolution diagram. Hf data for this study were 423 collected at Washington State University by in-situ laser ablation of the same zircons 424 used for U/Pb analysis. 425

5

The results of this study reveal that two distinct terranes comprise the lower crust 426 beneath the SRP. The eastern Kilgore-Craters terrane stabilized by 2.7 Ga and the 427 western Square Mountain terrane stabilized by 2.5 Ga. Negative epsilon(Hf) values were 428 calculated for both of these terranes, indicating the lower crust of the SRP formed from 429 recycled crust. The Southern Accreted Terranes of the Wyoming Province share 430 stabilization ages with the Square Mountain terrane, as well as a signature of recycled 431 crust, with the Square Mountain terrane and the Grouse Creek Block. We propose the 432

Square Mountain terrane is a northward extension of the Grouse Creek Block, and both 433 comprise a westward extension of the Southern Accreted Terranes. 434

The Kilgore-Craters terrane shares a crustal evolution and stabilization history 435 with the Montana Metasedimentary province and the Beartooth-Bighorn magmatic zone 436 of the Wyoming Province. We interpret the Kilgore-Craters terrane to be a western 437 extension of the northern Wyoming Province. 438

6

439

440

441

442 443 Figure 1: Location map of the sample areas for this study, and the surrounding 444 Archean terranes and provinces. Sample locations for this study are marked with 445 red stars. HM = House Mountain; SM = Square Mountain; CRMO = Craters of the 446 Moon National Monument and Preserve; SK = Spencer Kilgore; Grey areas are 447 outcroppings of Archean rock. Modified from Foster et al. (2006), Chamberlain et 448 al. (2003), Frost and Mueller (2006) and Gaschnig et al. (2013). 449

7

450 Geologic Background 451 452

The Snake River Plain is a broad arcuate topographic depression stretching from 453 the Columbia River Plateau in Oregon to the Yellowstone Plateau at the 454

Montana/Wyoming/Idaho border (fig. 1). The Snake River Plain can be split into western 455 and eastern segments with distinct geologic . The Western Snake River Plain 456

(WSRP) is graben bounded by normal faults (Malde, 1991; Wood and Clemens, 2002) 457 related to Basin and Range extension (Suppe et al., 1975). The Eastern Snake River Plain 458

(ESRP) is a down-warped basin characterized by bimodal volcanism related to the 459 passage of the northeast trending Yellowstone Hotspot and Basin and Range extension 460

(Pierce and Morgan, 1992; Leeman, 1982; Malde, 1991). Explanations of subsidence of 461 the ESRP include extension (Rogers, 1990; Brott et al., 1981; Blackwell et al., 1992) and 462 subsequent mid-crustal mafic intrusions (McQuarrie and Rodgers, 1998). 463

Exposures on the ESRP include Quaternary rhyolite and basalt. The bimodal 464 volcanism has been attributed by many to be the result of the passage of a mantle plume 465

(ex. Minster et al., 1974; Suppe et al., 1975; Richards et al., 1989; Wilson, 1990; Malde, 466

1991). The current day manifestation of this plume is theorized to be the Yellowstone 467

Hotspot, beneath Yellowstone National Park (Pierce and Morgan, 2006). The flat expanse 468 of the Eastern Snake River Plain formed as the North American plate moved southwest 469 over the Yellowstone Hotspot, from McDermit Field in Nevada (17 Ma) to the 470

Yellowstone Plateau volcanic field (2.05 Ma) (Pierce and Morgan, 1992). The line of 471 volcanic centers is termed the Yellowstone Hotspot track. There are also many 472 hypotheses that do not attribute the Miocene volcanism of the ESRP to a mantle plume. 473

8

These hypotheses include the idea that volcanism is a result of complex multi-source 474 magma chambers across the SRP (Bonnichsen et al., 2009), that volcanism is a result of 475 an axis of granite batholiths across southern Idaho caused from decompression melting 476 during extension (Christiansen, 2001), and that the source of hotspot volcanism is 477 upwelling around a deep and fragmented down-going oceanic plate (James et al., 2011). 478

The Yellowstone Hotspot track cuts Basin and Range extensional structures 479 surrounding the Eastern Snake River Plain. Extension in the ESRP has taken the form of 480 ongoing normal faulting (Rodgers, 1990) and fissure eruptions of basalt throughout the 481

ESRP. The only active fissure, the Great Rift, is protected by the National Park Service 482 and the Bureau of Land Management as a National Monument and Preserve. This fissure 483 trends northwest-southeast, parallel to Basin and Range faulting in the mountains to its 484 north. Basalt has erupted along the plain for millions of (Champion, 2012) and has 485 produced over a mile thick package of lava in some areas. Together, Yellowstone 486

Hotspot volcanism and Neogene basalt eruptions have formed a thick covering over the 487 basement rock of Snake River Plain. 488

489

490

Sample Materials 491 492

For this study, thirty-two crustal orthogneiss and granite xenoliths were collected 493 from the northern margin of the Eastern Snake River Plain, Idaho, at Square Mountain 494

(SM), Craters of the Moon National Monument and Preserve (CRMO), and Spencer- 495

Kilgore (SK) (fig. 1; table 1). The protoliths of the gneisses are igneous, as indicated by a 496 mineralogy of quartz, feldspar, and pyroxene, and the lack of an aluminosilicate. Samples 497

9 were collected from outcroppings of both orthogneiss and paragneiss at House Mountain, 498 north of Mountain Home, Idaho. The House Mountain site was chosen because it is the 499 only known outcrop of Precambrian rock on the northern margin of the SRP, and 500 extended the study laterally into the Western SRP. These sample sites were chosen to 501 create an east-west transect across the northern margin of the Snake River Plain (fig. 1). 502

The northern margin is the most accessible margin of the plain, making these sites ideal. 503

The xenolith sites have been used in past studies and results from this study were related 504 and compared to existing data. 505

506

Spencer-Kilgore 507

The eastern-most sample location is a quarried cinder cone between the villages 508 of Spencer and Kilgore. The cone is found on the west side of A2 county road, north of 509 the intersection with Red Road. The basalt cinder cone is named Crystal Butte after the 510 ubiquitous, large feldspar crystals found in the deposit. Xenoliths make up less than 1% 511 of the outcrop, and are found as small (< 7 cm) loose fragments where quarrying has 512 exposed them. 513

The xenoliths found in this locality are charnokites, with one exception of a garnet 514 rich gneiss (fig. 2). In this study, all rocks with a qtz + fsp + opx + cpx composition were 515 classified as charnokites, after Le Maitre (1989). The garnet gneiss is composed of qtz + 516 pl + opx + grt. All rocks in this area are compositionally banded. Leeman (1975) and 517

Matty (1985) also collected and described xenoliths from Crystal Butte, as well as from 518

Swan Butte, another small cinder cone in the Spencer-Kilgore (SK) area. Leeman (1975) 519

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

10

8 N/A Diameter (cm) (cm) Diameter 5 5 4 8 7 7 4 7 7 4 6 15 9 12 10 20 8 qtz + fsp + op + op + fsp qtz + melt + plqtz + am + kfs + plqtz + px + fsp qtz + px + pl + kfs qtz + px + fsp qtz + px + plqtz + px + plqtz + op + plqtz am + op + pl + qtz lithics op + opx + + + ol pl + or 20 + melt + mc + plqtz arnokite arnokite op + opx + + pl qtz two-pyx charnokite charnokite two-pyx + op cpx + opx + + pl qtz 9 charnokite + melt + px + fsp qtz orthogneiss + amp +opx + fsp qtz two-pyx charnokite charnokite two-pyx + cpx + opx + kfs + pl qtz granulite garnet granulite 6 + grt op +pl qtz + gabbro charnokite charnokite granite opx + + melt + fsp qtz paragneiss + opx + melt + mc + pl qtz 10 + amp + mus fsp qts + 10 N/A ch

A3 C1 C2 C3 C4 -03 -03 O11-15 O11-15 charnokite + opx + pl qtz Sample name name Sample SK11-02 SK11 of rock Type SK11-07 SK11-08 mineralogy Modal CRMO11-03 CRMO11-04 CRMO11-05 CRMO11-10 granite CRMO11-11 granite CRMO11-12 charnokite CRMO11-13 granulite CRMO11-14 granulite CRM granulite CRMO11-16 bt + + op + opx + kfs + pl qtz granulite CRMO11-17 granulite CRMO11-18 3 CRMO11-19 charnokite charnokite SM10- granulite SM10- granite SM10- opx + op + + pl qtz SM10- + op opx pl + qtz HM11-06

area Field Spencer-Kilgore SK11-01 Moon the of Craters CRMO11-01 charnokite + opx +melt + pl qtz Mountain Square SM10- Mountain House HM11-01

Table 1: Rock types and mineralogy of samples collected in all of field types and collected samples Rock Table areas 1: mineralogy 11 described these xenoliths as charnokites, and Matty (1984) used the I.U.G.S system 549

(Steckeisen, 1976) to classify charnokitic rocks as norite, enderbite, opdalite, or 550 charnokite depending upon quartz content. Gabbroic cumulate xenoliths were also 551 described by Matty (1984), but were not found at SK in this study. As this site is an 552 active quarry, the abundance and type of xenoliths found depends on what has been 553 recently exposed. 554

555

Figure 2: Photomicrograph of sample SK11-02. Samples collected from Spencer- 556 Kilgore are mostly charnokites, composed of qtz + fsp + pyx + op. Sample SK11-07 557 also contains garnet 558 559 Craters of the Moon National Monument and Preserve 560

The second sample locality is Craters of the Moon National Monument and 561

Preserve (CRMO). The CRMO visitor’s center is located 18 miles southwest of Arco, 562

Idaho on highway 20/26/93, but the Monument itself is much larger. CRMO 563 encompasses three late Pleistocene-Holocene lava fields erupted along the Great Rift, a 564 volcanic fissure. All xenoliths in this location were collected from the Craters of the 565

Moon lava field, composed of about 60 ferrobasalt and ferrolatite lava flows and 25 566 volcanic cinder cones, all erupted from the Great Rift (Leeman et al., 1976; Kuntz et al., 567

2007). Xenoliths were sampled from Grassy Flow (7,360 + 60 Ka), Big Cinder Flow 568

12

(2,400 + 300 Ka), North Crater Cinder Cone (~2,500 Ka) and Big Cinder Butte (~6000 569

Ka). Xenoliths make up much less than 1% of flows. Grassy Flow has the most abundant 570 and largest xenoliths. 571

The crustal xenoliths of CRMO collected in this study are in the majority gneisses 572 and almost all are charnokites (qtz + fsp + px). Most samples exhibit modal layering, and 573 all exhibit grain boundary migration and/or grain boundary bulging indicating high grade 574 metamorphism. Several igneous textured granitoid xenoliths were also collected from 575

North Crater Cinder Cone and Grassy Flow, and have a composition of qtz + fsp + hbl + 576 op. 577

578

Figure 3: Photomicrographs of CRMO11-05. Xenoliths collected from Craters of 579 the Moon are either charnokites (qtz + fsp + pyx + op) or are granites (qtz + fsp + 580 am). 581 582 Previous studies also identified charnokites as the main xenolith composition in 583 this area (Leeman, 1975; Matty, 1984). Samples collected by Matty (1984) were from the 584

Serrate-Devils Orchard flow, a flow not investigated in this study. He described these 585 xenoliths as charnokites, with the exception of one biotite garnet gneiss. Surprisingly, the 586 xenoliths found in the Serrate-Devils Orchard flow were described by Matty as small and 587

13 friable. In this study, the samples from CRMO are the largest, freshest, and least friable 588 of samples collected, regardless of the flow they were found in. 589

590

Square Mountain 591

Square Mountain (SM) is located northeast of Fairfield, Idaho on the east side of 592

Croy Creek Road and Camp Creek drainage. The host rock of SM xenoliths is a hybrid 593 lava containing both quartz and olivine. It is named the Square Mountain basalt (Schmidt, 594

1961) and erupted from the Magic Reservoir Caldera 6-3 Ma (Leeman et al., 2004). 595

Numerous small, thin xenoliths averaging 3 cm in length can be found in the tallus slopes 596 of the west side of the mountain. More spectacular xenoliths with long axes over a meter 597 in length are found locally composing 10% of the outcrop on the southeast facing slope. 598

Xenoliths sampled for this study are charnokites and one metagabbro (sample SM10-C1). 599

The Matty (1984) study described the xenoliths in this area as locally composing up to 600

50% of the outcrop, including both whitish and pinkish xenoliths. Only whitish xenoliths 601

(with the exception of the dark cumulate) were seen during collection for this study. It is 602 likely that many of the pinkish xenoliths have been collected during past field trips, also 603 explaining the decrease in outcrop coverage. 604

Samples SM10-A3, SM10-C2, SM10-C3 have a major mineral assemblage of qtz 605

+ fsp + pyx + ox and are modally layered. SM10-C4 is a granite, and SM10-C1 is a 606 cumulate metagabbro. Grain boundary migration is evident in thin sections of all gneissic 607 samples. The host magma infiltrated the samples to varying degrees, and partial melting 608 of the samples is seen at the boundary between basalt and xenolith. 609

14

610

Figure 4: Photomicrograph of SM10-C3. Three of the five samples collected at SM 611 are charnokites (qtz + fsp + pyx + op). One sample is a granite (SM10-C4) and one 612 sample is a metagabbro (SM10-C1). 613 614

House Mountain 615

Outcrops of Precambrian amphibolite-facies gneisses have been reported at House 616

Mountain (HM) near Mountain Home, Idaho (Jacob, 1985; Alexander, 2006). An outcrop 617 section of this unit, informally named Orthogneiss B by Jacob (1985), was sampled along 618 the Cow Creek drainage south of the South Fork Boise River. Within the studied section 619 of House Mountain Orthogneiss B, three dominant gneissic lithologies were identified: a 620 bimodal suite of layered tonalite orthogneiss and amphibolite orthogneiss structurally 621 overlain by a muscovite bearing paragneiss. The section exposed is 33 meters thick, with 622

31.5 meters of the outcrop bimodal orthogneisses. 623

The tonalite gneiss is composed mostly of quartz, feldspar and hornblende, and in 624 places contains boudins of the darker amphibolite gneiss. Both layers of the orthogneiss 625 contain a foliation that strikes 275 and dips 20-30 to the southwest. The amphibolite 626 gneiss has more intense foliation. A fault separates the orthogneisses into a section 627 dominated by tonalite bands below and a section dominated by amphibolite bands above. 628

15

A pegmatite fills in the sub-vertical fault, cuts the gneisses, and extends laterally as sills 629 into both the upper and lower sections. The pegmatite contains layers concordant to 630 foliation, indicating it was emplaced pre- to syn- deformation. The paragneiss is exposed 631 structurally above the orthogneiss, is a finely layered, peraluminous gneiss composed of 632 qtz + fsp + mus + am. Large augens interpreted as relict quartz pebbles are conspicuous. 633

The thickness of this layer is unknown, as outcrop becomes covered in vegetation after a 634 few meters. Of these lithologies, the tonalite orthogneiss and the paragneiss proved to 635 have sufficient zircon crystals to analyze; the amphibolite orthogneiss did not. 636

637

Analytical Methods 638 639

U/Pb Geochronology 640

In this study, uranium (U) and lead (Pb) isotopes in zircon were analyzed to date 641 the collected xenoliths. Uranium has three radioactive isopotes, 238U, 235U, and 234U, all of 642 which can be used as geochronometers. 234U is a radiogenic daughter product of 238U, and 643 thus both isotopes decay to stable 206Pb. Thorium (Th) also has an isotope that decays to 644

Pb and can be used as a geochronometer (equation 1.1-1.3). 645

646

Equations 1-3: U/Pb decay schemes 647

648

Where Q is the sum of the decay energies of the entire series. 649

650

16

In this study, the 238U and 235U decay schemes were used. 238U decays to 206Pb 651 with a half life of 4.468 x 109 years and 235U decays to 207Pb with a half life of 0.7038 x 652

109 (Steiger and Jäger, 1977). Both of these decay schemes can be solved independently 653 to give dates of zircon formation, which in turn can be interpreted as ages of geologic 654 events. This dual decay scheme provides an internal “check” on closed system behavior. 655

Theoretically, in a closed system, the date found from the decay of 238U to 206Pb should 656 be the same as that found using the 235U/207Pb scheme. Ahrens (1955) and Wetherill 657

(1956, 1963) developed a graphical procedure to visualize the effect of an open system. 658

Wetherill plotted a curve representing 206Pb/238U and 207Pb/238U ratios evolving as a result 659 of time. If U/Pb dates from a sample fall on this curve, they are said to be concordant and 660 can be interpreted as a closed system. If, however, dates fall above or below the line, they 661 are said to be discordant, and are interpreted to be an open system that has been affected 662 by one or more thermal events. 663

If a series of zircon crystals from one lithology have undergone varying degrees 664 of lead loss (open system), their dates will plot on the concordia diagram to form what is 665 termed a discordia line. If a grain is affected by relatively recent Pb loss, it will plot on a 666 straight line between the timing of crystallization and the origin. Over time, this “lower 667 intercept” will move up the concordia curve, and can be interpreted as the amount of time 668 since Pb-loss. Thus, the upper intercept on a discordia is the timing of crystallization, and 669 the lower intercept is the amount of time that has elapsed since the end of a thermally- 670 induced Pb-loss event. It is important to remember that a zircon can have growth domains 671 that crystallized at different times due to either igneous crystallization or metamorphism. 672

The upper intercept age on a discordia can thus be interpreted as a metamorphic event if a 673

17 growth domain or metamorphic zircon is being dated. In this study, almost all the zircons dates were discordant. The potential age of Pb loss is <6 Ma (timing of volcanic activity in the region). This young age will not substantially bias the upper intercept from the calculated 207Pb/206Pb age, which is insensitive to recent Pb-loss. The equation for the

207Pb/206Pb, or the Pb/Pb age is

Equation 4: 207Pb/206Pb age

207Pb 235U e 235t 1     206Pb 238U e 238t 1

where 235 is the decay constant for 235U (9.85 x 10-10) and 238 is the decay constant

for 238U (1.55 x 10-10) and t is the age of the zircon or domain within the zircon. Among

the advantages of the Pb/Pb age are that only ratios of isotopes need to be measured, not

concentrations, and Uranium ratios do not need to be measured at all because the 235U/

238U is a constant (1/137.8).

Zircon is the ideal mineral for extracting U/Pb geochronology for several reasons.

Zircon has a very high closure temperature (+1000C) for Pb and U diffusion and thus can preserve closed system behavior over billions of years (Cherniak et al., 1997;

Cherniak and Watson, 2000). Second, as described previously, it is easily assessed for open or closed system behavior using a concordia diagram (Wetherill, 1956). Third, zircons grow and recrystallize during metamorphic heating events, and record the timing of that event in a new growth or recrystallized domain. The domains of zircons can be used as a record of thermal events that have affected the rock. And fourth, zircon is a

18 very robust mineral, and will withstand weathering and reheating. Zircon persists through 697 metamorphic and sedimentary processes. 698

699

Laser Ablation Inductively Coupled Mass Spectrometry 700

To prepare for mass spectrometry analysis, zircon crystals were separated from 701 their host rocks using standard density and magnetic methods. Collected samples were 702 crushed using a Bico-Braun “Chipmunk” steel jaw crusher and disk-milled with steel 703 plates. Samples were sieved by size and < 500 µm material was hand washed with water 704 to remove clay-sized particles. After drying and removal of ferromagnetic particles with a 705 hand permanent magnet, a Frantz magnetic separator was used at 1.0 A/20 to split out 706 the most magnetic material (e.g. oxides, olivine, garnet, altered ferromagnesian minerals) 707 and to reduce the size of the sample. Bromoform heavy liquid separation was used to 708 divide the non-magnetic separates into dense (>2.8 g/cm3) grains, such as zircon and 709 sphene, and lighter (<2.8 g/cm3) grains such as quartz and feldspar. Once dry, dense 710 grains were run through the Frantz magnetic separator at 1.4 A/20, 1.4 A/10, and if 711 needed 1.4A/5 to further separate zircon from other minerals and reduce sample size. 712

The most non-magnetic separates were handpicked for zircons to be analyzed by 713 mass spectrometry. Many of the zircons in this study had magnetic inclusions causing 714 zircon separation at lower magnetic field intensities, and occasionally these separates 715 were also picked for zircon. The largest possible variety in grain morphologies were 716 picked to capture multiple events and styles of growth in the sample’s history. Grains 717 riddled with inclusions were avoided. Most of the picked zircons were annealed at 900C 718

19 for at least 60 hours to enhance cathodoluminescence emission, and with the intention 719 that these zircons could undergo thermal ionization mass spectrometry in a later study. 720

In order to decide where to place laser analysis spots on grains, black and white 721 cathodoluminescence (CL) images were collected via a scanning electron microscope. To 722 prepare for imaging, picked grains were mounted in epoxy and then polished to reach the 723 centers of the grains. By polishing to the center of grains, a cross section of the grains 724 could be imaged, capturing all domains the zircon may have. CL images were obtained 725 with a JEOL T-300 scanning electron microscope and Gatan MiniCL. Populations of 726 grains based on morphology and growth domains within grains were identified from CL 727 images. Analysis spots were chosen to target as many morphological populations and 728 growth domains as possible. 729

Laser spots were analyzed for trace elements and U-Th-Pb isotope ratios using the 730

New Wave UP213/X-Series II LA-ICPMS facility at Boise State University. NIST and 731

USGS glasses, and Plesovice and FC-1 zircon standard materials were used for 732 simultaneous acquisition and real-time calibration of trace element concentrations and U- 733

Th-Pb ages on 25-40 micron spot analyses. In-house software was used for data 734 reduction. 735

736

Identifying Age Populations and Calculating Ages 737

Zircon growth ages are interpreted to represent the timing of igneous or 738 metamorphic activity. Populations of growth domains identified first by CL imaging were 739 reassessed following LA-ICPMS by iteratively using CL images, trace element 740 compositions, U/Pb concordia diagrams and 207Pb/206Pb dates. In some samples, dates 741

20 from two populations blend into each other and can be difficult to discern between. 742

However, by comparing trace element compositions and CL images, the boundary 743 between the populations can be determined. 744

The oldest age population in many zircons is interpreted to be an inherited age. 745

Because it is possible for a sample to have zircons inherited from multiple locations or 746 from sedimentary rocks with multiple protoliths, an average date of the inherited age 747 populations is not appropriate. Mesoarchean and Neoarchean ages are interpreted to be 748 zircon growth events from igneous or metamorphic activity. Each sample is treated as 749 having distinct growth events, possibly and likely at different times from other samples. 750

Events that are within a few hundred million years of each other are likely part of the 751 same metamorphic or igneous episode, but occurred at different parts of the episode. The 752 age of a growth event was calculated by taking the error-weighted mean of the 753

207Pb/206Pb dates in that population that had less than 40% (SM) or 30% (SK, CRMO and 754

HM) discordance, and that were not outliers on linear cumulative probability plots (fig. 755

5). Isoplot 3.0 (Ludwig, 2003) was used to create linearized cumulate probability plots, 756 which show a regression through data that represents a single Gaussian distribution. 757

Dates that were interpreted as part of a single distribution were averaged with their errors 758 weighted. Dates that were outliers on cumulative probability plots were interpreted to be 759 biased by ancient Pb loss or inheritance and were not used in determining ages of events. 760

A higher discordance threshold was used for SM because fewer spots were analyzed per 761 sample in this field area, and without a higher threshold not enough dates would have 762 been available to calculate an average date. A population of Cenezoic dates is also 763 recorded in some xenolith samples and interpreted to be igneous crystallization ages, or 764

21 growth events during very young metamorphic episodes. The ages of Cenozoic events 765 were calculated as the Precambrian events were, however using 238U/206Pb dates instead 766 of 207Pb/206Pb dates, and ignoring discordance. Epoch and age assignments are based on 767 the 2012 GSA timescale (Walker and Geissman et al., 2012). 768

769

770

Figure 5: Linearized probability plot. To determine the age of a zircon growth event 771 within a sample, spots with a discordance of greater than 30% (SK, CRMO and 772 HM) or 40% (SM) are discarded. A linearized probability plot is then used to 773 discard outliers due to ancient Pb loss and inheritance. A linearized probability plot 774 is similar to a Gaussian curve (a) but uses cumulative probability (b) to display a 775 regression through data that represents a single Gaussian distribution (c). Outliers, 776 shown in hollow circles, are discarded. The dates of filled circles are averaged with 777 errors weighted to determine the age of the event (d). 778

22

Results 779 780

Spencer-Kilgore 781

Petrography 782

Three samples from this location were petrographically analyzed: SK11-01, 783

SK11-02, and SK11-07. Only a brief description of thin sections is given here. For a 784 more detailed description and mineral percentages for each sample, see appendix A. 785

SK11-01 and SK11-02 have a major mineralogy of qtz + fsp + opx + cpx + op. 786

Both samples are compositionally layered, alternating mafic and felsic bands. These 787 rocks are metamorphic charnockites, or two-pyroxene granulites. SK11-07 has a major 788 mineralogy of qtz + plg + op + grt. It is compositionally banded, alternating layers of qtz 789

+ plg and op + grt. This sample is a garnet granulite. 790

791

CL images 792

Grains from Spencer Kilgore are euhedral but rounded. (fig. 6). CL images differ 793 among samples, however they all have patterns in the images that correlate to comparable 794 age populations. SK11-01, SK11-02 and SK11-03 have similar CL patterns. These 795 samples have two CL populations, cores that are either black or have blurred oscillatory 796 zoning, and overgrowths and discrete grains that are mottled or show no oscillatory 797 zoning. Sector zoning is seen in all samples. 798

CL images of SK11-07 and SK11-08 exhibit cores and overgrowths, as well as 799 grains with a single domain. The cores in these two samples show blurred oscillatory 800 zoning or no zoning. Overgrowths do not show zoning. 801

802

23

803

804

SK11-01 3 3 2 1 1 2 2 2 1 2 2 30 µm 1 2 2 3 2 3 2

30 µm SK11-03

SK11-07

3

2

25 µm

2 3

2

805 Figure 6: Examples of CL images from Spencer-Kilgore samples. Paleoarchean 806 dates, indicated with a 1, are recorded in cores of grains. Mesoarchean dates, 807 indicated with a 2, are recorded in domains with oscillatory and blurred oscillatory 808 zoning, as well as domains with no zoning. All samples contain grains recording 809 Mesoarchean dates. Neoarchean dates, indicated with a 3, are overgrowths and 810 grains that do not exhibit zoning. 811 812

24

U/Pb geochronology 813

Five samples from Spencer-Kilgore were analyzed by LA-ICPMS for U-Th-Pb dates: 814

SK11-01, SK11-02, SK11-03, SK11-07 and SK11-08. Multiple groupings of dates were 815 recorded in each sample (fig. 6). SK11-01 and SK11-08 recorded a few Paleoarchean 816 dates between 3334 + 33 Ma to 3763 + 24 Ma. These dates are recorded in cores of 817 grains and in grains with only one growth domain imaged by CL. Mesoarchean and 818

Neoarchean dates were recorded by all SK samples (fig. 6). Mesoarchean and Neoachean 819 dates are recorded in zircon overgrowths and in grains with only one growth domain. 820

Mesoarchean dates can be split into two groups, with samples recording dates at ~3.2 and 821 samples recording younger dates, ~3.0. For full results, see Appendix C. 822

823

Figure 7: Ages of zircon crystallization in samples from Spencer Kilgore and 824 Craters of the Moon. Grey boxes indicate episodes of igneous activity, perhaps 825 related to orogenic cycles during the growth of the North American continent. Error 826 bars are 2. 827

25

828

Trace element geochemistry 829

Trace element concentrations were collected simultaneously with U/Pb data. REE 830 patterns and other trace element concentrations provide insight into the media that control 831 zircon crystal formation. The partition coefficients for REE in zircon increase with 832 atomic number (Nagasawa, 1970; Hinton and Upton, 1991; Watson, 1980; Thomas et al., 833

2002; Sano et al., 2002), resulting in a REE pattern of enrichment in HREE (Eu, Gd, Tb, 834

Dy, Ho, Er, Tm, Yb, Lu) and depletion in LREE (La, Ce, Pr, Nd, Pm, Sm) (fig 8a). The 835 slope of HREE enrichment can change during metamorphism. The change in slope can be 836 displayed by dividing the concentration of Gd by the concentration of Yb (fig. 8b). A 837 high Gd/Yb ratio indicates a shallow slope, and a low Gd/Yb ratio indicates a steep slope. 838

In continental crust environments, a positive Ce anomaly will be recorded in the REE 839 pattern. If a zircon is crystalizing after or at the same time as plagioclase, a negative Eu 840 anomaly will be recorded. A change in the magnitude of the Eu anomaly can be displayed 841 by dividing Eu by radiogenic Eu (Eu*) (fig. 8b). An increase in the Eu/Eu* ratio indicates 842 a smaller anomaly, and a decrease in the Eu/Eu* ratio indicates a larger anomaly. 843

Rare earth element (REE) concentration increases from light REE to heavy REE 844 for all SK samples. All samples also have a positive Ce anomaly and a negative Eu 845 anomaly. The Eu anomaly is slightly larger for Neoarchean (metamorphic) zircons in 846 samples SK11-01 and SK11-08, as evident by the lower Eu/Eu* ratio (fig. 9). There is no 847 change in magnitude of the Eu anomaly between growth domains in samples SK11-02, 848

SK11-03 or SK11-07 (fig. 10). HREE concentrations are lower for Neoarchean zircons 849 than they are for Mesoarchean zircons, and the slope of the HREE is less steep for 850

26

Neoarchean zircons than for Mesoarchean zircons in samples SK11-01, SK11-07 and 851

SK11-08 (figs. 9,10). This is evident in the Gd/Yb ratio. 852

For samples SK11-01 and SK11-08, Th/U ratios are higher for metamorphic, 853

Neoachean zircons than for igneous, Mesoarchean zircons. Neoarchean zircon Th/U 854 ratios range to 5.01 and 1.6 in samples SK11-01 and SK11-08, respectively, whereas 855

Paleoarchean and Mesoarchean Th/U ratios range to only 1.5 and 1.16, respectively. 856

SK11-07 and SK11-02 also followed a trend of higher Th/U ratios for metamorphic 857 zircons. SK11-03 records an opposite trend, with lower Th/U ratios for metamorphic 858 zircons. In all Spencer-Kilgore samples, U concentration was lower in metamorphic 859 zircons than in igneous zircons (figs. 9,10) 860

861 862 863 864 865 866 867 868

27 (La, Ce, Pr, Ce, Pr, (La, and depletion inand LREE depletion (Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) Tm, Er, Tb,(Eu, Gd, Dy, Ho, in HREE ) (a). The slope of enrichment of HREE can be displayed by dividing the concentration of Gd by the concentration ) Theof of slope by dividing HREE the concentration displayed by the concentration (a). Gd be can of enrichment Figure 8: A normal REE pattern for zircon crystalized in a continental crust environment. environment. crust in REE crystalized 8: a continental REE normal for zircon for and A both pattern igneous Figure patterns enrichment record zircons metamorphic Sm Nd, Pm, (a) anomaly a positive of zircon records Ce If oxygen. environments, due crust the to zircon of presence Yb (b). In continental be can displayed Eu anomaly The intensity of (a). is the recorded Eu anomaly ofgrows plagioclase, a negative in the presence Euby (Eu*) dividing (b) by radiogenic Eu

28

869

870

Figure 9: Trace element and trace element ratio plots for SK11-01 and SK11-08. 871

29

872 Figure 10: Trace element and trace element ratio plots for SK11-07, SK11-01 and 873 SK11-02. 874 875

30

Ti-in-Zircon (TiZr) temperatures were recorded for each analysis. Temperatures 876 ranged between 600 and 1050°C (fig. 11). Neoarchean zircons overall record lower 877 temperatures than Mesoarchean zircons. Neoarchean zircons record temperatures 878 between 625 and 875°C. Mesoarchean zircons record temperatures ranging up to 1000°C. 879

880

881

Figure 11: Ti-in-Zr temperatures recorded in zircons from Spencer-Kilgore and Craters 882 of the Moon. Samples are listed in order of decreasing means. Dots are the median 883 temperatures for each sample. Samples without dots recorded only two temperatures. 884

31

885

886 Craters of the Moon National Monument and Preserve 887

Petrography 888

Eleven samples were petrographically analyzed from Craters of the Moon 889

National Monument and Preserve (CRMO): CRMO11-01, CRMO11-03, CRMO11-04, 890

CRMO11-05, CRMO11-06, CRMO11-09, CRMO11-15, CRMO11-16, CRMO11-17, 891

CRMO11-18, CRMO11-19. The major mineralogy of samples from CRMO is 892 dominantly qtz + fsp + opx and are banded gneisses, exhibiting grain boundary migration 893 and/or grain boundary bulging. Exceptions are CRMO11-03, CRMO11-04, and 894

CRMO11-19, which are courser grained than other samples, have no mineral sorting, and 895 major mineralogies of qtz + fsp + amp indicative of intrusive granitoids. They are highly 896 infiltrated by their basalt host, but in areas where basalt is absent, grains are interlocking, 897 also indicative of intrusive granitoids. Samples CRMO11-03, CRMO11-04 and 898

CRMO11-19 are the freshest, least friable of samples collected at CRMO. 899

900

CL images 901

CRMO zircons have the most regular oscillatory zoning of all samples (fig. 12). 902

Domains of zircons seen in CL images can be separated into cores and overgrowths. 903

Cores can be dark or oscillatory, and can be surrounded by one large overgrowth, or by 904 oscillatory band overgrowths. In cases where the oscillatory core is surrounded by 905 oscillatory bands, the difference between domains is identified by a change in orientation 906 of the banding. The core bands are truncated by the overgrowth bands. Cores can also be 907 patchy, or blurred. Cores record either Paleoarchean or Mesoarchean dates. Grains with 908

32

909

CRMO11-01

2 CRMO11-03 5 2 5 5

5 25 µm 5 5 25 µm 5 5 2 2 5

CRMO11-14

30 µm

CRMO11-12 3 4 2 3 4 4 4 30 µm 3 4 4 4 4 4 3 4 4 1 3 CRMO11-15 1 2 2 2 1 2 5 2 2 30 µm 2 5 1 2 2 2 5 2

910

Figure 12: Examples of CL images and age growth domains from CRMO samples. 911 Paleoarchean dates (1) are recorded in cores of grains. Mesoarchean dates (2) are 912 recorded in grains with no zoning or with blurred oscillatory zoning. Neoarchean 913 dates (3) are recorded in grains and overgrowths with no zoning, as well as in the 914 cores of the grains that also record a younger Neoarchean growth (4). Paleogene 915 dates (5) were recorded in three granitoid samples, all in domains with oscillatory 916 zoning, as well as an overgrowth and an individual grain with no zoning in one 917 Archean sample. 918

33

Only one growth zone of blurred oscillatory zoning and overgrowths of blurred 919 oscillatory zoning record Mesoarchean dates. Grains and overgrowths that are brighter, 920 indicating lower uranium, and have no zonation, record Neoarchean dates. Paleogene 921 growth domains exhibit oscillatory zoning. Many grains exhibit uranium damage. 922

923

U/Pb geochronology 924

Of the 19 samples collected at Craters of the Moon, 14 samples were analyzed 925 for U/Pb geochronology (Appendix C). The other samples collected were deemed too 926 small to crush, contained no zircons, or were determined not to be lower crustal xenoliths 927 and thus were not of interest in this study. Of the samples analyzed, four age groupings 928 were identified. The first grouping is recorded in cores, and range from 3312 + 50 Ma to 929

3609 + 21 Ma. This population is found in only 7 of the samples. 930

The second and third age groupings comprise both cores and grains that exhibit 931 a blurred oscillatory pattern. These areas record dates in the Mesoarchean. Two 932 groupings in the Mesoarchean are found in CRMO samples, one group at ~3.2 Ga and the 933 other at ~3.0 Ga. The fourth grouping of Neoarchean dates are recorded in 7 CRMO 934 samples. These dates are recorded in overgrowths and unzoned grains. Dates range from 935

2.68 to 2.92 Ga. Sample CRMO11-12 records dates between 2.4 and 2.6 Ga. No other 936 sample records similar dates. The average of CRMO11-12 Paleoproterozoic dates is 2498 937

+ 21 and has a MSWD of 1.2. 938

Four CRMO samples, CRMO11-03, CRMO11-04, CRMO11-15 and CRMO11- 939

19, recorded Paleogene dates. CRMO11-03, CRMO11-04 and CRMO11-19 dates are 940 from single growth domain zircons with oscillatory zoning, although CRMO11-19 941

34 oscillatory zones are blurred. Grains from CRMO11-03, CRMO11-04 and CRMO11-19 942 are euhedral. These textures are indicative of igneous formation, not surprising as the 943 three samples are granitoids. CRMO11-03 and CRMO11-04 record similar dates, with 944 averages of 36 + .60 Ma and 37 + .49 Ma, respectively. CRMO11-19 records dates a little 945 older, with an average of 45 + 1.9 Ma. CRMO11-03 records 2 Mesoarchean dates at 2974 946

+ 67 Ma (discordance 8%) and 2613 + 79 Ma (discordance 26%). CRMO11-04 and 947

CRMO11-19 only record Paleogene dates. 948

The two domains from CRMO11-15 that record Paleogene dates do not exhibit 949 zoning patterns, indicating metamorphism. One domain is a single grain that is bright in 950

CL (low U concentration) and the other domain is a dark (high U concentration) 951 overgrowth (fig. 12). CRMO11-15 records fewer than 5 Paleogene dates, and records 952 many Mesoarchean dates. 953

954

Trace element geochemistry 955

Rare earth element concentration increases from light REE to heavy REE for all 956

CRMO samples. All samples also have a positive Ce anomaly and a negative Eu 957 anomaly. 958

Sample CRMO11-03 and CRMO11-04 record Paleogene dates between 36 and 959

38 Ma. Both have identical modal mineralogy, very similar CL images and age patterns, 960 and REE patterns that are very similar, as indicated by Gd/Yb ratios (fig. 13). Their REE 961 pattern is a normal HREE-enriched zircon pattern. The Eu anomaly in both samples is 962 very pronounced. Both CRMO11-03 and CRMO11-04 have low Th/U ratios, rarely 963 recording ratios above 1.5. TiZr temperatures for Paleogene zircons from CRMO11-03 964

35 range from 518°C -785°C. TiZr temperatures for CRMO11-04 zircons range between 965

534°C - 903°C. The temperatures recorded in these samples, as well as their similar 966 geochemistry and identical ages indicates these two xenoliths are from the same granitic 967 pluton. CRMO11-19 also records only Paleogene dates, however, the geochemistry and 968 zircon growth ages differ from CRMO11-03 and CRMO11-04. CRMO11-19 records 969 only a slight Eu anomaly (fig. 13) and records much older ages of 45 Ma. CRMO11-19 is 970 also from a granitic pluton, but a different one than the one CRMO11-03 and CRMO11- 971

04 were sourced from. 972

CRMO11-01, CRMO11-07 and CRMO11-13 record Late Mesoarchean and 973

Neoarchean ages. CRMO11-07 and CRMO11-13 record no change in the slope of HREE 974 concentrations (shown by Gd/Yb ratios, fig 14), U concentration, or Ti-in-Zr 975 temperatures between the two age groups. However, CRMO11-01 records changes in 976 lower U concentrations in metamorphic Neoarchean ages (fig. 14) as well as lower Th/Y 977 ratios in Neoarchean zircons. No change is seen in the Th/U ratio indicating Th and U are 978 both expelled at during metamorphism, with neither being preferentially expelled over 979 the other. 980

CRMO11-05, CRMO11-12 and CRMO11-14 all record Paleoarchean, 981

Mesoarchean, and Neoarchean zircon growth domains (fig. 15). CRMO11-12 also 982 records Paleoproterozoic growth domains. For these three samples, the slope of HREE 983 from Gd to Yb does not change between samples, however there is a lowering in 984 concentration of HREE. A steeper Eu anomaly (lower Eu/Eu*) is rercorded in 985 metamorphic zircons from CRMO11-12 and CRMO11-05. CRMO11-14 does not record 986 a change in Eu anomaly. U concentrations decrease in metamorphic domains in samples 987

36

CRMO11-05 and CRMO11-14. This is also recorded in higher Th/U ratios for these two 988 samples. CRMO11-12 also records a higher Th/U ratio for metamorphic zircons, but only 989 for Paleoproterozoic metamorphic zircon domains, not for Mesoarchean metamorphic 990 zircon domains. Ti-in-Zr temperatures range from 650 to 1000 °C for CRMO11-14 and 991

CRMO11-05. Metamorphic zircons from these samples have a smaller range of 992 temperatures, between 650°C to 875°C, than igneous zircons. CRMO11-12 does not 993 record a change in temperatures, however all four zircon growth domains record 994 temperatures below 860°C. 995

Samples CRMO11-15, CRMO11-16, and CRMO11-18 all record Paleoarchean 996 inherited ages, Mesoarchean igneous ages, but do not record Neoarchean metamorphic 997 ages. CRMO11-17 also records Paleoarchean ages and Mesoarchean ages, but does 998 record two Neoarchean ages. CRMO11-15 and CRMO11-18 record very similar 999

Mesoarchean ages (3.285 and 3.287 Ga, respectively). Their Eu anomalies, Th/U ratios 1000 and Ti-in-Zr temperatures are also very similar (fig. 17). It is possible these two xenoliths 1001 were part of the same pluton. CRMO11-15 also records three Paleogene dates. The 1002 negative Eu anomaly is more pronounced in zircon domains with metamorphic Paleogene 1003 ages from CRMO11-15 and metamorphic Neoarchean ages from CRMO11-17 than in 1004 domains recording older ages from these samples (figs. 16,17). A decrease in U 1005 concentration and an increase in the Th/U ratio is also recorded in Neoarchean ages from 1006

CRMO11-17. The Paleogene metamorphic zircons from CRMO11-15 record the 1007 opposite, an increase in U and a decrease in Th/U. Ti-in-Zr temperatures for the 1008 metamorphic domains from CRMO11-17 and CRMO11-15 are lower than for their 1009 associated igneous domains. 1010

37

1011

Figure 13: Trace element and trace element ratio plots for CRMO11-03, CRMO11- 1012 04 and CRMO11-19. 1013 1014

38

1015 Figure 14: Trace element and trace element ratio plots for CRMO11-01, CRMO11- 1016 07 and CRMO11-13. 1017 1018

39

1019

Figure 15: Trace element and trace element ratio plots for CRMO11-05, CRMO11- 1020 12 and CRMO11-14. 1021

40

1022 Figure 16: Trace element and trace element ratio plots CRMO11-16 and CRMO11- 1023 17. 1024

41

1025

Figure 17: Trace element and trace element ratio plots for CRMO11-15 and 1026 CRMO11-18. 1027

42

1028 Square Mountain 1029

Petrography 1030

Five samples from the Square Mountain (SM) location were petrographically 1031 analyzed: SM10-A3, SM10-C1, SM10-C2, SM10-C3 and SM10-C4. Only a brief 1032 description of thin sections is given here. For a more detailed description and mineral 1033 percentages for each sample, see appendix A. 1034

All samples except SM10-C1 had a major mineral assemblage of qtz + fsp + pyx 1035

+ ox and are compositionally banded. They are granulites, specifically charnokites. 1036

SM10-C1 is a metagabbro, with a major mineral assemblage of fsp + ol + opx + ox. 1037

Grain boundary migration is evident in all samples. Basalt from the host rock had 1038 infiltrated the samples to varying degrees, and partial melting of the sample is seen at the 1039 boundaries of basalt and xenolith. 1040

1041

CL images 1042

Grains from SM retain the idiomorphic prismatic crystal form of zircon, with 1043 slightly rounded edges. Samples from SM10-A3, SM10-C2, and SM10-C3 show bright 1044 cores with mottled, recrystallized overgrowths. Oscillatory zoning can be seen on many 1045 of the tips of grains. The mottled overgrowths cut into the oscillatory zoning. Cores are 1046 bright white, with no zoning. Not all grains have a core; some are mottled throughout the 1047 grain. CL images of SM10-C4 reveal cores of mottled grains, and overgrowths of igneous 1048 oscillatory zoning (fig. 18). Grains from SM10-C4 are euhedral. 1049

1050

1051

43

1052 Figure 18: Examples of CL images from SM. Paleoarchean and Mesoarchean dates 1053 (1) were recorded in the cores of samples and in samples with low uranium and no 1054 zoning. Neoarchean dates (2) are recorded in zircon growth domains with 1055 oscillatory zoning and with a mottled pattern. Mottling often cuts across oscillatory 1056 zoning, which is preserved in the tips of many grains. Paleogene dates (4) are 1057 recorded in oscillatory overgrowths of grains in sample SM10-C4. 1058 1059 U/Pb geochronology 1060

Four samples from Square Mountain were analyzed for U-Th-Pb using LA- 1061

ICPMS: SM10-A3, SM10-C2, SM10-C3 and SM10-C4. SM10-C1 did not have sufficient 1062 zircons to date. Three age populations were identified using (table 2); these populations 1063 correlate to the three CL image patterns described above. The oldest dates are from the 1064

44

Mesoarchean, and are composed of spots taken from cores in the center of grains. 1065

Mesoarchean dates are recorded in all samples except SM10-C4. 1066

All four samples record dates in the Neoarchean. These dates are always recorded 1067 in mottled CL imaged areas. Thus, in SM10-A3, SM10-C2 and SM10-C3, Neoarchean 1068 dates are recorded in mottled overgrowths, and in SM10-C4 Neoarchean dates are 1069 recorded in mottled cores. SM10-C4 also records Paleogene dates. These dates are 1070 recorded in oscillatory zoned overgrowths. Paleogene 206U/238Pb dates range from 53 to 1071

44 Ma, with a weighted mean of 47+.55 Ma. 1072

1073

Trace element geochemistry 1074

All Square Mountain samples record a normal REE zircon pattern, with element 1075 concentrations increasing with atomic number. All samples record negative Eu 1076 anomalies, but due to high, flat LREE concentrations, a positive Ce anomaly is often not 1077 recorded, especially in samples SM10-C1, SM10-C2 and SM10-C3. However, LREE can 1078 be difficult to accurately detect due to their low concentration. In samples where LREE 1079 concentrations are flat, only HREE are interpreted as reliable. 1080

As only a few other dates besides those from igneous Neoarchean domains were 1081 recorded (with the exception of Paleogene dates in SM10-C4), only the U, Th, and Y 1082 concentrations for Neoarchean dates will be examined. SM10-A3, SM10-C2 and SM10- 1083

C3 recorded Th/U ratios between .03 and .8 (figs. 19, 20). A larger range of Th/U ratios 1084 are recorded in SM10-C4 (fig. 20). All SM samples recorded Th/Y ratios between .02 1085 and 2.18. However, SM10-C2 had a much tighter range, between .05 and .30. Th/U ratios 1086

45 are lower for igneous Paleogene domains than for Neoarchean domains (fig. 20), a result 1087 of U concentrations being higher Paleogene domains than in Archean domains. 1088

A range of high Ti-in-Zr temperatures (800-1000C) and low temperatures (650- 1089

550C) are recorded in SM samples, indicating the zircons were crystallizing early in the 1090 cooling process as well as at the end. TiZr temperatures for Mesoarchean dates range 1091 from 663°C to 952°C, but range less for individual samples. Neoarchean temperatures for 1092

SM10-A3 are between 788°C and 986°C, for SM10-C2 are between 716°C and 880°C, 1093 for SM10-C3 are between 750°C and 986°C, and for SM10C4 are between 646°C and 1094

941°C. Paleogene domains record temperatures between 494°C and 809°C (fig. 19), 1095 lower than temperatures for Neoarchean domains. 1096

1097

1098

1099

46

1100

Figure 19: Trace element and trace element ratio plots of SM10-A3 and SM10-C3. 1101 1102

47

1103 Figure 20: Trace element and trace element ratio plots of SM10-C2 and SM10-C4. 1104

48

House Mountain 1105

CL images 1106

HM11-06 4 3 2 2 3 2 2 30 µm 2 2 2 2 2 2 2 2 2 2

HM11-01 30 2 2 3 1 3 2

2 30 µm 2

2 2 2 2 30 µm 1107 Figure 21: Examples of CL images from HM. Paleoarchean and Mesoarchean dates 1108 (1) are recorded in cores of grains. Neoarchean dates (2) are recorded in oscillatory 1109 zoned domains and in domains with no zoning pattern. Paleoproterozoic dates (3) 1110 are recorded in unzoned domains. Paleogene dates (4) are recorded in domains with 1111 oscillatory zoning. 1112 1113 Zircon grains from both HM11-01 and HM11-06 are bright in CL indicating low 1114 uranium content (fig. 21). All grains are euhedral and slightly rounded. Oscillatory 1115 zoning can be seen in grains from HM11-01, although it is blurred. Oscillatory zoning 1116 can be seen in some grains from HM11-06. All other grains are unzoned or have 1117 convoluted zoning. 1118

49

U/Pb geochronology 1119

Both samples from HM containing zircons produced small zircon sets, in size and 1120 number. The tonalite orthogneiss, HM11-01, recorded two age populations (table 2). The 1121 older age grouping records dates between 2.0 and 2.5 Ga. Unfortunately, only one spot 1122 has a discordance of less than 30%, recording a date of 2541 + 55 Ma.HM11-01 and 1123

HM11-06 record two dates each between 1.82 and 1.97 Ga. These dates are recorded on 1124 an overgrowth and on discrete grains (fig. 21). Dates of 3.3 Ga, 3.6 Ga, and 1.4 Ga were 1125 also recorded, however, little can be said of these data with confidence as they are not 1126 reproducible and have high discordance. 1127

HM11-06, a muscovite bearing paragneiss, produced three distinct age groupings 1128

(table 2). The oldest population records a weighted mean of 2556 + 12 Ma (MSWD = 1129

.56). The next youngest age grouping has only two spots, with dates of 1917 + 64 and 1130

1893 + 57 Ma. A Paleogene grouping is recorded in two spots, with 238U/206Pb dates of 1131

46 + 4 Ma and 36 + 2 Ma. 1132

1133

Trace element geochemistry 1134

Both HM11-01 and HM11-06 record normal zircon REE patterns, with positive 1135

Ce anomalies and negative Eu anomalies. Eu anomalies are not as great in Paleogene and 1136

Paleoproterozoic domains (fig. 22). The zircon domains recording 1.8 Ga and 1.9 Ga 1137 dates in HM11-06 also record very shallow Ce and Eu anomalies. 1138

50

1139 Figure 22: Trace element and trace element ratio plots of HM11-01 and HM11-06. 1140

51

1141 Mesoarchean zircon domains from HM11-01 record Th/U ratios of .2 and .22. 1142

Neoarchean domains from this sample record .08 to 1.5. Th/Y ratios for Mesoarchean 1143 domains are .54 and .53 and for Neoarchean domains are between .11 and .36. 1144

Paleoproterozoic domains from HM11-01 record the lowest Th/U ratios, at .09 and .10. 1145

Th/Y ratios are also low for this growth population, at .09 and .11. TiZr temperatures for 1146

Mesoarchean domains are 852°C and 838°C and for Neoarchean domains are between 1147

741°C and 854°C. Paleoproterozoic domains recorded temperatures in the same range of 1148

Archean domains, at 819°C and 792°C. 1149

Unlike HM11-01, HM11-06 does not record any Mesoarchea dates, but does 1150 record Neoarchean dates and two Paleogene dates. Th/U ratios for domains recording 1151

Neoarchean dates are between .16 and 1.42. The Paleogene domains record Th/U ratios 1152 of .26 and .28. Th/Y ratios for Neoarchean domains are between .05 and .38, and for 1153

Paleogene domains are .58 and .60. Paleoproterozoic domains for this sample also 1154 recorded low Th/U ratios of .15 and .03 and low Th/Y ratios of .04 and .16. TiZr 1155 temperatures for Neoarchean domains range from 580°C to 851°C. The Paleogene 1156 domains record temperatures of 530°C and 576°C. Paleoproterozoic domains record 1157 temperatures of 735°C and 607°C. 1158

Th/U ratios from metamorphic domains, from both the Paleoproterozoic 1159

(HM11-01) and the Paleogene (HM11-06) are lower than those for igneous domains (fig. 1160

21). This must be caused by an intake in Th, as U concentrations do not increase in 1161 metamorphic domains (fig. 22). 1162

1163 1164

52

Discussion

The Use of Trace Element Geochemistry

Investigation of trace element concentrations and patterns in zircons, and interpretation of the source and mineralogical control of the trace elements provide evidence for the conditions under which the zircon formed. This in turn allows for more sophisticated interpretation of what an U/Pb date for a zircon is recording (timing of crystallization, metamorphism, level of metamorphism etc.). The trace element content in zircon is controlled by the medium from which the crystal forms. In the case of igneous zircon growth, the medium is a melt and the associated minerals co-crystallizing with zircon (Watson, 1979; Watson and Harrison, 1983). During metamorphic growth, the medium includes trace elements liberated during breakdown reactions, which communicate with the zircon crystals via grain boundary diffusion or via intracrystalline diffusion if a zircon crystal is occluded within another phase (e.g. Varva et al., 1996;

Fraser et al.;1997, Bingen et al., 2001). If earlier formed zircon is dissolving or recrystallizing during metamorphism, then the trace element reservoir can include not only other minerals surrounding the zircon, but also the zircon crystal itself onto which the domain is growing (Watson and Harrison, 1983). At upper amphibolite- to granulite- facies, zircon-bearing protoliths undergo both solid state and melt-forming reactions, therefore, trace element partitioning between melt, other modal and accessory minerals, and pre-existing zircons must be considered (e.g. Fraser et al., 1997; Roberts and Finger,

1997; Davidson and van Breeman, 1988; Schaltegger et al., 1991; Rubatto et al., 2001).

Insight into the media that control a zircon crystal’s formation can be gained by observing the REE pattern and other trace element concentrations in the zircon. Igneous

53 and metamorphic zircons alike follow a REE pattern of enrichment in HREE (Eu, Gd,

Tb, Dy, Ho, Er, Tm, Yb, Lu) and depletion in LREE (La, Ce, Pr, Nd, Pm, Sm), and may display a positive Ce anomalies and a negative Eu anomalies. The partition coefficients for REE in zircon increase with atomic number (e.g. Nagasawa, 1970; Watson, 1980;

Hinton and Upton, 1991; Sano et al., 2002; Thomas et al., 2002). This is because as atomic number increases, ionic radius decreases. The heavier REE becomes more similar in size to Zr4+ and therefore becomes more compatible in zircon (Hinton and Upton,

1991; Guo et al., 1996). Hinton and Upton (1991) observed that the Ce anomaly observed in some zircons is related to oxygen fugacity. In oxidized states, Ce3+ becomes Ce4+. Ce4+ is similar in size and equal in charge to Zr4+, allowing for substitution of Ce for Zr and compatibility in zircon. Oxidized states can indicate zircon formation in continental crustal environments. The negative Eu anomaly is due to the fugacity of oxygen and plagioclase fractionation during zircon crystallization (Snyder et al.; 1993, Hoskin, 1998;

Hoskin et al.; 2000). Because Eu2+ is compatible with plagioclase, during plagioclase growth Eu2+ will fractionate out of the melt and into plagioclase resulting in an apparent depletion of Eu compared to its neighboring REE. If plagioclase is crystalizing at the same time or is present before the zircon grows, a similarly lower concentration of Eu will be available for zircon resulting in a negative Eu anomaly. All zircons in this study record a positive Ce anomaly, indicating the zircons grew in an oxidized state, in the continental crust. All samples from this study have at least a slight Eu anomaly, although many have a significant one. This is not unexpected, as plagioclase is a modal mineral in almost all samples.

54

Other trace elements that substitute into zircon include P, U, Th, Hf, Y, Nb and Ta

(Es’kova, 1959; Speer, 1982; Caruba and Iacconi, 1983; Halden et al., 1993; Hoskin et al., 2000). Y3+ and Nb5+ and Ta5+ are all compatible in zircon, and substitute into the Zr4+ site (Thomas et al., 2002). Hf 4+, U4+, and Th4+ also substitute into the Zr4+ site in zircon

(Hoskin and Schaltegger, 2003). P substitutes into the Si4+site, as part of a xenotime-type substitution where REE3+ + P5+ = Zr4+ + Si4+ (Speer, 1982). Y behaves much like a REE due its size and charge (Es’kova, 1959).

Minerals in the protolith exert control over the composition of crystallizing zircon during metamorphism. First, for metamorphic zircon to grow, there must be a modally abundant mineral containing tens of ppm of Zr in the reacting protolith in order for a necessary amount of Zr to be release during metamorphism (Bignen et al., 2001). Garnet and illmenite are two minerals that have been proven to release enough Zr during metamorphism to lead to metamorphic zircon formation (Fraser et al., 1997; Bingen et al., 2001). Mineral breakdowns will not only release Zr, but other trace elements that affect the composition of metamorphic zircon. If a mineral releases a high concentration of REEs when it breaks down, growing metamorphic zircon can incorporate a high concentration of REE into its structure. For example, during dehydration reactions associated with the amphibolite-granulite transition, amphibole breaks down and orthopyroxene forms (Greenwood, 1963; Vernon and Clarke, 2008). High concentrations of trace elements are released from the amphibole structure, but are not easily incorporated into the pyroxene structure. These trace elements are available for incorporation into growing metamorphic zircon. If a high concentration of REE are identified in a granulite facies zircon, it may be inferred that amphibolite breakdown to

55 pyroxene is a possible reason for the high concentration. During continued metamorphism, a smaller reservoir of trace elements will be available to grow metamorphic zircon, as no minerals are present that will break down and release a large amount of REE.

Metamorphic minerals growing contemporaneously with or prior to metamorphic zircon also exert control over the trace element composition of metamorphic zircon. For example, if garnet is growing contemporaneously with zircon HREE concentrations in the metamorphic zircon will plateau or decrease. This is because HREE are highly compatible in garnet (Harrison and Wood, 1980), leaving a smaller budget of HREE for zircon. Garnet was identified in only one sample in this project (SK11-07), and in that sample a plateau of HREE is recorded, as expected. The lack of garnet, or evidence of garnet, in trace element compositions of all other samples indicates the pressure and or composition of the granulites sampled in this study was not appropriate for garnet production.

If a zircon is recrystallized during metamorphism, trace element concentration is controlled by the concentration in the original zircon. The trace element concentration in recrystallized zircon is likely to be lower than the concentration in the original zircon.

During recrystalization, incompatible elements will be ejected as the crystal attempts to become pure ZrSiO4, leaving behind a smaller trace element reservoir for the recrystallizing zircon. (Hoskin and Black, 2000; Rubatto, 2002).

56

Use of Ti-in-Zircon

Because the concentration of the trace element titanium in a zircon crystal is strongly temperature dependent, titanium concentration in zircon can be used as a thermometer (Watson and Harrison, 2005). The titanium-in-zircon (Ti-in-zircon or TiZR) thermometer was calibrated by Watson and Harrison (2005) and Watson et al. (2006). In general, the lower the crystallization temperature, the lower the concentration of titanium in a zircon crystal. Although temperature controls Ti concentration greatly, Ti concentration is not solely dependent on temperature. It is also dependent on pressure, activity of TiO2 and activity of SiO2 (Ferry and Watson, 2006). The Ti-in-zircon thermometer takes into account the activity of TiO2 and SiO2, but not pressure.

Uncertainties in this thermometer are both random and systematic. Random uncertainty can occur during the measurement of titanium due to counting statistic errors and analytical instrument fluctuation. Through repeated analysis of the Orapa (Botswana) kimberlite standard, the analytical error in Ti concentration at Boise State University has been determined to be +10%, or +10C error. Systematic errors in temperature reported from Ti-in-zircon thermometry include assumptions about the activity () of Ti in the rock. If a phase that contains Ti is present, such as rutile, then the activity is fixed at 1.

However, if a Ti phase is not present, the Ti will be less than one. If the assumed Ti is assumed lower than the actual Ti, the calculated temperature will be an overestimate.

Some rocks in this study do have rutile present, and their Ti can be assumed to be 1.

Watson and Harrison (2005) suggested most melts that crystallize zircon will have an Ti of .5, and that felsic rocks will have Ti greater than mafic rocks. An Ti of .7 was

57 assumed for all samples during in this study. If  is varied by10%, then a +10C - 15C difference is calculated.

A possible second systematic error in the Ti-in-zircon thermometer is if a spot analysis accidentally intersects an inclusion. During data reduction, evidence of inclusions is looked for in the time-resolved analysis, and affected data thrown out.

However, if missed, the temperature reported will be anomalously higher. To account for this, unusually high temperatures (>1050°C) were discarded. Because of the systematic uncertainties in the Ti-in-zircon thermometer, we recognize it is more useful to compare the differences in temperatures recorded within and among samples, than to compare absolute temperatures.

Formation of the Kilgore-Craters Terrane

The xenoliths collected from the Snake River Plain (SRP) and exposed lithologies in House Mountain reveal an Archean geologic history of Southern Idaho. The eastern section of the SRP, from the Montana border into Craters of the Moon, records a distinct geologic history from the SRP area to the west, and thus is interpreted to be a distinct terrane. We name this eastern area the Kilgore-Craters terrane. The dominant modal mineralogy of granulite xenoliths from Spencer-Kilgore (SK) and Craters of the Moon

(CRMO) is qtz + fsp + pyx. Usually orthopyroxene is present, but clinopyroxene may also be present, and one sample also contains garnet. All of these lithologies record

Archean crystallization histories. These Archean xenoliths are charnockites, and their mineralogy and texture indicate they have undergone granulite facies metamorphism, buried to the mid to lower crust. Three Paleogene granitoid xenoliths are igneous granodiorites. Zircon from these samples exhibit igneous, oscillatory zoning. It is easiest

58 to discuss the Archean xenoliths separately from the Paleogene xenoliths due to their differing formations.

Zircons in xenoliths with Archean histories record multiple events. In this discussion, for both terranes, the word “event” refers to a phase of zircon growth due to either metamorphism or igneous processes. For each sample, an average age of a growth event is calculated. Each growth event recorded is part of an igneous or metamorphic episode within a longer orogenic cycle. Because samples are from different lithologies, and formed at different times, their growth events can be different parts of that cycle. It is likely that similar ages in different samples are part of the same episode of metamorphism or igneous activity, but are recording different parts of the cycle. For example, growth events could be during prograde, peak or retrograde metamorphism.

Three dominant age groupings of zircon growth events are recorded in the

Archean xenoliths (table 2) from SK and CRMO. The first and oldest group is composed of zircons crystallized in the late Paleoarchean and the Eoarchean, the second is zircons crystallized in the Mesoarchean, and the third is zircons crystallized in the Neoarchean.

The late Paleoarchean and the Eoarchean ages recorded in zircons are interpreted to be inherited xenocrysts in the protolith granitoids. These oldest dates range from 3334 + 33

Ma to 3763 + 24 Ma. Samples often only record two or three Paleo to Eoarchean ages or do not record this age population at all. All dates are discordant. Laser spots that reported these dates are from both cores of crystals and from individual crystals. The CL images of the Eoarchean and Paleoarchean domains exhibit either oscillatory zoning or no zoning. The trace element chemistry of these spots does not follow any pattern within or between samples, indicating the domains have multiple sources.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

59

41 , 0, 3.4 , there are are , there .6 + + .49, 2.5,53 + 1.9, 5.1,10 ------36 37 45 ------

to Paleoarchean to Paleoarchean

, 8 italicized + 21, 1.2 + ------2498 ------

, 4 , 8 , 9 , 7 , 8 , 5 U ages. If a date is a If U ages.

238 65 + 11, .77+ 17,.024 + 63, 14, + 7 16, .28+ 33, 2.5+ 21,.17,+ 4 9.0, 1.0 + 52, 108, + 150, 5.0,+ 3 + 16, .51+ 42, 1.2+ Pb/ 206 2829 2763 2826 2751 -- -- 2776 2928 2766 2703 2842 2762 2706

, 5 , 5 , 6 , 2 2 , 2902 + 50 + 25, 11,+ 27 39, .16+ + 12, .33,+ 15 33, 1.6+ 21, .40+ 8.0, .04 + sign indicates the sample did not dates-- sign record in indicates sample the A + that era. 3144 3194 ------3059 -- -- 3137 3067 3066 3001 -- --

10

, 4 , 46 18, .4,32 + 14, 1.4, + 12 6.0, 1.7, + 35 14, .26+ + + -- -- 3241 3242 3215 ------3276 3227

15 Pb ages, except Paleogene dates, which are dates, are which Paleogene except Pb ages, Snake River Plain growth events Plain Snakezircon River 206 3763, 3434, 2 3609, 2 3430, 2 3776, 17 – – – – – Pb/ 207 Date(Ma), nDate(Ma), nMSWD, Date(Ma), nMSWD, n Date(Ma), MSWD, Date(Ma), nMSWD, Date(Ma), n MSWD, Date(Ma), Paleoarchean Paleoarchean 1 Mesoarchean 2 Mesoarchean Neoarchean Paleogene Paleoproterozoic 3334 3393 ------3496 3411 3420

03 04 19 01 07 13 05 12 14 08 02 03 07 River Snake the identifiedfrom in samples events were Plain. Paleoproterozoic Multiple growth zircon of 30% than discordance (SK, CRMO, less or HM) had a of mean that laser spot weighted dates are ICPMS averages ages dates did on linearized not outliers not plots. and probability Paleogene where (HM) considered 40% into account take Ages are discordance. not outliers. A in that 5 dates that are sample than fewer listed are dates discordance. dates in a sample era, high in that had Inherited recorded all dates but sample indicates a sign of igneous xenolith interpreted timing to be the dates formationare of dates. For SK, range CRMO Mesoarchean a and as the to be interpreted also metamorphism.ages are agesare Neoarchean during of zircon Neoarchean the timing growth and theof igneous dates timing SM and HM, are of stabilization terrane. For Neoarchean the Kilgore-Craters timing of formation. NameSample Sample Kilgore-Craters Kilgore Spencer SK11-01 SK11- SK11- SK11- SK11- Craters ofMoon the CRMO11- CRMO11- CRMO11- CRMO11- CRMO11- CRMO11- CRMO11- CRMO11- CRMO11-

Table 2: Lower crust of the the of TableLower 2: crust

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

60

+ 62.55, 8.8, + 15.0,2 34 + 8.7, 3 ------47 -- 37

, 2 , 57 + ------1893 ------

, 7 + , 1 , 55

+ 11, .94,+ 11 2679120, 6.0,+ 3 2549 6.0, 1.4, + 18 2577 3.9, .42, + 17 2541 2511 ------+ 2910, 4 2546 27, 1.9 + – -- 2778 ------3363, 3 + 11, .24,+ 18 14, .20,+ 12 5.8, .3, + 8 17, 1.0,+ 10 – 3292 ------3285 3287 3254 3222

, 3 , 8 8 , 3595 3444, 5 3482, 2 3482, 2 – – – -3624, 2 2 -3624,

Paleoarchean Paleoarchean 1 Mesoarchean 2 Mesoarchean Neoarchean Paleogene Paleoproterozoic -- 2863- 3683 -- 3356 3472 3392 3321 - 3337 --

15 18 16 17

01 06 A3 C2 C3 C4 Sample NameSample CRMO11- CRMO11- CRMO11- CRMO11- Square Mt.terrane Square Mountain SM10- SM10- SM10- SM10- House Mountain HM11- HM11-

Table 2: Lower crust of the Snake River Plain con’t growth events Plain zircon Snake the River of LowerTable crust 2: 61

Typical elevated REE patterns and negative Eu anomalies indicate the zircons formed in the continental crust in the presence of feldspar. Because there is no pattern to the chemistry or dates and the Paleoarchean and older domains are never from overgrowths on crystals, this population of cores and crystals are interpreted to be inherited. One explanation of inheritance is the Paleoarchean and older cores and crystals crystallized in a crustal melt that inherited zircons from the source rock. These inherited very old ages in zircons indicate the magma was sourced from an older, crustal rock, and that these xenoliths were formed from recycled crust.

Thin sections of the xenoliths record textures of late stage recrystalization. Relic textures that would hold clues to sedimentary or igneous protoliths of the gneisses are not evident. However, the modal mineralogy of qtz + fsp + pyx indicates igneous felsic to intermediate plutonic protoliths. In particular, the presence of pyroxene and lack of aluminosilicates provide evidence of an igneous protolith. Pyroxene indicates amphiboles were present in the protolith. The lack of aluminosilicates indicates sheet silicates were not abundantly present in the protoliths, common minerals in sedimentary rocks. Sheet silicates break down to form aluminosilicates during metamorphism (Spear, 1994, 338-

391). Kyanite and sillimanite remain stable under high temperatures and pressures

(Holdaway, 1971; Spear, 1994, 338-391) including 8-10 Kb, the pressure these rocks are interpreted to have undergone, indicated by their charnockitic mineralogy. If micas were a major mineral component of the protolith, aluminosilicates would still be present in these xenoliths. Thus, the protoliths of the gneisses are interpreted to be igneous, specifically granodioritic to granitic. Mesoarchean grains and domains from SK and

62

CRMO record TiZR temperatures from 600C to over 900C (fig. 11). These temperatures are within the range of typical granodioritic to granitic magmatic conditions.

The crystallization of the plutonic protoliths is recorded in zircon domains from the Mesoarchean. Mesoarchean domains include both volumetrically dominant mantles on older cores and individual crystals. Two groupings of ages are recorded in

Mesoarchean domains from SK and CRMO. The older is at ~3200 Ma and the second at

~3050 Ma. However, as each sample is interpreted to be a different lithology, it is best to look at the individual age of crystallization for each sample (table 2).

Two samples, CRMO11-01 and CRMO11-04, have a very large spread of dates that are less than 30% discordant. This results in very long “tails” on their linearized probability plots (see appendix D). Upon first look, it is easy to assume there is more than one event being recorded in these samples, perhaps where there are groupings of dates.

The trace element plots of these samples also indicate two distinct chemical groups.

However, the different chemistry groupings do not correlate to date groupings, but instead to sector zoning of high uranium and low uranium areas, imaged by cathodoluminescence, and there is no pattern between chemistry and dates. There is also no pattern between dates and discordance, which would indicate the “tails” were due to lead loss. Instead these two sample likely show evidence of ancient P boss, which expresses itself as dispersion in the 207Pb/206Pb age.

Because the Mesoarchean growth events are the oldest recorded events in each sample that are not inherited, it is likely that these events record the crystallization of the protolith. Mesoarchean events are recorded in domains that exhibit oscillatory zoning and

63 sector zoning, both common internal structures of igneous zircon (Varva, 1990; Hanchar and Miller, 1993; Benisek and Finger, 1993; Hoskin and Schaltegger, 2003). However, the oscillatory zoning is always blurred, and sector zoning is also an internal structure associated with metamorphic zircons (Hoskin and Schaltegger, 2003; Watson & Liang,

1995). Mesoarchean domains are also imaged as unzoned mantles on inherited cores, for example in sample CRMO11-14 (fig. 11). An unzoned internal structure indicates a zircon has completely recrystallized during metamorphism (Hoskin and Schaltegger,

2003). In amphibolite facies and granulite facies metamorphism, it is possible for large amounts of new zircon to form at subsolidus conditions and during anatexis (Watson and

Harrison, 1983; Watson, 1996a; Schaltegger et al.,1999; Rubatto et al., 2001; Hoskin and

Schaltegge, 2003), and that may be what happened during the Mesoarchean zircon growth events recorded in zircons from SK and CRMO. However, there is a definite metamorphic episode in the Neoarchean that affected these xenoliths (described below).

It is most likely that the blurring of the oscillatory zoning is an effect of the younger metamorphism. For the Mesoarchean grains that have no zoning, it is possible that transgressive recrystalization during younger metamorphism left “ghosts” of U/Pb ratios from the protolith zircon, as described by Hoskin and Black (2000). The most potent evidence that the Mesoarchean dates are igneous and not metamorphic is that they are they oldest common dates recorded in all the zircons in a sample. One of the characteristics of zircon that makes it a robust tool for complicated geochronological studies is its ability to retain U/Pb ratios under extreme pressure and temperature. If the crystallization of the grains occurred previously, it is likely there would be a record of a grouping of common dates within zircons of a sample. We interpret the Mesoarchean

64 ages to be the crystallization ages for the igneous protoliths of the xenoliths. Thus, the rocks now beneath Southern Idaho began forming by at least 3.2 Ga. Two periods of igneous activity are recorded at ~3200 Ma and ~3050 Ma, indicating formation continued for hundreds of millions of years. Because the xenolith samples in this study are small fragments lacking geologic context, it is difficult to put their formation and stabilization into a precise tectonic context. However, as the samples’ protoliths were part of the growth of the continental crust, it is likely these rocks formed and metamorphosed during an orogenic cycle.

Neoarchean Metamorphism of the Kilgore-Craters Terrane

The third growth event recorded in Archean xenoliths is recorded in overgrowth domains and individual crystals of zircons. Distinction between Mesoarchean and

Neoarchean populations can be made by comparing 207Pb/206Pb dates, U/Pb concordia diagrams, trace element chemistry, and CL images of grains. The dates of the Neoarchean event range from 2.9 Ga to 2.6 Ga. Within samples, these dates form well-defined, linear, discordia lines below the older events. They are obvious, distinct growth events.

Zircon growth during the Neoarchean is interpreted to be due to metamorphism.

Evidence for this is found in CL images and trace element chemistry. CL images indicate that Neoarchean dates are recorded in overgrowths and individual grains. Both domain types exhibit unzoned internal textures. Overgrowths cut across primary oscillatory zoning from the Mesoarchean. An unzoned zircon texture in metamorphic zircon has been described at length in the literature (e.g. Black et al., 1986; Schaltegger et al.,1999;

Hoskin and Black, 2000). This texture can be formed through transgressive recrystallization, where recrystallizing begins on the outer edges of the crystal and

65 recrystallizes in the center last. Complete recrystallization results in a completely featureless zircon (Hoskin and Schaltegger, 2003). Unzoned zircon can also result from subsolidus neoblastic growth (Schaltegger et al., 1999).

Trace element chemistry often cannot indicate igneous activity or metamorphism if only one domain is recorded in a zircon. However, if more than one age domain is recorded, chemistry patterns can be compared and patterns may help to interpret growth processes. In samples from SK and CRMO, comparison of trace elements between

Mesoarchean and Neoarchean domains indicate the Neoarchean domains are metamorphic. All REE plots from SK and CRMO samples record Neoarchean domain

HREE concentrations peaking lower than Mesoarchean concentrations, sometimes by two orders of magnitude. Hoskin and Black (2000) noted that HREE are expelled from zircon during sub-solidus recrystallization, which promotes one mechanism to explain this depletion. Alternatively, the reservoir of REE in the protolith may be depleted by progressive metamorphic reactions, particularly dehydration and partial melt reactions.

This mechanism is possible for the samples in this study, given the granulite facies conditions recorded by the xenolith mineralogy. REE can also be sequestered by other minerals. Sample SK11-07 contains garnet, which can easily incorporate HREE into its structure, depleting the availability of HREE for other minerals, such as zircon

(Schaltegger et al., 1999). If garnet and zircon grow in equilibrium, a decrease in HREE in the metamorphic zircon domains would be expected. Sample SK11-07 does display a flattening of HREE in metamorphic zones, making it likely the metamorphic zircon grew in the presence of garnet (fig. 10).

66

Previous workers have observed a decrease in Th/U ratio in metamorphic zircon, under the explanation that Th4+ is preferentially expelled over U4+ because Th has a larger radius (Hoskin and Black, 2000; Rubatto et al, 2002). However, we observed in this study that most zircon domains associated with metamorphism during the

Neoarchean have a higher Th/U ratio than older zircon. This is explained by the understanding that metamorphism ~2.8 Ga was high pressure/high temperature, and therefore dehydrating. During dehydration metamorphism, U4+ complexes in water form

2- the uranyl oxyanion (UO2) , which is very mobile in water. During Neoarchean metamorphism, uranium was preferentially lost from the protolith, resulting in higher

Th/U ratios in the subsequently crystallized zircon. In the same samples, Th/Y ratios increase in Neoarchean domains as well, again because of the sequestering of U in other metamorphic phases.

Neoarchean domains record temperatures between 650C and 900C. This temperature range overlaps with Mesoarchean domains, however, the mean temperatures are lower for Neoarchean domains than Mesoarchean domains (fig. 11). Within samples, temperatures of Neoarchean metamorphic domains are always below that of the

Mesoarchean domains. Granulite facies metamorphism can occur at temperatures starting at 600C for pressures of 6-8 Kb, the pressure in the mid to lower crust (Spear, 1994, 9).

The temperatures recorded in Neoarchean domains compound evidence of granulite facies metamorphism. Due to the uncertainties of the Ti-in-Zr method, the mean temperatures of growth events in a sample are not interpreted to be the exact temperatures during metamorphism. Fraser et al. (1997) investigated the control of metamorphic net- transfer reactions on zircons growing at granulite facies conditions and found it difficult

67 to say with certainty during which phase of metamorphism zircons grow. We do not attempt to assign prograde, peak or retrograde growth to samples or zircons within samples. However, in samples with a large range in temperatures (>50C), and especially for SK11-01 and CRMO11-05, it is likely zircons were growing during more than one part of a metamorphic event.

One sample, CRMO11-12, records a Neoarchean age at 2.5 Ga. As will be discussed below, ~2.5 Ga is the formation age of the SM terrane. This indicates that certain lithologies of the Kilgore-Craters terrane may have been reworked and metamorphosed as late as 2.5 Ga. However, as this is the only sample of 14 collected recording activity after 2.7 Ga, the stabilization and cratonization of the Kilgore-Craters terrane is interpreted to be completed by 2.7 Ga.

Boundaries of the Kilgore-Craters Terrane

Because the only available data on the lower crust of the ESRP are from the three xenolith field sites discussed in this study, and they are non-continuous along the northern margin of the ESRP, the western boundary of the Kilgore-Craters terrane is difficult to discern with certainty. What is known is the border must be between CRMO and SM, as SM preserves a different geologic story than SK and CRMO. Although no

Precambrian outcrops are exposed between SM and CRMO, there is a contact of

Paleozoic sediments and Tertiary volcanics in the east and Cretaceous and Tertiary intrusives in the west, which lies between CRMO and SM. This contact may have been shaped by underlying, lower crustal, basement anisotropy. It is possible the western boundary of the Kilgore-Craters terrane is near the contact of Paleozoic sediments and

68

Cretaceous intrusive rocks and tertiary volcanics (fig. 23). Magnetic anomalies of southern Idaho (Sims et al., 2005) also indicate there is a lower crustal transition at this contact. A possible northern boundary for Archean crust can also be hypothesized using magnetic anomalies.

Figure 23: Terranes of the lower crust of southern Idaho. The lower crust of Southern Idaho is composed of two terranes; the Kilgore-Craters terrane in the west and the Square Mountain terrane in the east. The Kilgore-Craters terrane stabilized by 2.8 Ga and Square Mountain terrane by 2.5 Ga. The boundary between the two terranes is likely the contact between Paleozoic sediments and Tertiary volcanics and Cretaceous and Tertiary intrusives. This contact also aligns with magnetic anomalies from Sims et al. (2005).

Formation of the Square Mountain Terrane

The basement underlying Square Mountain (SM) and House Mountain (HM) is interpreted to be distinct from the Kilgore-Craters terrane because samples from Square

Mountain and House Mountain record different growth events than those recorded in

69

Spencer-Kilgore and Craters of the Moon samples (table 2). The events recorded in SM and HM are similar, indicating SM and HM share a geologic history. The region comprising SM and HM will be referred to as the Square Mountain terrane. With the exception of the muscovite-rich paragneiss of HM, the samples from SM and samples

HM11-01 are composed primarily of qtz + fsp + pyx and are identified as charnokites.

Again, as in SK and CRMO samples, this mineralogy and the lack of aluminosilicates is indicative of metamorphic igneous protoliths of a granodioritic composition. By contrast, the major mineralogy of qtz + fsp + msc + bt for HM11-06 demands a pelitic sedimentary protolith.

Most HM and SM samples record two zircon growth events. All samples record a growth event in the Neoarchean, circa 2.5 Ga. The CL images of grains and domains of grains that record this event record oscillatory zoning, blurred or faded oscillatory zoning, and in SM samples, very mottled domains crosscutting oscillatory zoning or from domains with oscillatory zoning. SM10-C3 records mostly mottled grains, although there are grains with mottled cores, clear growth rings, followed by mottled growth rings on the edges. SM10-A3 records the clearest relic oscillatory zoning. In all samples, areas that are more highly mottled are more discordant. Relic oscillatory zoning domains are less discordant. Square Mountain zircons have a high uranium concentration, and in particular the mottled areas have the highest uranium concentrations, making it likely they contain radiation damage. If the zircons were reheated, these areas were easily recrystallized due to radiation damage. We interpret the mottling to be an effect of recent entrainment or underplating, both of which would cause reheating and generate the zero- intercept discordias exhibited by SM zircons. Thus, the relic oscillatory zoning is

70 indicative of the zircon texture produced during the Neoarchean. Oscillatory zoning is associated with igneous zircons. Thus SM terrane zircons crystallized from magmas during the Neoarchean.

When zircons record metamorphism, comparing element data between domains provides insight into the changes in chemistry of the rock over time. In rocks that do not record metamorphism, like most of the SM terrane (one sample that is the exception will be discussed below), trace element chemistry is restricted to trying to understand the chemistry of the melt from which the zircons crystallized. As described in the Kilgore-

Craters section, thorium and uranium and their concentrations in zircons have been studied greatly. SM10-A3 and SM10-C3 have Th/U ratios ranging form .05 to .6, SM10-

C4 and HM11-01 Th/U concentrations range from .02 to over 1, and SM10-C2 ratios range from .04 to .23. All of these are not unusual concentrations for igneous zircons, however, SM10-C2 has low enough concentrations to, if trace element chemistry were the only tool used, consider these zircons as metamorphic. Rubatto (2002) observed that metamorphic zircon produces low Th/U ratios, often below .05. The relic igneous texture and anhedral to sub-anhedral morphology of SM10-C2 grains contradict a metamorphic origin for SM10-C2 samples. The low Th/U ratio comes from a high concentration of U in this rock, and from a high concentration of U in the parent material of the melt.

All except two samples from HM and SM also record zircon growth in the Meso and/or Paleoarchean. Zircon domains that record Paleo to Mesoarchean dates are obvious cores or are laser spots from the middle of crystal. These dates are interpreted to be inherited ages. It is likely the inherited ages were sourced from the Kilgore-Craters terrane, as this region is close in proximity and the inherited dates match growth events

71 recorded in the Kilgore-Craters terrane. Despite the very low Th/U ratio of SM terrane rocks, the Neoarchean zircons from SM and HM11-01 are interpreted to have formed from igneous processes. The mineral assemblage of the xenoliths and one of the HM samples (opx + cpx + fsp + qtz), the gneissic banding, and the granoblastic texture of the grains indicate that at some point these samples, and the lithologies they are sourced from, reached granulite facies conditions. No other events are recorded after 2.5 Ga in

SM zircons and in the zircons from the HM orthogneiss sample, making it impossible to determine the timing of metamorphism in the samples using zircons. The lack of metamorphic overgrowths on zircons indicates metamorphism did not lead to anatexis.

There was no reservoir for zircon growth. The ~2.5 Ga growth events could be interpreted as the timing of metamorphism, but as there is no evidence of complete recrystallization (which would be evident in CL images). One hypothesis to explain the data is that these melts intruded and crystallized in the lower crust under granulite facies conditions. Regardless of the exact history of magmatism and metamorphism, we interpret the lower crust of the Square Mountain terrane to be stable since the end of the

Neoarchean, approximately 2.5 Ga.

Boundaries of the Square Mountain Terrane

The eastern limit of the SM region is hypothesized to be at the contact of the

Paleozoic sediments and Cretaceous intrusive rocks and tertiary volcanics in southern

Idaho, for reasons described in the border of the Kilgore-Craters terrane section. No other

Precambrian outcrops are exposed west of HM, making it difficult to discern the western margin of the Square Mountain terrane. As with the eastern boundary, other geochemical

72 and geological boundaries that are exposed on the surface can be used to hypothesize lower crustal boundaries. The 87Sr/86Sr = .706 line (Armstrong et al., 1977) and associated Salmon River suture zone along the Idaho-Oregon border is likely the western boundary of the Square Mountain Terrane.

Paleogene Reactivation

Four samples (CRMO11-03, CRMO11-04, CRMO11-15 and CRMO11-19) collected from the Kilgore-Craters terrain and two samples (SM10-C4 and HM11-06) collected from the SM terrane record zircon growth during the Paleogene between 33 and

50 Ma. CRMO11-03, CRMO 11-04, CRMO11-19 and SM10-C4 record Paleogene ages in oscillatory zoned, euhedral, igneous zircons. SM10-C4 also records large Archean cores, however the interlocking texture and mineralogy of SM10-C4 leave no doubt of the xenoliths igneous plutonic origins. CRMO11-03 and CRMO11-04 share near identical geochemistry and ages, and thus are likely xenoliths of the same pluton.

CRMO11-15 and HM11-06 record Paleogene dates in overgrowths and metamorphic crystals. These growth domains were most likely driven by contact heat from surrounding plutons or possibly by melt infiltration from the plutons.

Eocene volcanic fields are found throughout the Pacific Northwest US, and the

Challis Volcanic region is the field closest to the Snake River Plain (Gest and McBirney,

1979; Moye and others, 1988; Carlson et al., 1991; Suayah and Rodgers, 1991; O’Brien et al., 1991; Armstrong and Ward, 1991). The Challis Volcanics, a region of intermediate to felsic caldera complexes volcanic and metamorphic rock to the north of the Snake

River Plain, initiated at 51 Ma (Lipman et al., 1971; Fox, 1983; Armstrong and Ward,

73

1991). The Challis volcanics are part of the Kamloops-Challis-Absaroka igneous episode

(Armstrong and Ward, 1991). The xenoliths from the SRP recording Paleogene ages are interpreted to have formed in connection to Paleogene volcanism of the western US, perhaps directly to the Kamloops-Challis-Absaroka igneous episode.

74

Conclusion

Lower crustal Precambrian xenoliths collected from the northern margin of the

Eastern Snake River Plain, and a Precambrian outcrop in the Western Snake River Plain have provided insight into formation of Archean continental crust in what is now southern Idaho. This study has discovered that two distinct terranes comprise the lower crust of the Snake River Plain. Each terrane had a separate formation and stabilization history.

The Kilgore-Craters terrane stretches from the Wyoming Province into Craters of the Moon National Monument and Preserve. It is impossible to tell the exact location of the western boundary of the terrane, however it is possible the boundary is near the surface contact between Paleozoic sediments and Tertiary volcanics, and Cretaceous and

Tertiary intrusives and a negative aeromagnetic anomaly identified in this same area by

Sims et al. (2005).

Igneous plutonic rocks of the The Kilgore-Craters terrane began forming at ~3.2

Ga, continued until ~3.0 Ga. The Kilgore-Craters terrane then underwent a cycle of granulite facies metamorphism that lasted between 2.8 and 2.7 Ga, which is interpreted to be the timing of cratonization of the Kilgore-Craters terrane given the lack of subsequent zircon growth events.

The Square Mountain terrane stretches from the western border of the Kilgore-

Craters terrain to the 87Sr/86Sr = .706 line. Much of this terrane also has igneous plutonic origins, although one sedimentary layer with similar formation age was identified in the

Western Snake River Plain. The crust-forming episode that led to the formation of this

75 terrane lasted from 2.6 to 2.5 Ga. Mineralogy and petrography indicate the Square

Mountain terrane also underwent granulite facies metamorphism. However, zircons from

SM and HM samples do not record a metamorphic growth event. There is no indication of metamorphism in the CL images of zircons or U/Pb geochronology patterns. Thus, it is likely the metamorphic event did not produce melt from which zircon overgrowths could form or that metamorphism was immediately following igneous activity, within a time frame too fine for techniques used in this study. The stabilization of the Square Mountain terrane is interpreted to have happened by 2.5 Ga. A 1.9 Ga event was recorded at HM, indicating the collision associated with the formation of Laurentia was recorded in parts of the lower crust of southern Idaho.

76

CHAPTER TWO: THE SNAKE RIVER PLAIN AND THE WYOMING CRATON

Introduction Granulite xenoliths erupted in Neogene basalts of the Eastern Snake River Plain

(ESRP) and a Precambrian outcrop on the southern margin of the Idaho Batholith have constrained the nature and timing of formation and stabilization of the lower crust of southern Idaho. Based upon these samples, the lower crust of southern Idaho formed as two distinct terranes. The Kilgore-Craters terrane in the east began forming 3.2 Ga and cratonized at 2.7 Ga. The Square Mountain terrane in the west formed and stabilized between 2.68 Ga and 2.54 Ga (fig. 23).

Now that the Precambrian history of the underlying crust of the Snake River Plain has been constrained, it is possible and important to place it within the context of surrounding Precambrian crustal formation. This chapter aims to compare the crystalline basement of southern Idaho to the Precambrian terranes mapped in the adjacent

Wyoming Province and Grouse Creek Block (Compton et al.; 1977; Todd et al.; 1973;

Hoffman et al.; 1988; Foster et al.; 2006). The western margin of the Wyoming Province has been poorly constrained due to lack of outcrop, and it has been suggested that the western margin may extend into the ESRP (Sims et al., 2005; Wolf et al., 2005). To the south of the SRP lies the Archean Grouse Creek Block (Foster et al. 2006). To the north of the SRP lies the Selway Terrane, composed of juvenile arcs that helped to suture

Archean provinces during the Trans-Hudson orogen (Compton et al., 1977; Foster et al.,

77

Figure 24: Precambrian crust of Idaho, Wyoming and Montana. The Kilgore- Craters terrane is a westward extension of the northern cratonic core of the Wyoming Province. The Grouse Creek Block and the Square Mountain terrane are extensions of the Southern Accreted Terranes of the Wyoming Province. Gray areas are Archean outcrops. Figure modified from Foster et al. (2006) and Gaschnig et al. (2012), and uses elements of Sims et al. (2005).

2006). This study correlates the Southern Idaho lower crust with these surrounding provinces using U/Pb geochronology and Hf isotope ratios in zircon. Archean geologic events and Hf signatures of samples across the Snake River Plain match those of the

Wyoming Province. The Kilgore-Craters terrane is interpreted as a westward extension of the northern cratonic cores of the Wyoming Province. The Square Mountain terrane is

78 correlated to the Grouse Creek Block, both are westward extensions of the Southern

Accreted Terranes of the Wyoming Province (fig. 24).

Geologic Background

Wyoming Province

The basement rock of the Eastern Snake River Plain is unknown except for xenoliths, as it has been extensively covered by rhyolite and then basalt from the

Miocene to present. Because the basement rock of the Eastern Snake River Plain is covered, investigations of surrounding regions provide insight into possible early geologic context of the ESRP. To the east of the ESRP lies the Wyoming Province, one of several Archean microcontinents that collided to form Laurentia, the core of the North

American Plate, at 1.8 Ga (Hoffman, 1988; Ross and Villeneuve, 2003). Within the

Wyoming Province is the Wyoming Craton. Cratons represent the oldest and coldest, often thickest, continental crust, and have survived generations of rifting and collisions.

The Wyoming Province has been delineated based on outcropping Archean rocks. To the north of the province is the Great Falls tectonic zone (GFTZ), to the east the Trans-

Hudson Orogen, and to the south the Cheyenne belt. These three zones are Proterozoic collisional origins. The western margin of the Wyoming Province is poorly constrained, as any basement rock that may have been exposed is now covered by Miocene volcanics.

It has been suggested that the western margin may extend into the ESRP (Wolf et al.,

2005). Sims et al. (2005) has also suggested the Wyoming craton extends across the

ESRP, and that the western Snake River Plain (WSRP) is also composed of Archean crust. Sims et al. (2005) does not attach the WSRP Archean crust to the Wyoming

79

Province, but instead calls it extended crust. This study in part investigates the western margin of the Wyoming Craton.

The Wyoming Province has been split into three provinces: the Montana

Metasedimentary province (MMP), the Beartooth-Bighorn magmatic zone (BBMZ) and the Southern Accreted Terranes (SAT) (fig. 24). The MMP and BBMZ have been linked to a common Archean crustal history by a distinctive elevated 207Pb/204Pb isotopic signature (Wooden and Mueller, 1988; Mueller et al., 1993; Frost et al., 1998) as well as detrital zircon grains and domains from 2.80 to 3.00 Ga gneisses that yield U/Pb and Nd model ages up to 4.0 Ga (Mueller et al., 1992, 1998; Frost and Fanning, 2006; Grace et al., 2006). These commonalities mark the two terranes as a single block sharing similar formation processes (Mognk et al., 1992).

Two Archean lithologies characterize the Montana Metasedimentary province: quartzofeldspathic gneisses and low to high grade metamorphosed supracrustal assemblages (Mueller et al., 1993). Supracrustal assemblages include quartzites, pelites and carbonates (Mueller et al., 1993; Mueller and Frost, 2006). The gneisses are the oldest lithologies of the province, with ages between 3.0 and 3.5 Ga (Mueller et al., 1993;

Mueller and Frost, 2006).

The Early Archean rocks of the Beartooth Mountains are mostly supracrustal in origin and are interpreted to have been deposited on a continental shelf environment, sourced from ultramafic and quartz-rich igneous rocks (Mueller et al., 1982; Muller et al.,

1985). They are exposed as both kilometer-sized terranes and as xenoliths in and plutonic and meta-plutonic rocks (Meuller et al., 1985). Mineral assemblage geothermometers

(Wells, 1977; Ferry and Spear, 1978; Dahl, 1980) and geobarometers (Newton and

80

Perkins, 1982) indicate granulite facies metamorphism of the rocks occurred at 800C and 6 kb (Henry et al., 1982). Rb-Sr whole rock geochronology indicates granulite-facies metamorphism at 3.35 Ga (Mueller et al., 1985). These data supports pre-3.4 Ga crust in the Beartooth Mountains (Mueller et al., 1985), first suggested by zircon U-Pb ages of 3.3

Ga (Mueller et al., 1982). Mueller et al (1985) interpret the event to be a continental collision along the margin of an Early Archean continent, a model that allows for rapid burial from crustal thickening and an orogenic geotherm of 40-45C/km.

Dioritic to granitic rocks are the most common composition of Late Archean exposures in the Beartooth Mountains (Muller et al., 1985). A 2.8 Ga amphibolite facies tectonic event has been interpreted from a Rb-Sr whole-rock isochron age of 2.8 Ga from granite, granodiorite and amphibolite in the Long Lake region of the Beartooth

Mountains (Wooden et al., 1982; Mueller et al., 1985). The three lithologies of plutonic rocks give a similar age (2.8 Ga), however the granodiorite and amphibolite are found as inclusions in the granite and must be older (Mueller et al., 1985). Mueller et al. (1985) interpreted this event to be the result of calc-alkaline magmatism associated with subduction beneath the Archean plate boundary followed by continued contraction and collision and associated amphibolite facies metamorphism and granitoid magmatism.

These contractional events and associated magmatism lasted until 2.6 Ga (Mueller, 1979;

Wooden et al., 1982).

The Southern Accreted Terranes (SAT) are characterized by late Archean magmatism and mid-neo Archean supracrustal sequences. Late Archean magmatism originated during pulses of orogenesis along the southern Margin of the Wyoming Craton at 2.71-2.67, 2.65-2.62, and 2.55-2.50 Ga (Chamberlain et al., 2003) as a result of active

81 margin tectonics (Frost et al., 1998). Past hypotheses for orogenesis include a western block colliding with the Wyoming Province, forming an east-northeast striking subduction zone that transitioned to a north verging zone at ~2.65 Ga (Frost et al., 1998;

Chamberlain et al., 2003; Grace et al., 2006; Keane et al., 2006).

The supracrustal sequences of the SAT block consist of metavolcanics and metasediments. Metasediments have been linked to older continental detritus, perhaps from the BBMZ and MMP, as well as juvenile sources by Nd isotopic data (Frost et al.

2006b; Grace et al., 2006; Souders and Frost, 2006). Juvenile sources are inferred to be from accreted terranes and indicate collisional tectonics. Collisional tectonics and associated magmatism of the Late Archean contributed to crustal growth of the Wyoming craton (Mueller and Frost, 2006). Cratonization of the Wyoming Province occurred during this time of accretion (Mueller et al., 2004; Mueller and Frost, 2006).

Tectonic and magmatic quiescence followed the addition of the SAT until the

Wyoming Province was incorporated into Laurentia ca. 1.8-1.9 Ga. A series of collisional events welded the Wyoming Province to the Hearne-Medicine Hat terrane in the north and the Superior terrane to the east, by way of the Great Falls tectonic zone and Dakota segment of the TransHudson Orogen, respectively. The accretion of arcs and microcontinents to the margins of the Wyoming craton commenced at about 1.90 Ga and extended to about 1.6 Ga (Mueller et al., 2004a). There is no significant associated arc magmatism or tectonic activity within the Wyoming Province during this time (Mueller et al., 2005).

82

Sample Materials

Thirty-two crustal xenoliths were collected from the northern margin of the

Eastern Snake River Plain at Square Mountain (SM) in Fairfield, Idaho, at Craters of the

Moon National Monument and Preserve (CRMO), Idaho, and at Spencer-Kilgore (SK),

Idaho. Two samples were also collected from a known Precambrian outcrop at House

Mountain, near Mountain Home, ID. The xenolith sample sites were chosen because they create an east west transect across the northern margin of the Snake River Plain. The sites have been used in past studies, also making them ideal field locations. The House

Mountain site was chosen because it is the only known outcrop of Precambrian rock on the northern flank of the Snake River Plain, and extends the study further westward toward the inferred rifted margin of Laurentia (Armstrong, 2001). For specifics on the samples collected, see Chapter 1: Sample Materials.

Analytical Methods

Zircon 176fHf/177Hf Ratio Analysis

The unstable radionuclide 176Lu decays to stable 176Hf by β- decay, creating an isotopic tracer that can be used in several geological applications. In this study,

176Hf/177Hf ratios in zircons were used as isotope tracers of crustal growth, since fractionation of Lu-Hf occurs during magma generation and crustal differentiation

(Patchett et al., 1981; Kinny and Maas, 2003). Both Lu and Hf are incompatible elements, however Hf is more incompatible than Lu. During mantle melting more Hf enters the melt than Lu, ultimately creating a crust that has a lower 176Lu/177Hf, which in

83 time evolves to lower 176Hf/177Hf. This differentiation leads to a mantle with higher time

evolves to higher 176Hf/177Hf (Patchett et al., 1981) (fig 25a). The 176Hf/177Hf can

continue to be lowered in the crust if melt is further extracted from early crust, or can

become re-enriched (higher 176Hf/177Hf) and move toward chondritic levels through

mantle derived additions (Patchett et al., 1981).

176Hf/177Hf ratios vary only in their fourth or fifth decimal place, making it

difficult to compare ratios between samples. Thus, an epsilon () notation is used for an

easier comparison. The  notation is defined as

Equation 5: Hf notation

t  176 Hf /177Hf  t  sample  4  (Hf )  t 1 10  176Hf /177Hf  CHUR 

where the ratio of Hf in the sample at time t is compared to the ratio of CHUR

(chondritic uniform reservoir) at time t. Samples derived from an enriched 176Lu/177Hf source (mantle) will produce positive ε values. Samples derived from a depleted

176Lu/177Hf source (crust) will produce negative ε values (fig 25b). In this study ε values

of the Snake River Plain were compared to surrounding Archean terranes to determine if

they share an early history.

147Sm/144Nd isotope analysis has traditionally been used as a geochemical tracer and indicator of crustal evolution and its systematicas are similar to the Lu/Hf system

(DePaolo and Wasserburg, 1976). However, the fractionation of Lu/Hf during mantle melting is double that of Sm/Nd, and the half-life of 176Lu is shorter than that of 147Sm

84

(Patchett and Tatsumoto, 1980; Patchett, 1983), providing a greater resolution of mantle evolution and melt source. It is also possible to analyze Hf in-situ on the same zircons

Figure 25: A general 176Hf/177Hf vs Age chart (a) and a general epsilon Hf chart where 176Hf/177Hf of a sample is normalized to CHUR (b). Lu and Hf are incompatible elements, however Hf is more incompatible than Lu and during mantle melting more Hf enters the melt than Lu. 176Lu decays to 176Hf, resulting in a depleted 176Hf/177Hf crust and an enriched 176Hf/177Hf mantle (a). Zircon easily incorporates Hf into its structure, due to charge and size, compared to Lu. This

85 results in negligible ingrowth of 176Hf in zircon. Because 176Hf/177Hf ratios vary only in their 4th and 5th decimal places, epsilon Hf notation is used to magnify differences between ratios (b). TDM is the time the source melted from the depleted mantle (b). used for U/Pb analysis. For these reasons, Lu/Hf analysis was used in this study, instead of Sm/Nd.

Zircon is a practical mineral for Hf isotope ratio analysis, and convenient in this study as zircons were already being used for U/Pb geochronology. The ionic radii of hafnium (Hf) and zirconium (Zr) are practically the same, and they have the same charge

(+4). Thus, Hf readily substitutes for Zr in zircon. Lutetium, the radioactive parent of isotope 176Hf, does not substitute as readily into Zr, and so the ratio of Hf isotopes today in a zircon is nearly what it was when the crystal formed. A correction is made to subtract any radiogenic Hf formed from the small amount of Lu in the zircon, based on the measurement of Lu in the crystal, to yield the initial Hf ratios when the zircon formed.

Hf isotope data were collected at Washington State University by in-situ laser ablation on a New Wave Nd:YAG UC 213 nm laser at a 40m spot. In order to ensure the Hf data could be correlated to the samples analyzed in the first part of this study

(U/Pb ages), the same zircon grains polished, imaged and LA-ICPMS dated at Boise

State University were used for Hf analysis. U/Pb data were also collected at Washington

State University simultaneously with Hf isotope data using a split stream. U/Pb geochronology results from Boise State University and Washington State University were comparable (fig 26).

Laser spots were analyzed from samples SK11-01, SK11-03, SK11-07, SK11-

08, CRMO11-05, CRMO11-14, CRMO11-15, CRMO11-16, CRMO11-17, SM10-A3,

SM10-C3, SM10-C4 (table 3). B144, Piexe, FC1, 91500 and Mud Tank were analyzed as secondary standards. Using a 40m spot size made it difficult to target individual growth

86 domains on most zircons, and impossible to analyze small zircons, thus limiting samples that could be analyzed. Raw data were reduced using Iolite.

Zircon U/Pb Geochronology

As mentioned above, the same zircon crystals subject to U/Pb age analysis at

Boise State were used in the Hf isotope study. U/Pb data were also collected contemporaneously with Lu/Hf and Hf isotope data at Washington State University

(WSU) by in-situ LA-ICPMS. Fewer data were collected at WSU due to time constraints.

The high U content of the zircons also caused the pulse-counting detector of the Element

2 at WSU to ‘trip’ during many analyses; most spots that caused the collector to trip were discarded, resulting in even less data. Thus, the dates recorded at WSU were not used in age analysis, but were used to compare and confirm that analyses at both institutions are from the same material. Analysis and probability density functions demonstrate that the

U/Pb data collected at WSU concur with U/Pb data collected at BSU (fig. 26).

87

Figure 26: Stacked probability chart of Precambrian 207Pb/206Pb ages from Washington State University (WSU) and Boise State University (BSU) for zircons from Spencer-Kilgore (SK), Craters of the Moon (CRMO) and Square Mountain (SM). The same zircons were used in data collection at both institutions. All data collected at WSU are used. Due to the large amount of data collected at BSU, only dates that were not found as outliers were used (see Chapter 1: Methods for details on outliers).

88

Results

Hf Isotope Analysis

Samples from Spencer Kilgore (SK), Craters of the Moon (CRMO) and Square

Mountain (SM) were analyzed for Hf isotope concentrations (table 3, fig. 27). Result from all three field areas align with results from Snake River Plain xenoliths analyzed by

Dufrane et al. (2007). Analyses from Spencer-Kilgore samples targeted grains with U/Pb crystallization ages of 3.76 Ga – 2.4 Ga. These crystallization ages encompass the formation and stabilization of Spencer-Kilgore crust as estimated from the magmatic and metamorphic zircon components, as well as inherited ages. Calculated (Hf) values for inherited domains (>3.3 Ga) fell between -11.8 and -2.4. Domains associated with igneous formation (3.0 – 3.3 Ga) and with metamorphism (2.4 – 3.0 Ga) produced similar calculated (Hf) values between -13.7 to -0.7, and one positive value of +2.60 (igneous domain). The average (Hf) value for igneous domains was -5.7 and for metamorphic domains was -7.6.

Analysis of samples from Craters of the Moon (CRMO) targeted domains of grains with U/Pb crystallization ages of >3.3 Ga, 3.2 – 3.0 Ga, and ~2.8 Ga. Just as in

SK samples, these age groups cover the formation and stabilization of the CRMO area, as well as inherited ages. (Hf) values between -12.9 and 4.9 were calculated for domains with U/Pb crystallization ages of >3.3 Ga, although some spots drilled into surrounding domains. These domains are inherited. Laser spots that drilled in 3.2-3.0 Ga growth domains produced mainly negative (Hf) values from -7.9 to -0.40, as well as two positive values at +0.36 and +0.88. Only five metamorphic domains (2.5 -3.0 Ga) were analyzed

89

and produced (Hf) values between -13.9 and -3.69. The average (Hf) value for igneous domains is -2.6 and for metamorphic domains is -9.0.

Figure 27: Initial epsilon Hf values for Precambrian aged zircon domains from SK, CRMO and SM, as well as for inherited zircons from the S. Atlanta lobe of the Idaho Batholith (Gaschnig et al. (2012). Black outlined fields are results from σ zircons from Snake River Plain xenoliths analyzed by Dufrane et al. (2007). Open shapes are interpreted to be ages of inherited zircon growth domains, dark filled shapes to be ages of igneous growth zones, and dark outlined and light filled shapes to be ages of metamorphic growth.

Analysis from Square Mountain samples targeted grains with U/Pb crystallization ages of 2.4 to 2.6 Ga (igneous formation of samples) and 44 Ma, 48 Ma, 53 Ma, 53 ma and 67 Ma (Paleogene igneous and metamorphic activity of the area). (Hf) values ranged from -25.4 to +2.8. The most negative values (-13.7 to -25.4) were produced from

Paleogene domains. Values for Precambrian domains range between -6.6 and 2.8. The average (Hf) for Precambrian igneous formation domains is -2.0. The average (Hf) value of values for Paleogene domains is -21.9.

90

For the three field areas analyzed, the highest (Hf) values were produced from inherited cores. Positive values were also recorded in igneous growth domains (fig 27).

The lowest values produced were from Square Mountain Paleogene metamorphic overgrowths. Paleogene domains also produced the most elevated 176Hf/177Hf, both today and during the Paleogene.

Hf model ages were calculated for all samples where Hf isotope data were collected. Model ages indicated when the Hf in the grain was first extracted from the depleted mantle, or a depleted mantle age (DM). DM ages for SK grains are between 3.07 and 4.08 Ga, for CRMO grains are between 3.21 and 3.97 Ga, and for SM are between

1.20 and 3.05 Ga. SM Precambrian domains all produced DM ages between 2.77 and

3.05. Paleogene ages were between 1.20 and 1.67 Ga. SK and CRMO reported similar

DM ages, and ages older than SM.

Laser spots that produced DM ages of >3.75 were produced from domains that are interpreted to be inherited, as well as from igneous and metamorphic domains, indicating recycling in both inherited as well as igneous zircon growth. In almost analysis from SK and CRMO the DM was at least 100 Ma older than the U/Pb crystallization age. Inherited domains from CRMO often produced similar DM ages to crystallization ages. CRMO did record the same DM and U/Pb crystallization age in one analysis. DM ages from SM

Precambrian domains were at least 100 Ma older than crystallization ages. The oldest

DM ages calculated for each field area are underestimates, as the ages were calculated using zircon Lu and Hf measurements. The melt the zircons formed from contain higher

Lu and Hf concentrations than found in the zircon, and a different DM age can be found if a melt concentration is used instead of the zircon concentrations. We also calculated

91

DM ages using a two-step process, accounting for melt concentrations being different than that of the zircons for the igneous growth domains (fig. 28). We assumed a

176Lu/177Hf ratio of 0.038130 and a 176Hf/177Hf ratio of 0.2832 for the depleted mantle, an average176Lu/177Hf ratio of 0.012659 for the middle crust, and a 5.0 Ga extraction age from CHUR. DM ages for igneous zircon growth domains using a two-step process are between 3300 and 4150 Ma for the SK area, between 3400 and 3950 Ma for the CRMO area, and between 2875 and 3300 Ma for the SM area.

92

Depleted mantle a 176Lu/177Hfassumes curve Depleted mantle of ratio a 0.038130, and values for igneous growth zones to the timing of when source melt separated from the mantle the from mantle separated of timing whenmelt to the growthfor zones igneous source values (Hf) (Hf)  ). Shaded polygons indicate the epsilon Hf values of the melt from which of values based the melt indicate the epsilon onmid- Hf average ). Shaded crystalized, polygons zircons the DM gure 28:gure of Regression Fi (T and CRMO share SK east (SM). to the west agesthe (SK) from is seen mantle A younging concentrations. depleted crustal of epsilon similar values, well as Hf ages. very as DM 176Hf/1776Hf of ratio 0.2832.

93 (DM) (DM) Epsilon Epsilon t ƒ 177Hf 2sm 177Hf 2sm Lu/Hf (o) Hf (t) Hf 29 0.001001 37 0.0000750 0.000256 0.280381 0.0000021 0.0000530 0.280500 0.0000290 -0.970 -84.6 -0.992 -80.3 -13.6 -13.5 3.82 3.60 12 0.000582 16 0.0000660 0.002620 0.280650 0.0001200 0.0001800 0.280723 0.0000350 -0.982 -75.0 -0.921 -72.5 -1.3 -3.1 3.44 3.53 12 0.000624 0.0000590 0.280207 12 0.0000410 0.000509 12 0.0000170 -0.981 0.000604 0.280138 -90.7 0.0000800 0.0000420 0.280311 0.0000610 -0.985 -4.0 -93.1 -0.982 -87.0 -11.8 4.01 -5.9 4.08 3.87

3.14 2.89 3.25 3.22 3.76 3.53 3.53 t-xstal t-xstal ± 176Lu ± 176Hf ± (Ga) WSU WSU (Ga) 1sm SK11-07M-6 SK11-07M-6 SK11-07L-5 SK11-07L-6 2.80 12 0.001335 0.0000160 0.280845 0.0000490 -0.960 -68.1 -6.8 3.25 SK11-03M-4 SK11-03M-4 SK11-03L-11 SK11-07M-4 2.83 SK11-07S-4 2.74 SK11-07M-5 11 0.000584 13 3.29 0.0000620 0.001079 0.280568 0.0000400 0.0000600 0.280850 19 0.0000560 -0.982 0.000963 -77.9 -0.968 0.0000180 0.280480 -68.0 0.0001000 -3.3 -0.971 -6.0 -81.1 3.54 3.22 -6.5 3.69 SK11-03M-7 SK11-03M-7 SK11-03L-9 SK11-03L-10 SK11-03L-8 3.25 SK11-03M-6 3.25 SK11-03S-20 3.25 10 0.000575 3.24 0.0000360 6 0.280565 3.17 6 0.000611 0.0000420 3.16 0.000549 0.0000150 -0.983 0.280568 0.0000080 6 -78.0 0.0000350 0.280538 10 0.000668 0.0000380 0.000528 0.0000180 11 -0.982 0.0000060 0.280579 0.000544 -0.983 -77.9 -6.0 0.280677 0.0000420 0.0000470 -79.0 0.0000390 0.280526 -0.980 0.0000570 -0.984 -3.6 3.54 -77.6 -7.7 -74.1 -0.984 -79.4 -12.6 3.54 3.58 2.6 -5.7 3.53 3.40 3.59 SK11-01L-4 SK11-01L-4 SK11-01L-3 SK11-01M-8 SK11-01S_19 3.18 SK11-01M-9 3.17 3.04 7 2.95 0.000920 6 0.0000140 2.92 11 0.000549 0.280631 0.000718 11 0.0000370 0.0000500 0.0000180 0.002170 0.280527 0.280401 0.0002600 0.0000420 -0.972 18 0.0000310 0.280590 0.000429 -75.7 0.0000480 -0.983 0.0000046 -0.978 -79.4 0.280368 -83.8 -0.935 0.0000350 -2.4 -77.2 -12.2 -0.987 -7.4 -85.0 -13.7 3.49 3.59 -11.4 3.77 3.66 3.78 Spencer-Kilgore SK11-01S-15 SK11-01S-16 SK11-01S-17 SK11-01S-18 3.59 6 0.001798 0.0000900 0.280420 0.0000520 -0.946 -83.2 -2.7 3.85 Spot Spot Table 3: Epsilon Hf results for samples from Spencer Kilgore, Craters Mountain. Spencer of andKilgore, from the Moon, Square Table for samples 3: results Epsilon Hf If an the same crystal and a U/Pb growth age, WSU from andid age BSU notfrom record analysisanalysis from domain inwas italics. is used,and

94 (DM) (DM)

Epsilon Epsilon t t

ƒ

000260 000260 0.280902 0.0000540 -0.946 -66.1 -3.7 3.21 177Hf 2sm 177Hf 2sm Lu/Hf (o) Hf (t) Hf 43 0.000639 0.0000460 0.280905 0.0000270 -0.981 -66.0 -10.9 3.11

± ± 176Lu ± 176Hf ± 2.42 (Ga) WSU WSU (Ga) 1sm CRM011-14L-5 CRM011-14L-5 CRM011-14L-7 CRM011-14L-8 3.13 3.11 2.96 10 0.000289 10 0.0000078 0.000536 0.280532 10 0.0000049 0.0000350 0.000527 0.280566 0.0000440 0.0000340 -0.991 0.280458 -79.2 0.0000370 -0.984 -78.0 -0.984 -6.9 -81.8 -6.7 -13.9 3.56 3.54 3.68 CRM011-14S-5 CRM011-14S-5 CRM011-14L-4 CRM011-14M-5 3.61 CRM011-14S-6 3.60 CRMO11-14S-8 3.39 CRM011-14L-6 9 3.33 10 0.000530 CRM011-14S-9 0.000905 0.0000190 3.33 11 0.0000430 0.280290 0.000572 0.280320 0.0000370 3.26 0.0000260 10 0.0000410 0.280477 0.000368 -0.984 10 3.18 0.0000420 0.0000081 -0.973 -87.8 0.001440 0.280528 -86.7 0.0001700 10 -0.983 0.0000600 0.280302 0.000550 -81.2 10 0.0000640 0.0000024 -4.3 -0.989 0.001710 -4.7 0.280428 -79.4 -0.957 0.0003000 0.0000310 -3.2 0.280801 -87.3 3.89 0.0000440 -0.983 3.89 -2.3 -82.9 -12.92 3.66 -0.948 -69.7 3.97 3.57 -7.9 0.9 3.72 3.34 CRM011-05M-13 CRM011-05M-13 CRM011-05S-7 2.83 CRM011-05M-12 2.80 2.78 CRM011-14S-7 18 0.002366 CRM011-14M-4 0.0000910 0.280830 11 11 0.0001200 0.001258 0.001603 3.72 0.0000180 0.0000180 3.64 -0.929 0.280703 0.280769 -68.7 0.0000440 0.0000650 25 -0.962 0.000712 -0.952 26 -73.2 -7.5 0.0000450 -70.8 0.000527 0.280385 0.0000240 0.0000700 0.280358 -10.5 3.36 -9.2 0.0000430 -0.979 -84.4 -0.984 3.43 -85.4 3.37 1.0 -1.4 3.79 3.81 CRM011-05M-14 CRM011-05M-14 CRM011-05L-2 3.39 CRM011-05L-1 CRM011-05S-4 3.19 CRM011-05S-6 10 3.14 0.001030 CRM011-05S-5 0.0000920 3.05 13 0.280370 0.004930 0.0000490 3.00 0.0001000 9 -0.969 0.280917 2.83 0.003302 -84.9 0.0000400 9 0.0000680 0.001750 0.280808 8 -0.852 0.0002400 0.0000320 -65.6 -8.1 0.001820 11 0.280732 0.001784 0.0001400 0.0000430 -0.901 0.280792 0.0 -69.5 -2.1 0.0000510 -0.947 3.84 -72.1 -0.945 -3.4 -70.0 3.48 -4.8 3.48 -3.9 3.43 3.36 SK11-08S-10 SK11-08S-10 SK11-08M-8 SK11-08M-7 SK11-08L-7 3.21 2.76 Craters ofMoon the 12 2.76 0.001656 0.0000720 13 0.280557 0.000306 13 0.0000540 0.0000021 0.000353 0.280894 0.0000060 -0.950 0.0000390 0.280916 -78.3 0.0000290 -0.991 -66.4 -0.989 -7.8 -65.6 -3.0 3.66 -3.7 3.10 3.07 Spot Spot SK11-07L-4 SK11-08S-9 SK11-08S-7 SK11-08S-8 2.68 3.41 3.26 13 0.000413 3.22 12 0.0000160 0.000686 0.280879 14 0.0000180 0.0000420 0.001960 0.280505 12 0.0003400 0.0000620 -0.988 0.000528 0.280720 -66.9 0.0000180 0.0001700 -0.979 0.280630 -80.2 0.0001100 -0.941 -3.9 -72.6 -0.984 -2.4 -75.8 3.13 -2.6 3.63 -0.7 3.47 3.46 t-xstal t-xstal

95 (DM) (DM) Epsilon Epsilon t Epsilon Epsilon t ƒ ƒ 177Hf 2sm 177Hf 2sm Lu/Hf (o) Hf (t) Hf 0.001600 0.0001100 0.000960 0.281074 0.0001200 0.0000350 0.281159 0.0000350 -0.952 -60.0 -0.971 -57.0 -3.4 0.4 2.96 2.80

t-xstal t-xstal ± 176Lu ± 176Hf ± t-xstal t-xstal ± 176Lu ± 176Hf ± (Ga) WSU WSU (Ga) 1sm 2.54 19 0.002428 0.0000410 0.281091 0.0000560 -0.927 -59.4 -4.7 3.01 SM10C3M-13 SM10C3M-13 SM10C3M-14 SM10C3S-10 2.56 2.55 6 7 Mountain Square SM10A3-7 SM10A3-4 SM10A3-5 2.59 2.56 2.44 16 0.000680 20 0.0001300 0.001350 0.281110 14 0.0001800 0.0001100 0.001800 0.281053 0.0001600 0.0000790 -0.980 0.281128 -58.8 0.0000540 -0.959 -60.8 -0.946 0.1 -58.1 -3.8 -4.6 2.85 2.97 2.91 CRM011-17S-17 CRM011-17S-19 CRM011-17S-18 3.49 CRM011-17S-20 3.23 CRM011-17S-21 3.23 32 0.000433 3.22 10 0.0000190 0.001170 0.280629 3.21 0.0002400 9 0.0000300 0.280651 0.000705 9 0.0000630 -0.987 0.0000170 -75.8 0.000780 26 0.280660 -0.965 0.001134 0.0000260 0.0000440 -75.0 0.280685 0.0000510 0.0000440 0.280671 -0.979 4.9 0.0000800 -74.7 -2.2 -0.977 -0.966 -73.8 3.45 -74.3 -0.8 3.49 -0.4 -1.8 3.43 3.41 3.46 CRM011-16S-11 CRM011-16S-11 CRM011-16M-11 CRM011-16S-13 3.25 3.23 CRM011-16S-14 CRM011-16S-8 3.22 5 CRM011-16M-10 17 3.22 0.000888 0.000760 0.0000390 0.0001800 0.280688 7 3.18 0.280566 3.17 0.0000810 0.0000570 0.001026 14 0.000542 0.0000570 -0.973 -0.977 0.280690 0.0000770 -73.7 13 -78.0 0.0000610 0.280629 9 0.000990 0.0000570 0.0001100 0.001041 -0.969 0.280654 0.4 0.0000530 -0.984 -73.6 -4.2 0.0000520 0.280592 -75.8 0.0000360 -0.970 -0.6 3.56 3.41 -74.9 -0.969 -1.7 -77.1 3.42 -2.8 3.46 -5.4 3.47 3.55 CRM011-15S-16 CRM011-15S-16 CRM011-15S-15 3.24 CRM011-16S-9 3.21 CRM011-16S-10 9 CRM011-16S-12 0.000820 26 3.39 0.0000430 0.003180 3.26 0.280637 0.0001800 0.0000720 0.280770 3.26 0.0000360 15 -0.975 0.000800 11 -0.904 -75.5 0.001375 0.0000110 -70.8 0.280699 0.0000560 9 0.0000820 0.280655 0.001059 -1.7 0.0000530 0.0000760 -2.9 -0.976 0.280662 -0.959 -73.3 0.0000400 -74.9 3.47 3.52 -0.968 4.2 -74.6 -1.8 -0.8 3.39 3.50 3.46 Spot Spot CRM011-15S-10 CRM011-15S-11 CRM011-15S-13 3.41 CRM011-15S-14 3.27 3.24 9 3.24 0.000806 9 0.0000700 0.000323 25 0.280500 0.001295 0.0000590 0.0000460 10 0.280602 0.0000880 0.000782 0.0000420 0.280674 -0.976 0.0000036 0.0000400 -80.3 0.280636 -0.990 0.0000640 -0.961 -76.7 -74.2 -2.4 -0.976 -75.5 -1.0 -1.3 3.65 -1.5 3.47 3.47 3.47

96 (DM) (DM) .0000570 .0000570 -0.944 -58.3 -2.7 2.92 177Hf 2sm 177Hf 2sm Lu/Hf (o) Hf (t) Hf 0.001200 0.0001600 0.001100 0.281123 0.0001300 0.0000390 0.281119 0.0000340 -0.964 0.001369 -58.3 0.0000970 -0.967 0.282017 -58.5 0.0000340 -0.7 -0.959 -0.6 -26.7 2.87 -25.2 2.86 1.67 0.001868 0.0000310 0.001822 0.281205 0.0000860 0.0000630 0.281022 0.0000640 -0.944 -55.4 -0.945 0.001060 -61.9 0.0001100 -0.1 0.281187 0.0000490 -6.6 -0.968 2.81 -56.1 3.05 2.8 2.77 0.000940 0.0000100 0.281121 0.0000530 -0.972 -58.4 0.001510 0.0001200 -0.8 0.282172 0.0000280 -0.955 2.85 -21.2 -20.2 1.47

(Ga) WSU WSU (Ga) 1sm 0.044 1 0.001311 0.0000600 0.282358 0.0000510 -0.961 -14.6 -13.7 1.20 2.41 9 0.001980 0.0001300 0.281193 0.0000770 -0.940 -55.8 -3.2 2.83

SM10C4M-5 SM10C4M-5 SM10C4M-8 SM10C4L-7 SM10C4L-8 2.553 SM10C4M-7 0.067 SM10C4L-10 6 0.053 23 0.053 0.048 1 0.001209 1 0.0000650 1 0.001500 0.282020 0.0001500 0.0001900 0.282040 0.0000730 -0.964 -26.6 -0.955 -25.9 -25.4 -24.7 1.66 1.65 SM10C4M-9 SM10C4L-4 SM10C4L-6 SM10C4M-10 2.615 SM10C4M-6 2.582 16 2.581 2.575 10 0.002250 2.575 23 0.0001000 13 0.000954 0.281172 0.0000820 0.0000560 0.281119 11 0.0000410 -0.932 -56.6 -0.971 -58.5 -0.7 -0.2 2.88 2.85 SM10C3S-8 SM10C3S-8 SM10C3S-9 SM10C3M-11 SM10C3M-12 2.54 SM10C3S-11 2.53 2.52 15 2.52 0.001861 11 0.0000270 17 0.001710 0.281124 0.0001200 0 11 0.281064 0.0000990 -0.948 -60.4 -4.6 2.99 Spot Spot 97

Discussion

Recycled Crust in the Lower Crust of the Snake River Plain

The intial (Hf) values recorded in samples from the three field areas analyzed (SK,

CRMO and SM) were dominantly negative, with most values falling between 0 and -10.

The age domains these results were recorded in were dominantly from Archean magmatic and metamorphic events, although an effort was made to analyze the Paleogene zircon growth event recorded in SM and to analyze cores of grains that have been interpreted as inherited.

The oldest growth domains targeted by Hf isotope analysis are inherited cores and grains. These domains were only analyzed in samples from SK and CRMO. The (Hf) values recorded in this population range from -13 to +5. Results from inherited zircon yielded both positive and negative values. This indicates that these inherited zircon domains were sourced from a region that was formed from both enriched crust (e.g. granites and diorites) recently separated from the depleted mantle and from older crustal components with a longer crustal residence. The most obvious source for inheritance is the nearby Montana Metasedimentary province (MMP) and the Beartooth-Bighorn magmatic zone (BBMZ). The lithologies of this area are mostly quartzofeldspathic, tonalitic to granitic gneisses and metasupracrustal rocks, including quartzite, amphibolite, marble, and iron formation (Chamberlain et al., 2003). These lithologies easily explain zircon cores with negative to slightly positive (Hf) values. There could be another source for these domains other than the zones to the east. It is possible there was early

Paleoarchean crust formed in the Kilgore-Craters terrane, and it was recycled during

98 orogenesis. Wherever the Paleoarchean zircons were recycled from, they were dominantly sourced from an early, sialic crust.

The results from SM samples, which will have to represent all of the SM terrain, as House Mountain (HM) samples were not analyzed, also produced overwhelmingly negative (Hf) values. However, in Archean igneous growth domains, these values did not range as negative as SK and CRMO. SM values only range down to -6.6. The negative and positive values indicate the SM terrain was also formed from mantle derived and recycled crustal components, however, the depleted mantle model ages for SM are significantly younger than SK and CRMO (fig. 28), in the range of ages during which SK and CRMO underwent magmatic growth (2.9 to 3.3 Ga). The discrepancy in model ages indicates the source for lithologies from SM is not the same as that from SK and CRMO.

The inherited core ages in zircons from SM and HM also match the igneous formation ages of the Kilgore-Craters terrane (3.3 to 2.9 Ga). This is a good indication that crustal magmas in the SM terrane were sourced in part from the lithologies similar to those of the Kilgore-Craters terrane.

The Eastern Snake River Plain and the Wyoming Craton

There are two possible ways to configure the Snake River Plain terranes to the

Wyoming Province. The first is the SRP terranes are two individual microcontinents and are not related to each other or to the Wyoming Province. In this scenario, the two microcontinents were sutured to the craton during their stabilization events. The second possible scenario is the Kilgore-Craters and Square Mountain terranes are extensions of the Wyoming Province and thus extend the western boundary of the Wyoming Province

99 to the 87Sr/87Sr = .706 line. The Kilgore-Craters terrane would be an extension of the

Montana Metasedimentary Province and Beartooth Bighorn Magmatic Zone, and the

Square Mountain terrane would be an extension of the Southern Accreted Terranes (fig.

29).

Results of this study support the second scenario. We interpret a 2.8 Ga stabilization event in the CRMO and SK area. Similarly, the timing of cratonization for the Beartooth Mountains and the Montana Metasedimentary zone has been identified at

2.8 (Mueller and Frost, 2006). The stabilization event of the Kilgore-Craters area that produced metamorphic zircons and overgrowths is likely related to the same 2.8 Ga event that has been recorded in the Long Lake region of the Beartooth Mountains (Wooden et al., 1982; Mueller et al.,1985). Evidence for a larger Wyoming craton that includes the

Kilgore-Craters terrane is compounded by Hf analysis. The negative (Hf) values recorded in zircons from across the SRP indicate the lower crust of southern Idaho is composed of crust that had been recycled and enriched. Nd and Pb model ages and U/Pb detrital zircon ages of >4.0 Ga from the BBM and MMP of the Wyoming Province also indicate the existence of Paleoarchean components (Frost, 1993; Wooden and Mueller, 1998; Mueller and Frost, 2006).

The last collisional events and cratonization of the Southern Accreted Terranes

(SAT) to the Wyoming Province occurred at 2.55-2.50 Ga (Mueller and Frost, 2006).

This matches the timing of formation and cratonization found for the Square Mountain terrane (2.5 Ga). This is also the timing of stabilization in the earlier defined Grouse

Creek Block (Gashnig et al., 2013). Later tectonism was recorded in the SAT at 1.8-1.6

100

Ga, associated with the formation of Laurentia. This tectonism was also recorded in the

House Mountain area of the Square Mountain terrane.

Both negative and positive (Hf) values recorded in zircons from SM indicate the

SM terrane formed from mantle derived and recycled crustal components, and Hf model ages indicate the recycled components were similar in age to the Kilgore-Craters terrane, the MMP and the BBMZ. Negative (Nd) values recorded in the SAT also indicate both mantle derived and recycled components, with those components possibly sourced from the MMP and BBMZ (Frost et al., 2006). These timing and isotopic patterns tie together the SAT, the Grouse Creek Block, and the Square Mountain terrane as one zone in the

Wyoming Province (Foster et al., 2006; Gaschnig et al., 2013).

Open System Zircon Growth During the Paleogene

Hf isotope analysis on zircons from SM also targeted Paleogene growth domains.

These domains are magmatic overgrowths on Archean zircons. 176Hf/177Hf concentrations of Paleogene domains are elevated compared to the Archean growth domains both today and at the timing of growth ca. 50 Ma. The elevated concentration could be modeled as an injection of mantle derived melt or fluid external to the granulite host, resulting in a mixture of low 176Hf/177Hf Archean crustal Hf and higher 176Hf/177Hf younger, mantle- derived Hf. This outside source would have to be mantle-derived, or at least more recently separated from the mantle, as it must be enriched in 176Hf/177Hf. Injection of melt or fluid could be added to the rock during open system metamorphism, suggesting that the Challis-aged zircon growth event was not just a thermal re-equilibration, but was promoted by mass flux of mantle-derived melts through the crust.

101

Figure 29: A new configuration of the Wyoming Province. The Wyoming Province can be split into two zones, one that is older than 2.8 Ga and one that is older than 2.5 Ga.

102

Conclusions

Evidence from this study supports the hypothesis that the lower crust of

Southern Idaho is an extension of the Wyoming Province. The lower crust underlying the

SRP of Southern Idaho is composed of two distinct terranes. The Kilgore Craters terrane stretches from the Montana/Wyoming/Idaho border west into Craters of the Moon

National Monument and Preserve. The Kilgore-Craters terrane formed during an igneous episode that lasted from 3.0 to 3.3 Ga, with major pulses at 3.2 and 3.1 Ga. Granulite facies metamorphism occurred between 2.8 and 2.7 Ga, and resulted in stabilization of the region.

To the west of the Kilgore-Craters terrane is the Square Mountain terrane.

This region stretches west to the 87Sr/87Sr = .706 line. Igneous activity circa 2.5 Ga formed this region. Granulite facies metamorphism stabilized the region, contemporaneously at the timing of formation. The igneous activity and metamorphism of both Southern Idaho terranes is due to collisional orogenesis as the early North

American continent was growing.

Sources of melts for the formation of both terranes included contributions from older continental crust. The Hf chemical signatures and timings of formation and stabilization tie the two Southern Idaho terranes to the Wyoming Province. The Kilgore-

Craters terrane is correlative with the northern Montana Metasedimentary province and the Beartooth-Bighorn magmatic zone. The Square Mountain terrane is a northward correlative of the Grouse Creek Block, and together are westward extensions of the

Southern Accreted Terranes of the Wyoming Province.

103

REFERENCES

Anders, M. H., Geissman, J. W., Piety, L. A. and Sullivan, J. T., 1989, Parabolic distribution of circum-eastern Snake River Plain seismicity and latest Qua- ternary faulting: Migratory pattern and association with the Yellowstone hot spot. Journal of Geophysical Research, 94, 1589 1621.

Armstrong, R.L., Taubeneck, W.H., and Hales, P.O., 1977. Rb -Sr and K-Ar geochronometry of Mesozoic granitic rocks and the Sr isotopic composition, Oregon, Wahington, and Idahoa Geological Society of America Bulletin, 88 (3), 397-411.

Armstrong, R.L., and Ward, P., 1991, Evolving geographic patterns of Cenozoic magmatism in the North American Cordillera—The temporal and spatial association of magmatism and metamorphic core complexes. Journal of Geophysical Research, 96 (B8), 13201–13224.

Bingen B., Austrheim H., Whitehouse M., 2001, Ilmenite as a source for zirconium during high-grade metamor- phism? Textural evidence from the Caledonides of W. Norway and implications for zircon geochronology. Journal of Petrology, 42, 355-375.

Bonnichsen, B., Leeman, W.P., Honjo, N., McIntosh, W.C. and Godchaux, M.M., 2007. Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain. Bulletin of Volcanology, 70, 315–342.

Brott, C.A., Blackwell, D.D., and Ziagos, J.P., 1981, Thermal and tectonic implications of heat flow in the eastern SRP, Idaho. Journal of Geophysical Research, 86, 11.

Camp, V.E., 1995, Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River Basalt source region. Geology, 23, 435–438.

Camp, V.E. and Ross, M.E., 2004, Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest. Journal of Geophysical Research, 109 B08204, 14 pp.

Carlson, D.H., Fleck, R., Moye, F.J., and Fox, K.F., 1991, Geology, geochemistry, and isotopic character of the Colville igneous complex, northeastern Washington. Journal of Geophysical Research, 96 (B8), 13313–13333.

104

Caruba, R., and Iacconi, P., 1983, Les zircons des pegmatites de Narssârssuk (Groëland)—l’eau et les groupments OH dans les zircons meamictes. Chemical Geology, 38, 75-92.

Chamberlain, K.R., Frost, C.D. and Frost, B.R., 2003, Early Archean to Mesoproterozoic evolution of the Wyoming Province: Archean origins to modern lithospheric architecture. Canadian Journal of Earth Sciences, 40 (10): 1357–1374. Cherniak, D.J., Hanchar, J.M., and Watson, E.B., 1997, Diffusion of tetravalent cations in zircon. Contributions to Mineralogy and Petrology 127, 383-390.

Cherniak, D.J. and Watson, E.B, 2000, Pb diffusion in zircon. Chemical Geology, 172, 5- 24.

Christiansen, R.L., 2001, The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana. U.S. Geological Survey Professional Paper, 729 G, 145 pp.

DePaolo, D. J. and Wasserburg, G. J., 1976, Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249–252.

Dickinson, W.R., 1991, Tectonic setting of faulted Tertiary strata associated with the Catalina core complex in southern Arizona. Geological Society of America Special Paper 264. 106.

Dickinson, W.R., 2002, The Basin and Range Province as a composite extensional domain. International Geology Review, 44 1-38.

Draper, D.S. ,1991, Late Cenozoic bimodal magmatism in the northern Basin and Range Province of Southeastern Oregon. Journal of Volcanology and Geothermal Research, 47, 299–328.

Dufrane, S.A., Vervoort, J.D., Leeman, W.P., and Wolf, D.E., 2007, Hafnium isotope composition of Archean zircons from xenoliths of the Snake River Plain, Idaho. Eos Transactions, American Geophysical Union, 88, 52, Fall meeting supplement, abstract V43B-1375.

Es’kova, E.M., 1959, Geochemistry of Nb and Ta in the nepheline syenite massifs of the Vishnevyie Mountains. Geokhimiya 2, 130-139 (in Russian).

Fraser, G., Ellis, D., and Eggins, S., 1997, Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25 (7), 607–610.

Foster, D.A., and Fanning, C.M., 1997, Geochronology of the northern Idaho batholith and the Bitterroot metamorphic core complex: Magmatism preceding and con- temporaneous with extension: Geological Society of America Bulletin, 109 (4), 379–394.

105

Foster, D.A., Mueller, P.A., Mogk, D.W., Wooden, J.L., and Vogl, J.J., 2006, Proterozoic evolution of the western margin of the Wyoming craton: Implications for the tectonic and magmatic evolution of the northern Rocky Mountains: Canadian Journal of Earth Sciences, 43,1601–1619.

Frost, C.D., 1993, Nd isotopic evidence for the antiquity of the Wyoming Province: Geology, 21, 4, 351–354. Frost, C.D., Frost, B.R., Chamberlain, K.R. and Hulsebosch, T.P., 1998, The Late Archean history of the Wyoming province as recorded by granitic magmatism in the Wind River Range, Wyoming. Precambrian Research, 89, 145–173.

Frost, C.D., and Fanning, C.M., 2006, Archean geochronological framework of the Bighorn Mountains, Wyoming. Canadian Journal of Earth Sciences, 43, 1399– 1418.

Frost, C.D., Fruchey, B.L., Chamberlain, K.R. and Frost, B.R., 2006, Archean crustal growth by lateral accretion of juvenile supracrustal belts in the southern Wyoming Province. Canadian Journal of Earth Sciences, 43, 1533-1526.

Gaschnig, R.M, Vervoort, J.D., Lewis, R.S, and Tikoff, B., 2012 Probing for Proterozoic and Archean crust in northern U.S. Cordillera with inherited zircon from the Idaho batholith. Geological Society of America Bulletin, 125, (1-2), 73-88.

Gest, D.E., and McBirney, A.R., 1979, Genetic relations of shoshonite and absarokite magmas, Absaroka Mountains, Wyoming. Journal of Volcanology and Geothermal Research, 6, 85–104.

Geist D. and Richards M., 1993, Origin of the Columbia Plateau and Snake River Plain: deflection of the Yellowstone plume. Geology, 21, 789–792.

Glen J.M.G. and Ponce D.A., 2002, Large-scale fractures related to inception of the Yellowstone hotspot. Geology, 30, 647–650.

Grace, R.L.B., Chamberlain, K.R., Frost, B.R. and Frost, C.D., 2006, Tectonic histories of the Paleoarchean to Mesoarchean Sacawee Block and Neoarchean Oregon Trail structural belt of the south-central Wyoming Province. Canadian Journal of Earth Sciences, 43, 1445-3313.

Guo, J., O’Reilly, S.Y., and Griffin, W.L., 1996, Zircon inclusions in corundum megacrysts: I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts. Geochimica et Cosmochimica Acta, 60, 2347-2363.

Halden, N.M., and Hawthorne, F.C., 1993, The fractal geometry of oscillatory zoning in crystals: application to zircon. Am Mineral, 78, 1113-1116.

106

Harrison, W.J. and Wood, B.J., 1980, An experimental investigation of the partitioning of REE between garnet and liquid with reference to the role of defect equilibria, Contributions to mineralogy and petrology, 72 (2), 145-155.

Harry, D.L., Sawyer, D.S. and Leeman W.P., 1993, The mechanics of continental extension in western NorthAmerica: Implicationsfor themagmatic and structural evolution of the Great Basin. Earth and Planetary Science Letters, 117, 59-71.

Henry, D.J., Mueller, P.A., Wooden, J.L., Warner, J.L. and Lee-Berman R., 1982, Granulite grade supracrustal assemblages of the Quad Creek area, eastern Beartooth Mountains, Montana. Montana Bureau of Mines and Geology Special Publication, 84, 147-159.

Hildreth, W., 1981, Gradients in silicic magma chambers: Implications for lithospheric magmatism. Journal of Geophysical Research, 86, 10153-10192.

Hinton, R.W., and Upton, B.G.J., 1991, The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochimica et Cosmochimica Acta, 55, 3287– 3302.

Hoffman, P.F., 1988, United plates of America, the birth of a craton; early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences,16, 543–603.

Holdaway, M.J., 1971, Stability of andalusite and the aluminum silicates phase diagram. American Journal of Science, 271, 97-131.

Hooper, P.R., Camp, V., Reidel, S. and Ross, M., 2007, The origin of the Columbia River flood basalt province: plume versus nonplume models. In: Foulger, G.R., Jurdy, D.M. (Eds.), Plates, Plumes, and Planetary Processes: Geological Society of America Special Paper, 430, 635–668.

Hoskin, P.W.O., 1998, Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: a consideration and comparison of two broadly competitive techniques. Journal of Trace and Microprobe Techniques, 16 (3), 301–326.

Hoskin, P.W.O., and Black, L.P., 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 423– 439.

Hoskin, P.W.O., and Ireland, T.R., 2000, Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28 (7), 627 – 630.

Hoskin, P.W.O, and Schaltegger, 2003, The composition of zircon and igneous and metamorphic petrogenesis. In Zircon

107

Hughes, S.S., McCurry, M., 2002, Bulk major and trace element evidence for a time– space evolution of Snake River Plain rhyolites, Idaho. In: Bonnichsen, Bill, White, C.M., McCurry, Micheal (Eds.), Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province. Idaho Geological Survey Bulletin, 30, 161–171.

Huppert, H. E. and Sparks, S. I., 1988, The generation of granitic magmas by intrusion of basalt into continental crusts. Journal of Petrology, 29, 599 624.

Jacob, T.M., 1985, Reconnaissance geology of House Mountain, Elmore County, Idaho. Thesis (M.S.) Univeristy of Idaho.

James, D. E., Fouch, M. J., Carlson, R. W., and Roth, J. B., 2011, Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth and Planetary Science Letters, 311, 1, 124-135

John, D.A., Wallace, A.R., Ponce, D.A, Fleck ,R.B., Conrad, J.E., 2000, New perspectives on the geology and origin of the northern Nevada rift, J.K. In:, Cluer, J.G. Price, E.M. Struhsacker, R.F. Hardyman, D.L. Morris, (Eds.) Geology and Ore deposits 2000: The Great Basin and Beyond. Geological Society of Nevada Symposium Proceedings, May 15–18, 127–154.

Jordan, T. 1975, The continental tectosphere. Reviews of Geophysics and Space Physics, 13, 1–12.

Jordan, B.J., Grunder, A.L., Duncan, R. and Deino, A., 2004, Geochronology of age- progressive volcanism of the Oregon High Lava Plains: implications for the plume interpretation of Yellowstone. Journal of Geophysical Research, 109, B10202

Keane, S.D., DeWolf, C.P., Essene, E.J., Halliday, A.N., Hall, C.M. and Cosca, M.A., 2006, Isotopic constraints on the thermal history of the Wind River Range, Wyoming: implications for Archean metamorphism. Canadian Journal of Earth Sciences, 43 (10), 1511-1532.

Kinny P.D. and Maas, R., 2003, Lu-Hf and Sm-Nd Isotope Systems in Zircon, in Zircon. eds. J.M Hanchar and P.W.O. Hoskin. 327-341.

Le Maitre, R.W., ed., 1989, A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 193 pp.

Leeman, W.P., 1982, Development of the Snake River Plain– Yellowstone Plateau province, Idaho and Wyoming: An overview and petrologic model, in Bonnichsen, B., and Breckenridge, R.M., eds., Cenozoic geology of Idaho. Idaho Bureau of Mines and Geology Bulletin 26, 155–177.

Lipman, P.W., Prostka, H.J. and Christiansen, R.L., 1971, Evolving subduction zones in the western United States, as interpreted from igneous rocks. Science, 174, 821-825.

108

Malde, H.E., 1991, Quaternary geology and structural his- tory of the Snake River Plain, Idaho and Oregon, in Morrison, R.B., ed., Quaternary non-glacial geology, Conterminous U.S.: Boulder, Geological Society of America, The Geology of North America, v.K-2, 251–280.

McQuarrie N. and Rodgers D.W., 1998, Subsidence of a volcanic basin by flexure and lower crustal flow: The eastern Snake River Plain, Idaho. Tectonics, 17, 203-220.

Minster, J. B., Jordan, T. H., Molnar, P. and Haines, E., 1974, Numerical Modeling of instantaneous plate tectonics. Royal Astronomical Society Geophysical Journal, 36, 541- 576.

Mogk, D.W., Mueller, P.A. and Wooden, J.L. 1992, The significance of Archean terrane boundaries: evidence from the northern Wyoming Province. Precambrian Research, 55, 155–168.

Moye, F.J., Hackett, W.R., Blakley, J.D., and Snider, L.G., 1988, Regional geologic setting and volcanic stratigraphy of the Challis volcanic field, central Idaho, in Link, P.K., and Hackett, W.R., eds., Guidebook to the geology of central and Southern Idaho. Idaho Geological Survey Bulletin 27, 87–97.

Mueller P.A, Wooden J.L, Henry D.J and Bowes D.R, 1985, Archean Crustal Evolution of the Eastern Beartooth Mountains, Montana and Wyoming. In: Czamanske, G. K. and Zientek, M. L., (eds.), The Stillwater Complex. Montana Bureau of Mines and Geology Special Publication, 92, 9-20.

Mueller, P.A., Mogk, D.W. Wooden, J.L. and Henry D.J., 1982, Granitoids, granulites and continental collision: The Late Archean of southwestern Montana. Geological Society of America Abstracts, 14 (7), 572

Mueller, P.A., Wooden, J. and Nutman, A., 1992, 3.96 Ga zircons from an Archean quartzite, Beartooth Mountains. Montana Geology, 20, 327–330.

Mueller, P.A., Shuster, R., Wooden, J., Erslev, E. and Bowes, D., 1993, Age and composition of Archean crystalline rocks from the southern Madison Range: implications for crustal evolution in the Wyoming craton. Geological Society of America Bulletin, 105, 437–446.

Mueller, P.A., Wooden, J.L., Nutman, A.P. and Mogk, D.W., 1998, Early Archean crust in the northern Wyoming province: evidence from U–Pb ages of detrital zircons. Precambrian Research, 91, 295–307.

Mueller, P.A., Foster, D.A., Mogk, D.W. and Wooden, J.L., 2004a, New insights into the Proterozoic evolution of the western margin of Laurentia and their tectonic implications. Geological Society of America, Abstracts with Programs, 36(5),404.

109

Mueller, P.A., Burger, H.R., Heatherington, A., Wooden, J., Mogk, D.W. and D’Arcy, K., 2004b, Age and evolution of the Precambrian crust, Tobacco Root Mountains, Montana. In: J.B. Brady, H.R. Burger, J.T. Cheney, and T.A. Harms, (eds.) Precambrian geology of the Tobacco Root Mountains, Montana. Geological Society of America, Special Paper 377,179–201.

Mueller, P.A., Burger, R.H., Wooden, J.L., Brady J.B., Cheney, J.T., Harms, T.A., Heatherington, A.L. and Mogk, D.W. 2005. Paleoproterozoic metamorphism in the northern Wyoming province: implications for the assembly of Laurentia. Journal of Geology, 113, 169–179.

Mueller, P.A. and Frost C.D, 2006, The Wyoming Province: a distinctive Archean craton in Laurentian North America. Can. J. Earth Sci.,43 (10),1391-1397

Nagasawa, H., 1970, Rare earth concentrations in zircons and apatites and their host dacites and granites. Earth and Planetary Science Letters 9, 359–364.

Nir-El, Y. and Lavi, N., 1998, Measurement of the half-life of 176Lu. Applied Radioactive Isotopes, 49, 1653-1655.

O’Brien, H.E., Irving, A.J., and McCallum, I.S., 1991, Eocene potassic magmatism in the Highwood Mountains, Montana— Petrology, geochemistry, and tectonic implications. Journal of Geophysical Research, 96, (B8), 13237–13260.

Ono, A., 1976, Chemistry and zoning of zircon from some Japanese granitic rocks. J Japan Assoc Mineral Petrol Econ Geol, 71, 6-17.

Patchett, P.J., Kouvo, O., Hedge, C.E. and Tatsumoto, M., 1981, Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78, 279-297.

Parsons T., 1995, The Basin and Range Province, Developments in Geotectonics, In: K.H. Olsen, (ed.), Continental Rifts: Evolution, Structure, Tectonics. Elsevier, Amsterdam, 25 ,277–324.

Parsons, T., Thompson, G.A. and Sleep, N.H., 1994, Mantle plume influence on the Neogene uplift and extension of the U.S. western Cordillera. Geology, 22 , 83–86.

Perkins, M.E. and Nash, B.P., 2002. Explosive silicic volcanism of the Yellowstone hotspot: the ash fall tuff record. Geologic Society of America Bulletin, 114, 367–381.

Perkins, M.E., Brown, F.H., Nash, W.P., McIntosh, W. and Williams, S.K., 1998. Sequence, age, and source of silicic fallout tuffs in middle to late Miocene basins of the Basin and Range province. Geological Society of America Bulletin, 110, 344–360.

110

Pierce K.L. and Morgan, 1990, The track of the Yellowstone hot spot: volcanism, faulting, and uplift. U.S. Geological Survey Open-File Report, 90-415, 49 pp.

Pierce, K.L., and Morgan, L.A., 1992, The track of the Yellowstone hot spot: Volcanism, faulting, and uplift. In: Link, P.K., Kuntz, M.A., and Platt, L.B., (eds.), Regional geology of eastern Idaho and western Wyoming. Geological Society of America Memoir,179, 1– 53.

Pierce, K.L. and Morgan., L.A., 2009, Is the track of the Yellowstone hotspot driven by a deep mantle plume? — Review of volcanism, faulting, and uplift in light of new data. Journal of Volcanology and Geothermal Research. 188, 1-25.

Pierce, K.L., Morgan, L.A. and Saltus, R.W., 2002, Yellowstone plume head: postulated tectonic relations to the Vancouver slab, continental boundaries, and climate. In: Bill Bonnichsen, C.M. White, Micheal McCurry, (eds.) , Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province. Idaho Geological Survey Bulletin, 30, 5–33.

Pollack, H.N., 1986, Cratonization and thermal evolution of the mantle. Earth and Planetary Science Letters, 80, 175–182.

Richards, M.A., Duncan, R.A. and Courtillot, V.E., 1989, Flood basalts and hot spot tracks: Plume heads and tails. Science, 246, 103-107.

Roberts, M.P., and Finger, F., 1997. Do U – Pb zircon ages from granulites reflect peak metamorphic conditions? Geology, 25 (4), 319 – 322.

Rodger D.W., Hackett W.R. and Ore H.T., 1990, Extension of the Yellowstone plateau, eastern Snake River Plain and Owyhee plateau. Geology, 18, 1138-1141.

Ross, G.M. and Villeneuve, M.E., 2003, Provenance of the Mesoproterozoic (1.45 Ga) Belt basin (western North America): Another piece in the pre-Rodinia paleogeographic puzzle. Geological Society of America Bulletin, 115, 1191–1217.

Rubatto, D., 2002, Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184, 123-138.

Rubatto, D., Williams, I.S., and Buick, I.S, 2001 Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology, 140, 458-468.

Rowley, P.W., 2001, The Cenozoic evolution of the Great Basin area, U.S.A.—new interpretations based on regional geologic mapping. In: M.C. Erskine, (ed.), The Geologic Transition, High Plateaus to Great Basin — A Symposium and Field Guide (The Mackin Volume). Utah Geological Association Publication. 30, 169–188.

111

Sano. Y., Terada, K., and Fukuoka, T. 2002, High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chemical Geology, 184, 217-230

Shore, M., Fowler, A.D., 1996, Oscillatory zoning in minerals: a common phenomenon. Can Mineral, 34, 1111-1126.

Smith, R.B. and Braile, L.W., 1993. Topographic signature, space–time evolution, and physical properties of the Yellowstone–Snake River Plain volcanic system: the Yellowstone hotspot. In: Snoke, A.W., Steidtmann, J.R., Roberts, S.M. (eds.), Geology of Wyoming: Geological Survey of Wyoming Memoir. 5, 694–754.

Snyder, G.A., Taylor, L.A., and Crozaz, G., 1993, Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14: an ion probe study of evolved rocks on the Moon. Geochimica et Cosmochimica Acta, 57, 1143-1149.

Spear, F. S., 1991, Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths 2nd edition. Washington, D.C.: Mineralogical Society of America.

Speer, J.A., 1982, Zircon. Rev Mineral 5, 67-112.

Spencer, J.E. and Pearthree, P.A., 2001, Headward erosion versus closed-basin spillover as alternative causes of Neogene capture of the ancestral Colorado River by the Gulf of California. In: Young, R.A., and Spamer, E.E., (eds.), The Colorado River: Origin and evolution: Grand Canyon, Arizona, Grand Canyon Association Monograph. 12, 215–219.

Souders, A.K. and Frost, C.D., 2006, In suspect terrane? Provenance of the late Archean Phantom Lake Metamorphic Suite, Sierra Madre, Wyoming. Canadian Journal of Earth Sciences, 43, 1557-1577.

Steiger, R.H., and Jäger, E., 1977, Subcommission on Geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 13, 359-362.

Suayah, I.B., and Rodgers, J.J.W., 1991, Petrology of the lower Tertiary Clarno Formation in north central Oregon— The importance of magma mixing: Journal of Geophysical Research, 96 (B8), 13,357–13,371.

Suppe, J., Powell, C. and Barry, R., 1975, Regional topography, seismicity, Quaternary volcanism, and the present day tectonics of the western United States. American Journal of Science, 275-A, 397–436.

Takahahshi, E., Katsuji, N. and Wright T.L., 1998, Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth and Planetary Science Letters, 162 1–4, 63–80.

112

Thomas J.B., Bodnar, R.J., Shimizu, N., and Sinha, A.K., 2002, Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochimica et Cosmochimica Acta, 66, 2887-2901.

Thompson, G.A., 1998, Deep mantle plumes and geoscience vision. GSA Today, 84, 7– 25.

Vavra, G., 1990, On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contributions to Mineralogy and Petrology, 106, 90-99.

Vavra, G., Gebauer, D., Schmid, R., and Compston, W., 1996, Multiple zircon growth and recrystallisation during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea zone (Southern Alps): An ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 122, 337–358.

Waite, G.P., Smith, R.L. and Allen, R.L., 2006, VP and VS structure of the Yellowstone Hotspot from teleseismic tomography: evidence for an upper mantle plume. Journal of Geophysical Research, 111, B04303.

Walker, J.D., Geissman, Bowring, S.A. and Babcock, L.E., 2012, (v.4.0). GSA.

Watson, B.E., 1980, Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70 (4), 407-419

Watson, B.E., 1980, Some experimentally determined zircon/liquid partition coefficients for the rare earth elements. Geochimica et Cosmochimica Acta, 44, 895–897.

Watson, E. B., and Harrison, T. M., 1983, Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.

Watson, E.B., Harrison, T.M., 2005, Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308, 841–844.

Wetherill, G.W., 1956, Discordant uranium-lead ages, I. Transactions of the American Geophysical Union, 37, 320-326.

Whitmeyer, S.J. and Karlstrom, K.E., 2007, Tectonic model for the Proterozoic growth of North America. Geosphere. 3 (4), 220-259.

Wolf D.E.,Vervoort J.D. and Leeman W.P., 2005, U-Pb Zircon geochronology of crustal zenoliths confirms presence of Archean basement beneath the central and eastern snake river plain. Geological Society of America Abstracts with Programs, 37, 60

113

Wood, S.H. and Clemens, D.M., 2002, Geologic and tec- tonic history of the western Snake River Plain, Idaho, and Oregon, in Bonnichsen, B., White, C.M., and McCurry, M., eds., Tectonic and magmatic evolution of the Snake River Plain Volcanic Province. Idaho Geological Survey Bulletin, 30, 69–103

Wooden, J.L. and Mueller, P.A. 1988. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust–mantle evolution. Earth and Planetary Science Letters, 87, 59–72.

114

APPENDIX A

Thin Section Petrography

115

A1: Thin section descriptions for Spencer-Kilgore samples. All SK GPS points are 1 in NAD 27 CON US 2 3 SK11-01 : Two Pyroxene Charnokite 4 5

6 Figure A2 Crossed polar (left) and plain polarized light (right) images of SK11-01 7 8 Geologic Setting: 9 SK11-01 is a crustal xenolith found on Crystal Butte between the hamlets of Spencer and 10 Kilgore, ID. Its exact location was 0426764 E 4906613 N. 11 12 Hand sample description: 13 This sample is white with red/black cm size bands. Bands clumped with three or four 14 centimeters of white between them. In clumps, bands are spaced a cm or two apart. This 15 sample is very friable. Dark bands are also boudinaged. 16 17 Mineralogy: 18 Quartz (30%): Grains are sub rounded in felsic layers and slightly more rounded in mafic 19 layers. Grains are 2-3 mm in felsic layers and .5mm and smaller in mafic layers. 20 21 Plagioclase (40%): Grains are sub angular. Patchy lenticular deformation twinning visible 22 in crossed polars. Grains range from 1-3 mm in bands of felsic, large crystals and .5 mm 23 in mafic bands. 24 25 Orthopyroxene(15%): In some mafic layers, large clusters of grains occur. Clusters are 26 split into rounded to subrounded pieces .5-1mm in length. A cluster is on average 5-8mm. 27 Smaller (.5mm and less) individual grains also are present in the mafic layers. Grains are 28 fractured parallel to layering 29 30 Clinopyroxene (5%): Grains are subrounded and avg .4 mm in size. Second order 31 birefringence is evident with crossed polars. 32 33

116

Opaques (10%): Grains are subrounded to rounded, and form puzzle-piece 34 recrystalization fabric with quartz and feldspar. Grains and clusters of grains are 35 elongated with layering. In hand sample they appear red, and are most likely hematite. 36 37 Accessory Mineralogy: 38 Zircons are present as rounded grains. 39 40 Texture: 41 Sample SK11-01 is compositionally layered, coarse-grained rock. Felsic layers are 42 composed of coarse grains of quartz and plagioclase feldspar. More mafic layers are 43 composed of finer grains of quartz, plagioclase feldspar, orthopyroxene, clinopyroxene 44 and opaques. Within the mafic layers, large clusters of orthopyroxene are also present. 45 Fractures in orthopyroxene are parallel to layering and opaque grains are elongated to 46 layering. Ostwald ripening is seen in both layers. 47 48 49 SK11-02 : Two Pyroxene Charnokite 50 51

52 Figure A3 Crossed polar (left) and plain polarized light (right) images of SK11-02 53 54 Geologic Setting: SK11-02 is a crustal xenolith found on Crystal Butte between the 55 hamlets of Spencer and Kilgore, ID. Its exact location is 0426770 E 4906562 N. 56 57 Hand Sample Description: 58 Sample SK11-02 is grey and pink with no banding. It is granular, but not friable. 59 60 Mineralogy: 61 Quartz (30%): Grains are subangular to subrounded and many boundaries exhibit 62 boundary bulging. Grains textures are subgranular, have deformation lamellae or show 63 no deformation or metamorphism within the grain (recrystallized?). Small (~.2mm), 64 rounded recrystallized grains formed due to grain boundary migration are common in 65 felsic layers. Size in felsic layers ranges up to 6 mm. Size in mafic layers is ~.5-1.5 mm. 66 67

117

Plagioclase (35%): Grains are subrounded with multiple lenticular deformation twins. 68 Average grain size is 1 mm in felsic bands and ranging down to .2 mm in mafic bands. 69 70 Potassium Feldspar (5%): Twinning is perpendicular to each other, but not as well 71 developed as in microcline. 72 73 Orthopyroxene (15%): Grains are subrounded. In plain light crystals are light pink. 74 Grains have been partially melted? (One large grain became many smaller grains) 75 76 Clinopyroxene (15%): Grains are subrounded. In plain light crystals are green. 77 78 Melt (5%) : Quenched melt pocket is parallel to layering. Pocket has partially melted 79 surrounding pyroxene. Felsic needle grains float randomly oriented in glass matrix. 80 81 Accessory Mineralogy: 82 None. 83 84 Texture: 85 Sample SK11-02 is a coarse grained, compositionally layered rock. Felsic layers are 86 composed of large grains of quartz and plagioclase feldspar. More mafic layers are 87 composed of smaller grains of quartz, plagioclase feldspar, orthopyroxene, and 88 clinopyroxene. Pyroxene grains are composed of subgrains. A melt pocket is surrounded 89 by partially melted pyroxenes, and melt occurs between many grains. Serrated boundaries 90 and subgrains formed from serrated boundary bulging are evident, indicating dynamic 91 recrystalization. 92 93 94 95 96 SK11-03 : Charnokite 97 98 Geologic Setting: 99 SK11-03 is a crustal xenolith found on Crystal Butte between the hamlets of Spencer and 100 Kilgore, ID. Its exact location is 0426745 E 4906530 N. 101 102 Hand sample description: 103 This xenolith was found broken in two pieces and few chips. The pieces are 5cm x 3cm x 104 4cm. This sample is banded light grey and dark grey on a mm scale. The light white, 105 felsic bands are 1-2 cm scale. Felsic bands are composed of quartz and feldspar, the 106 darker bands are composed of quartz and pyroxene. 107 108 109 110 111 112

118

113 SK11-07 : Garnet Granulite 114 115

116 Figure A4 Crossed polar (left) and plain polarized light (right) images of SK11-07 117 Geologic Setting: 118 SK11-07 is a crustal xenolith found on Crystal Butte between the hamlets of Spencer and 119 Kilgore, ID. Its exact location is 0426684 E 4906593 N. 120 121 Hand sample description: 122 SK11-07 is white with dark red bands. Bands are not continuous, and very iron rich. 123 Bands are 1mm to 1 cm wide. This rock breaks easily when hit, but is not friable enough 124 to break with hands alone. 125 126 Mineralogy: 127 Quartz (20%) – Grains are subangular, some exhibiting subgrains and deformation 128 lamellae. Grains are white to grey to first order yellow in crossed polars. Average grain 129 size is 1 mm. Smaller (~.2mm) recrystallized grains from grain boundary migration and 130 larger, ribbons parallel to banding grains are also present. 131 132 Plagioclase (58%) – Grains are subangular with multiple lenticular deformation twins. 133 Average grains size is 1mm. Some grains form aggregates that range to 4 mm. 134 135 Opaques (15%)- Grains are subrounded and elongated parallel to banding. Grains are red 136 in hand sample and may be hematite. 137 138 Garnet (7%) – Grains are rounded. Average grain size is .4mm. Grains occur most 139 commonly in opaque bands 140 141 Accessory Mineralogy 142 Rutile grains are present on the edges of major mineral grains, particularly opaques. 143 144 Texture: 145 Sample SK11-07 is coarse grained and granoblastic. It is compositionally layered parallel 146 to foliation. Felsic layers are composed of plagioclase feldspar and quartz. Mafic layers 147

119 are .5mm thick bands of opaques and garnet. Mafic bands occur on the cm scale and are 148 sub-parallel to foliation. They are discontinuous. The largest quartz grains are elongated 149 parallel to foliation, and groupings of quartz grains form ribbons parallel to foliation. 150 Grain boundaries bulge to form serrated edges. Melt occurs between many grain 151 boundaries. 152 153 154 155 SK11-08 : Granulite 156 157 Geologic Setting: 158 SK11-08 is a crustal xenolith found on Crystal Butte between the hamlets of Spencer and 159 Kilgore, ID. Its exact location is 0426667 E 4906548 N. 160 161 Hand sample description: 162 This sample is 4 cm x 3 cm wide. It is light white and composed of quartz and feldspar. 163 Strands of basalt infiltrate the xenolith, many with red iron weathering. 164

120

165 166 A2: Thin section descriptions for Craters of the Moon samples. All CRMO GPS 167 points are in NAD 27 CON US 168 169 170 CRMO11-01 : Charnokite 171 172

173 Figure A5 Crossed polar (left) and plain polarized light (right) images of 174 CRMO11-01 175 176 Geologic Background: 177 CRMO11-01 is a crustal xenolith collected by Doug Owen on Big Cinder Butte at Craters 178 of the Moon NM and P. Its exact location was 294114 E 4810643N. 179 180 Hand Sample Description: 181 Sample is generally whitish grey in color, with mm-sized bands alternating white and 182 black. Grains are sugary in texture 183 184 Mineralogy: 185 186 Quartz (30%) – Grains are white, grey and pale yellow and exhibit deformation 187 subgrains. Boundaries are puzzle piece shaped. Average grain size is .3mm 188 189 Plagioclase (25%) – Grains exhibit lenticular deformation twinning of ranging 190 thicknesses. Average grain size is .6mm. 191 192 Orthopyroxene (5%) – Grains are rounded and medium brown to pale green in plain 193 light. Some grain boundaries are wavy, perhaps from partial melting? Average grain size 194 is .2 mm. 195 196 Melt (40%) 197

121

198 Accessory Minerals 199 Zircon- rounded grains are found as an inclusion in plagioclase 200 201 Texture: 202 Sample CRMO11-01 is a medium-sized grained rock. Melt has infiltrated much of the 203 rock, causing irregular grain boundaries. Grains are grouped in loose aggregates of 1 to 2 204 mm with <.5mm of melt between aggregates. Aggregates and elongated quartz grains 205 form a weak fabric. Rounded orthopyroxene grains are also found scattered throughout 206 aggregates, and show no elongation or orientation. 207 208 209 CRMO11-03 : Granite 210

211 Figure A6 Crossed polar (left) and plain polarized light (right) images of 212 CRMO11-03 213 214 215 Geologic Background: CRMO11-03 is a xenolith found by Doug Owen in a SW striking 216 fissure off of North Crater at Craters of the Moon NM and P. 217 218 Hand Sample Description: 219 This sample generally has a whitish-brown color, with splotches of black. The black is 220 infiltrated basalt. Iron staining has added a brown tint to the white quartz and plagioclase. 221 The sample is friable due to its popcorn texture. Crystals are large, over a cm in size. 222 223 Mineralogy: 224 225 Quartz (40%) – Grains are grey to first order yellow. Large (4-7mm) grain aggregates 226 show differing types of deformation. Some aggregates are composed of only a few grains 227 and show subgrain recrystalization, others are composed of many mm sized grains and 228 exhibit grain boundary bulging. 229 230

122

Plagioclase (20%) – Grains are grouped in large aggregates of polygonal grains. Some 231 exhibit multiple and patchy lenticular deformation twinning. 50% of grains are blue in 232 polarized light, indicating they are Labradorite. These grains record growth zoning. 233 234 Melt (40%) – Fine grains of plagioclase are held in a matrix of glass. Plagioclase grains 235 do not have an orientation, indicating growth was not under pressure. 236 237 Accessory Mineralogy: 238 Zircon- One .3mm polygonal zircon is found as an inclusion in plagioclase, and empty 239 zircon shaped casts are found in quartz grains. 240 241 Texture: 242 Sample CRMO11-03 is composed of very coarse grains and large aggregates held in 243 basalt melt matrix. Quartz grains exhibit subgrain extinction and boundary migration. 244 Plagioclase aggregates exhibit deformation twinning and zoning. There is no preferred 245 orientation of grains. 246 247 248 CRMO11-04 : Granite 249 250

251 Figure A7 Crossed polar (left) and plain polarized light (right) images of 252 CRMO11-04 253 254 Geologic Background: CRMO11-04 is a xenolith found by Doug Owen in a W striking 255 fissure off of North Crater at Craters of the Moon NM and P. 256 257 Hand Sample Description: 258 This sample is very fresh, does not break easily. It has easily seen crystals of quartz, 259 feldspar, and amphibole. A very light lamination is evident, with layers of felsic minerals 260 alternating with mafic minerals. 261 262 Mineralogy: 263 Quartz (48%) – Grains are grey to first order yellow. Large (4-7mm) grain aggregates 264 show differing types of deformation. Some aggregates are composed of only a few grains 265

123 and show subgrain recrystalization, others are composed of many mm sized grains and 266 exhibit grain boundary bulging. 267 268 Plagioclase (20%) – Grains are grouped in large, fractured aggregates. Some exhibit 269 multiple and patchy lenticular deformation twinning. Some grains are blue in polarized 270 light. 271 272 Potassium Feldspar (20%) – Grains are angular with patchy, poorly developed tartan 273 twinning. 274 275 Amphibole (7%) – Amphibole grains have been weathered and melted, forming irregular 276 grain boundaries and grains that have many holes, some in filled by other minerals. 277 278 Orthopyroxene (2%) – Small, rounded grains of orthopyroxene have grown in weathered 279 amphibole grains. 280 281 Accessory Mineralogy: 282 Zircon- zircon is found as an inclusion in quartz. 283 284 Texture: 285 Sample CRMO11-04 is composed of aggregates and coarse grains. All grains are 286 fractured. Quartz has puzzle piece texture of interlocking grains, indicating grain 287 boundary migration. There is no preferred orientation of grains. 288 289 290 291 CRMO11-05 : Charnokite 292 293

294 Figure A8 Crossed polar (left) and plain polarized light (right) images of 295 CRMO11-05 296 297 Geologic Background: CRMO11-05 is a crustal xenolith found in the Sunset Lava Flow 298 at Craters of the Moon NM and P. Its exact location was 0293930 E 4815578 N. 299

124

300 Hand Sample Description: 301 Sample is generally medium grey in color, with distinctive mm-sized pink bands of 302 plagioclase, as well as white bands less than 1mm. A large augen of quartz in present. 303 304 Mineralogy: 305 Quartz (45%) – Grains are subrounded with irregular boundaries, indicating grain 306 boundary migration. Quartz ribbons and individual grains are oriented and elongated to 307 form a fabric. Most grains exhibit subgrain deformation. Grain size varies from .1mm to 308 ribbons longer than 5mm. 309 310 Plagioclase (25%) – Grains are subrounded with irregular boundaries. Quartz inclusions 311 are prolific. Multiple lenticular deformation twinning is present. Grains are randomly 312 oriented and some large grains are elongated parallel to quartz ribbon fabric. Average 313 grain size is .8mm. 314 315 Potassium Feldspar (15%) – Grains are subrounded. Tartan twinning is patchy. 316 317 Orthopyroxene (8%) – Grains are subangular with irregular boundaries. Grains are 318 randomly oriented, but multiple grains are usually found in the same plane or connected, 319 parellel to quartz ribbon fabric. Green to pink pleochroism is seen in plain light. Average 320 grain size is .3mm. 321 322 Opaques (5%) – Irregular, subangular boundaries are most common, however some 323 grains are rectangular. Grains have a slight orientation parallel to quartz ribbon fabric. 324 Average grain size is .2mm. 325 326 Biotite (2%) – Average grain size is .6mm. 327 328 Accessory mineralogy: 329 Zircon – Rounded and polygonal zircon are found as inclusions. 330 331 Texture: 332 Sample CRMO11-05 is a medium grained rock composed mainly of quartz, feldspar and 333 orthopyroxene. Grains have irregular boundaries and quartz grains exhibit puzzle piece 334 boundaries. A fabric is evident from elongated grains and quartz ribbons, although it is 335 easier to see it in hand sample than in thin section. Compositional banding is formed from 336 pyroxene-rich layers. 337 338 339 340 341 342 343 344 345

125

CRMO11-06 : Rhyolite 346 347

348 Figure A9 Crossed polar (left) and plain polarized light (right) images of 349 CRMO11-06 350 351 Geologic Background: CRMO11-06 is a xenolith found on North Crater at Craters of 352 the Moon NM and P. Its exact location was 0292463 E 4813915 N. 353 354 Mineralogy: 355 Glassy matrix (95%) – Fine grained glassy matrix. In plain light perlitic cracks are seen. 356 357 Phenocrysts (5%) – Both quartz and feldspar phenocrysts are present. Simple and 358 lamellar twinning is present, indicating both sanidine and plagioclase. Inclusions of glass 359 and zircon are present. Average grain size is 1mm. 360 361 Accessory Mineralogy: 362 Zircon - .1mm zircons are present as inclusions in quartz. 363 364 Texture: Sample CRMO11-06 is composed of a fine grained, glassy matrix with 365 phenocrysts of feldspar and quartz. 366 367 368 369 CRMO11-10 : Granulite 370 371 Geologic Background: 372 Sample CRMO11-10 is a small (4 x 4 x 3 cm) xenolith in vesiculated, oxidized basalt of 373 the grassy flow at Craters of the Moon NM and P. Its exact location was 0287570E 374 4809833N. 375 376 Hand Sample Description: This sample is very felsic, consisting of quartz and feldspar. 377 In it are 3 mafic bands in 4 cm surface, varying 1-2 cm apart. Mafic bands are .4 cm 378

126 thick, thicker than many other xenoliths and composed of pyroxenes and perhaps other 379 mafic minerals. This sample is too small to analyze. 380 381 382 CRMO11-11 : Granulite 383 384 Geologic Background: 385 Sample CRMO11-101 is a 4 x 7 cm wide xenolith in found in the Grassy flow at Craters 386 of the Moon NM and P. Its exact location was 0287554E 4809861N. 387 388 Hand Sample Description: This sample is a thinly banded granulite xenolith. Quartz 389 and feldspar are .5 cm or greater, mafics smaller. Mafic bands are .2 cm thick and include 390 pyroxene. Iron weathering from basalt around edges. Orange weathering of feldspar is 391 noticed throughout. Crystals are elongated parallel to banding. This sample is too small to 392 analyze. 393 394 395 CRMO11-12 : Granulite 396 397 Geologic Background: CRMO11-12 is a small (2.5 x 4 cm) banded crustal xenolith 398 found loose on the basalt in the Grassy Flow at Craters of the Moon NM and P. The exact 399 sampling location is 0287499 E 4809884 N. 400 401 Hand Sample Description: In general, this sample is whitish. It is granular, so granular 402 it feels similar to pumice. Iron weathering is evident on surface. It is very felsic, to the 403 point where banding is weak only because there are not many mafic minerals (pyroxene). 404 Mafic bands are only 1 or two crystals wide. This sample is too small for a thin section, 405 but large enough for analysis. 406 407 408 CRMO11-13 : Granulite 409 410 Geologic Background: CRMO11-13 is composed of two small (3 x 4 cm) banded 411 crustal xenolith found in the Grassy Flow at Craters of the Moon NM and P. They were 412 found embedded in basalt. These samples were found right next to CRMO11-12. 413 414 Hand Sample Description: This xenolith has weak to no banding. It is dominantly 415 composed of quartz and plagioclase feldspar. Mafic minerals are also present, and are 416 probably pyroxene. It is a granulite with granoblastic texture. Crystals are less than .5 cm 417 in length. This sample is too small for a thin section, but large enough for analysis. 418 419 420 421

127

CRMO11-14 : Granulite 422 423 Geologic background: 424 CRMO11-14 is a small (6 x3 cm) banded crustal xenolith found in a loose piece of 425 vesiculated basalt in the Grassy Flow at Craters of the Moon NM and P. It was found 426 embedded in basalt. The exact sampling location is 0287480 E 4809908 N. 427 428 Hand Sample Description: 429 CRMO11-14 is a felsic granulite xenolith with mm bands of mafic minerals every 1- 430 1.5cm. It is fresh, not friable. Major mineralogy includes quartz, plagioclase and a mafic 431 that is most likely a pyroxene. Crystal size is very small, <1mm. Sample is too small for a 432 thin section. 433 434 435 CRMO11-15 : Charnokite 436 437 Geologic background: CRMO11-15 is a very large (15x10cm) banded crustal xenolith 438 found in the Grassy Flow at Craters of the Moon NM and P. It was found embedded in 439 basalt. The exact sampling location is 0287691 E 4809800 N. 440 441 Hand Sample Description: 442 Xenolith with alternating mafic and felsic bands. Felsic bands 1-3 cm thick. Mafic bands 443 are <1 to 1 cm thick. Iron weathering around edge of xenolith is present. It is easy to 444 break crystal off with a fingernail. Fractures across bands are present. Airspace where 445 crystals have fallen out are easily seen with the naked eye. 446 447 Mineralogy: 448 Quartz (65%) – Grains are subrounded with irregular boundaries. Interference colors are 449 gray to white to first order yellow. Ribbons are present, orientated parallel to each other. 450 Individual grains are less elongated, and randomly oriented. Average grain size is .5mm. 451 452 Plagioclase (24%) – Grains are subangular. Multiple lenticular deformation twinning is 453 present. Grains are randomly oriented. Average grain size is .5mm. 454 455 Glass pockets with plagioclase (9%) – Elongated pockets and strings oriented to fabric. 456 Glass and plagioclase are dominant. Minerals with second order interference colors are 457 identified in crossed polars, but are two small to identify. They are possibly olivine. 458 459 Orthopyroxene (2%) – Grains are subrounded, fractured, and partially dissolved. In plain 460 light, grain changes from pale green to light pink with stage rotation. 461 462 Accessory Mineralogy: 463 Zircon- Polygonal zircon is found as inclusion in quartz. A larger grain (.1mm) is 464 identified between quartz and feldspar grains, and is rounded. 465 466

128

Texture: 467 Sample CRMO11-015 is a medium grained rock with a granoblastic texture. Finer 468 grained bands of mafic material occur in <1mm layers. Mafic bands and quartz ribbons 469 are parallel to each other forming a fabric. Ribbons of quartz indicate high-grade 470 metamorphism. Quarts grains have serrated boundaries, and many small, rounded 471 subgrains most likely formed from boundary migration are present, indicating dynamic 472 recrystalization. 473 474 475 476 CRMO11-16 : Charnokite 477 478

479 Figure A10 Crossed polar (left) and plain polarized light (right) images of 480 CRMO11-16 481 482 Geologic background: CRMO11-16 is a gneiss crustal xenolith found in the Grassy 483 Flow at Craters of the Moon NM and P. It was found south of CRMO11-15, loose in Aa. 484 485 Hand Sample Description: 486 This sample is a weakly banded granulite alternating white and black bands. Feldspar is 487 weathered brown throughout. Orange iron weathering is present in patches. Rock can be 488 broken in hands with a hammer easily, but does not crumble in hands. 489 490 Mineralogy: 491 Quartz (57%) – Grains are subrounded with irregular boundaries. Interference colors are 492 gray to white to first order yellow. Ribbons are present, orientated parallel to each other. 493 Individual grains are less elongated, and randomly oriented. Average grain size is .5mm 494 to 1mm. 495 496 Plagioclase (25%) – Grains are subangular. Multiple lenticular deformation twinning is 497 present. Grains are randomly oriented. Average grain size is .5mm. 498 499

129

Opaques (10%) – Weak layers of elongated pockets of crystals and individual crystals 500 oriented parallel to layering. 501 502 Orthopyroxene (8%) – Grains are subrounded and fractured. In plain light, grain changes 503 from pale green to light pink with stage rotation. Grains are partially dissolved to be 504 elongated parallel to layering 505 506 Accessory Mineralogy: 507 Zircon- Polygonal zircon is found as inclusion in quartz and plagioclase. 508 509 Texture: Sample CRMO11-016 is a coarse grained rock of mainly quartz and plagioclase 510 with <1mm bands of find grained mafic material. Grains are granoblasitc. Mafic bands 511 and quartz ribbons are parallel to each other forming a gniessosity. Ribbons of quartz 512 indicate high grade metamorphism. 513 514 515 516 CRMO11-17 : Charnokite 517 518

519 Figure A11 Crossed polar (left) and plain polarized light (right) images of 520 CRMO11-17 521 522 Geologic background: CRMO11-17 is a gneissic crustal xenolith found in the Grassy 523 Flow at Craters of the Moon NM and P. The exact sampling location was 0287550 E 524 4809904 N. 525 526 Hand Sample Description: 527 This sample is a weakly banded granulite. Generally, the sample has blotches of black, 528 orange/brown, and white. Feldspar is weathered brown in patches. Rock can be broken in 529 hands with a hammer easily, but does not crumble in hands. Individual crystals fall out 530 easily. Airspace from weathered out crystals is seen with naked eye. 531 532 Mineralogy: 533

130

Plagioclase (40%) – Grains are subangular. Multiple lenticular deformation twinning is 534 present. Grains are randomly oriented. Average grain size is .75mm, although larger 535 grains up to 4mm are present as well. 536 537 Quartz (35%) – Grains are subrounded with irregular boundaries. Interference colors are 538 gray to white to first order yellow. Ribbons are present, orientated parallel to each other. 539 Individual grains are randomly oriented, but packed together parallel to ribbons. Average 540 grain size is .5mm to 1mm. 541 542 Opaques (10%) – Interspersed grains are grouped to create a weak layering. Some grains 543 are elongated pockets. 544 545 Orthopyroxene (15%) – Grains are subrounded and fractured. In plain light, grain 546 changes from pale green to light pink with stage rotation. Grains are partially dissolved to 547 be elongated parallel to layering. Average grain size is 1mm. 548 549 Accessory Mineralogy: 550 Zircon- Rounded zircon is found as inclusion in quartz. 551 552 Texture: 553 Sample CRMO11-017 is medium grained and granoblastic. Grains are equigranular, but 554 form aggregates that are elongated and parallel to compositional banding. Felsic bands 555 are composed of quartz and plagioclase and mafic bands are composed of orthopyroxene 556 and opaques. Mafic minerals and quartz ribbons are elongated and/or oriented parallel to 557 compositional banding as well. This forms a weak fabric. 558 559 560 CRMO11-18 : Granulite 561 562

563 Figure A12 Crossed polar (left) and plain polarized light (right) images of 564 CRMO11-18 565 566

131

Geologic Background: CRMO11-18 is a crustal xenolith found in the Grassy Flow at 567 Craters of the Moon NM and P. 568 569 Hand Sample Description: 570 In general, the sample is a brownish white color. It is almost banded, and looks like a 571 granite that has undergone metamorphism. Streaks of black and white are layered on each 572 other, but not continuous to be defined as banded. Alteration in the form staining is 573 present. 574 575 Mineralogy: 576 Quartz (47%) - Grains are subrounded with irregular boundaries. Interference colors are 577 gray to white to first order yellow. Ribbons are present, orientated parallel to each other. 578 Individual grains are randomly oriented, but packed together parallel to ribbons. Average 579 grain size is .5mm to 1mm. 580 581 Plagioclase (40%) – Grains are subrounded with irregular boundaries. Grains exhibit 582 multiple lenticular deformation lamellae. Average grain size is .5mm. 583 584 Opaques (8%) – Grains are both rounded and angular, and are oriented parallel to quartz 585 ribbons. They are grouped to form weak compositional layering, with ~2mm separating 586 each layer. 587 588 Texture: Sample CRMO11-18 is medium grained. Opaque grains are grouped together 589 to form compositional layering. Ribbons of quartz and aggregates of quartz and feldspar 590 are elongated parallel to this layering. Grains have been weathered, creating space 591 between many of the grains. 592 593 Accessory Minerals: 594 Zircon- Grains are found as inclusions in quartz as well as independent grains. 595 596 597 CRMO11-19 : Granite 598 599

600

132

Figure A13 Crossed polar (left) and plain polarized light (right) images of 601 CRMO11-19 602 603 Geologic Background: CRMO11-19 is a crustal xenolith sampled from the Grass Flow 604 at Craters of the Moon NM and P. The exact sampling location is 0287513 E 4809946 N. 605 606 Hand Sample Description: 607 Sample is overall white, with black blotches of amphibole throughout. Crystals are large 608 and angular, up to a cm in size. Iron staining is present, especially near the edges of the 609 xenolith. 610 611 612 Mineralogy: 613 Plagioclase (53%) Crystals are subangular, cloudy and highly fractured. Subgrains are 614 common, as well as intergrowths. Multiple lenticular deformation lamellae are present; 615 some lamellae are kinked. Average crystal size is 3mm, but can be as large as a cm. 616 617 Quartz (40%) – Crystals are subangular and fractured. Quartz veins composed of rounded 618 grains are .1mm in size and randomly oriented throughout rock. Average grain size is 619 2mm, but can be up to a cm in size. 620 621 Opaques (5%) 622 623 Amphibole (2%) Crystals are angular and green. Crystals range up to a cm in size. 624 625 Accessory Minerals: none 626 627 Texture: Sample CRMO11-19 is composed of very coarse grains. Course grains can be 628 interlocking or can be separated by fine grained aggregates. Grains are randomly 629 oriented. Many of the large grains are highly fractured. Grain boundaries are irregular. 630

133

A3: Thin section descriptions for Square Mountain samples. All GPS coordinates 631 for Square Mountain samples are in 11T. 632 633

SM10-A3 : Charnokite 634 635

636 Figure A14: Crossed polar (left) and plain polarized light (right) images of SM10-A3 637 638 Geologic Setting 639 SM10-A3 is from a xenolith within Square Mountain Basalt at Square Mountain, 640 Fairfield, ID. The exact sampling location is 4806446 E 0702003N in 11T 641 642 Hand Sample Description: 643 Overall, this sample is a yellow-whitish color with streaks of dark grey every few 644 centimeters. The whitish area is composed of quartz and plagioclase, and the dark grey 645 streaks are composed of quartz aggregates and scarce pyroxene. 646 647 Mineralogy 648 Quartz (35%) - Grains are subrounded to rounded with subgrains. Grain color is gray to 649 white to first order yellow birefringence in crossed polars. Grain boundaries are partially 650 melted and boundaries between grains exhibit bulging grain boundary migration. 651 Average size .7mm. 652 653 Feldspar (31%) - Grains are subrounded with glass infiltrated grain boundaries, clear in 654 plain light. Lenticular deformation twinning and tartan twinning is visible is in crossed 655 polars, indicating both plagioclase and K-feldspar are present. 656 657 Pyroxene (4%) – Grains are yellow to brown in plain polarized light and been dissolved 658 to a great extent. 659 660 Basalt melt (30%) – Between xenolith grains is a fine grained mass of glass, feldspar, and 661 mafic minerals 662 663 Accessory mineralogy 664

134

Zircon- Grains are found as inclusions in quartz and feldspar grains and free floating in 665 the melt. Zircons are both euheudral and anhedral. 666 667 Rutile- Grains are found as inclusions in quartz and free floating in the melt. 668 669 Texture: 670 Sample SM10-A3 is bimodal in grain size: grains are fine grained and medium grained. 671 Fine grains are in a glassy matrix. In hand sample and outcrop, it is evident the fine 672 grains and glass are part of the Square Mountain Basalt, the host rock. Medium size 673 grains (those part of the xenolith) are not oriented, and are equigranular. Boundaries are 674 irregular and smooth, but not rounded. 675 676 677 678 SM10-C1: Gabbro 679

680 Figure A15: Crossed polar (left) and plain polarized light (right) images of SM10-C1 681 682 Geologic Setting 683 SM10-C1 is a xenolith within the Square Mountain Basalt at Square Mountain, Fairfield, 684 ID. Its exact location is 0702276 N 4806066 E. 685 686 Hand Sample Description 687 This sample is dark greyish-blue and very friable. Plagioclase and olivine grains are 688 obvious, and can range up to a cm in size. 689 690 Mineralogy 691 Plagioclase (65%) – Grains are anhedral. Lenticular deformation twinning and step 692 growth twinning are visible in crossed polars. 693 694 Orthoclase (20%) – Grains are pleichroic and anhedral. They are also found as inclusions 695 in feldspar. 696 697 Olivine (9%) – Found as centers of orthoclase growth. Has weathered to itingsite at grain 698 edges. 699

135

700 Opaque minerals (3%) – Inclusions in feldspar oriented along cleavage and larger 701 anhedral grains in orthoclase. 702 703 Lithic Fragments (3%)- quartz, feldspar, biotite, amphiboles, pyroxene and oxides 704 705 Accessory Mineralogy: 706 none 707 708 Texture: 709 Sample SM10-C1 is coarse grained. Grains are euhedral with irregular boundaries. 710 Olivine is always surrounded by orthopyroxene, suggesting olivine mineralization started 711 at a high temperature and was taken over by pyroxene as the magma cooled. All grains 712 are fractured, and some fractures are in-filled with melt. 713 714 715 716 SM10-C2 : Charnokite 717 718

719 Figure A16 Crossed polar (left) and plain polarized light (right) images of SM10-C2 720 721 Geologic Setting: 722 SM10-C2 is a crustal xenolith found in the Square Mountain Basalt in Fairfield Idaho. It 723 was found about 50 feet east of SM10-C1. 724 725 Hand Sample Description: 726 This sample is very bright white, with streaks of reddish-brown where basalt has 727 infiltrated the xenolith. Speckled throughout are dark mm size pyroxenes. 728 729 Mineralogy: 730 Quartz (80%) - Grains are in-equigranular, interlobate and subgranular. Grain color in 731 crossed polars range from gray to first order yellow. Grains exhibit undulose extinction. 732 733 Feldspar (8%) – Both plagioclase (80%) and microcline (20%) are present. Plagioclase 734 exhibit lenticular deformation twinning. 735

136

736 Melt (10%) – Composed of glass and needle shaped minerals. Almost all grain 737 boundaries are partially melted. Alternating bands of high melt concentration are on a 1-3 738 cm scale. 739 740 Orthopyroxene (2%) – Small grains (.5mm) have been greatly dissolved by melt. 741 742 Accessory Mineralogy: 743 Zircon 744 745 Texture: 746 This sample is medium to coarse grained. It has a weak fabric composed of elongated 747 grains and quartz ribbons. Bands of basalt melt have infiltrated the rock parallel to this 748 fabric. Bands of melt are 1-3 cm thick. Quartz grains have very irregular boundaries. 749 Many boundaries have been melted, however those that have not exhibit grain boundary 750 migration. Grains are anhedral. 751 752 753 754 SM10-C3: Charnokite 755 756

757 Figure A17 Crossed polar (left) and plain polarized light (right) images of SM10-C3 758 759 Geologic Setting: 760 SM10-C3 is a crustal xenolith found in the Square Mountain Basalt in Fairfield Idaho. It 761 was found about 50 feet east of SM10-C1. 762 763 Hand Sample Description: 764 This samples is lightly banded on a cm scale. Bands alternate between white and medium 765 grey. Millimeter size holes are common throughout where minerals have weathered out. 766 767 Mineralogy: 768 Quartz (55%) - Grains are inequigranular and interlobate. Grains exhibit subgranular and 769 deformation lamelle. Grain color in crossed polars range from gray to first order yellow 770

137 and exhibit undulose extinction. Average grain size ranges from .25 to 1.5m. Smaller 771 grains exist between the boundaries of larger grains. 772 773 Plagioclase (10%) - Grains exhibit lenticular deformation twinning. 774 775 Microcline (20%) 776 777 Melt (4%) – Composed of glass and needle shaped minerals. Zones of melted grain 778 boundaries are elongated in the orientation of deformation. 779 780 Orthopyroxene (1%) 781 782 Accessory Mineralogy: 783 None 784 785 Texture: 786 This sample is mainly quartz and feldspar grains that are elongated in the same 787 orientation. Boundaries of grains are irregular because they re-melted and/or 788 recrystallized. Zones of melting occur on a centimeter scale, and are elongated in the 789 same orientation as the grains. Grain boundaries are irregular and bulging. 790 791 792 793 SM10-C4 : Granite 794 795

796 Figure A18 Crossed polar (left) and plain polarized light (right) images of SM10-C4 797 798 Geologic Setting: 799 SM10-C4 is a crustal xenolith found in the Square Mountain Basalt in Fairfield Idaho. It 800 was found about 50 feet from SM10-C1. 801 802 Hand Sample Description: 803 Overall, this sample is medium grey. The xenolith is lighter grey, but basalt has 804 infiltrated the rock. This xenoliths is very solid and fresh looking. 805

138

806 Mineralogy: 807 808 Quartz (25%) - Grains are subangular and fractured. Grain color in crossed polars range 809 from gray to first order yellow and exhibit planar extinction. Grain boundaries have not 810 been partially melted. Average grain size ranges from 1 - 3mm. 811 812 Plagioclase (30% ) - Grains exhibit lenticular deformation twinning. Grain boundaries are 813 partially melted. 814 815 Microcline (35%) – Grains exhibit well developed tartan twinning. Grain boundaries are 816 partially melted. Avg grain size is 1 – 3mm. 817 818 Melt (10%) – Composed of glass and needle shaped minerals, with strands of quartz 819 formation. 820 821 Accessory Mineralogy: 822 Large zircons (.2mm) are found as inclusions in feldspar. 823 824 Texture: 825 SM10-C4 is composed very coarse grains held in melt. Grain boundaries are irregular 826 from partial melting. Quartz grains are composed of subgrains indicating metamorphism. 827 828 829

139

A4: Descriptions of House Mountain samples. 830 831 832 HM11-01 : Tonalite Orthogneiss/Charnokite 833 834 Hand Sample Description: 835 Generally, the sample is whitish grey. Quartz, feldspar, and orthopyroxene are present. 836 Banding of alternating mafic and felsic concentrations occur on a mm scale. This sample 837 is from a section of alternating tonalite orthogneiss and amphibolite gneiss. The 838 amphibolite gneiss was also sampled, but proved not to have sufficient zircons to 839 analyze. 840 841 842 843 HM11-06 : Amphibolite Paragneiss 844 845 Hand Sample Description: 846 Generally, the rock is brownish orange, and is peraluminous as made evident by abundant 847 muscovite. Elongate quartz crystals, feldspar, muscovite, and amphibole create a visible 848 lamination. Feldspar has weathered orange, and iron staining is obvious. Fresh breaks in 849 the rock reveal a greenish hue. This lithology is found sitting structurally above the 850 granite orthogneiss and tonalite gneiss. 851

140

APPENDIX B

Cathodoluminescence Images with Laser Spots

1 2 3

141

B1: Cathodoluminescence Images of Zircons from Spencer-Kilgore of from Images Zircons SamplesB1: Cathodoluminescence 142

4

5

6

143

7 8 9 10

144

11

145

12 13 14

146

B2: Cathodoluminescence imagesof of from B2: the Moon zircons Craters Cathodoluminescence samples 147

15 16 17 18 19 20 21 22 23

148

24 25 26 27

28

149

150

29

151

30 31 32

33

152

153

34

35

154

155

156

157

1 2 3 4 5

158

6 7 8 9 10 11 12 13

159

B3: Cathodoluminescence images of zircons from Square Mountain of from samplesimages zircons B3: Cathodoluminescence

14 15 16 17

160

161

18 19 20

21

162

22

163

164

B4: Cathodoluminescence images of zircons from House Mountain samples

165

166

APPENDIX C 1 2 U/Pb Geochronology 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

167

27 19 20 20 22 21 33 14 17 20 21 27 11 11 26 22 40 26 12 100

% 8 2 8 9 9 63 69 97 67 51 42 48 58 93 85 53 81 58 71 81 97 73 80 44 78 ±2s 167 420 111 107

2 11 2785 3329 2938 2912 2897 2698 2714 2356 2874 2790 3175 2688 2630 2948 3475 3387 3324 3325 3266 2794 2843 2202 2541 2878

206Pb*

25 31 37 42 94 37 32 24 51 23 26 54 46 27 35 23 29 36 43 34 36 30 54 40 ±2s 233 were less than discordant, 30% were

(Ma) 238U* (Ma) disc.

63 991 3257 3470 3264 3245 3238 3049 3042 2873 3092 3054 3205 2961 3454 3625 3541 3515 3493 3456 3239 3215 2842 2957 3069 235U

207Pb* 2

24 42 22 38 37 19 36 18 22 58 43 24 30 13 19 30 33 23 21 33 39 38 ±2s 101 584 235 spots with discordance less 30%. than spots with discordance bold and italics bold and

3562 3552 3470 3458 3456 3372 3290 3259 3237 3233 3223 3202 3194 3763 3709 3629 3625 3592 3568 3528 3457 3334 3267 3254 3197 error 207Pb* ±2s averages. Spots in (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 23.294 3.54 0.5426 3.20 0.90 23.723 3.19 29.485 0.5403 3.80 2.77 0.6760 23.885 0.87 2.66 4.34 23.430 0.70 0.5774 9.68 4.11 0.5710 23.265 0.95 7.14 3.75 0.74 0.5675 2.85 0.76 19.152 3.32 0.5198 2.33 0.70 19.243 2.41 22.483 0.5416 2.70 18.030 2.12 0.6365 5.61 0.88 2.32 0.5173 0.86 4.22 0.75 34.525 3.57 0.7144 3.00 3 0.84 29.081 4.34 0.6598 3.78 0.87 19.013 24.13 0.5236 18.96 0.79 0.064 40.80 0.0016 16.31 0.40 27 940 279 3958 3648 4339 4497 3274 7438 7855 2429 3938 1053 910117 0.71 0.14 56460 0.61 15.940 2.46 607985 20.019 0.4413 5.30 2.14 0.5618 0.87 4.79 0.90 0.60 61735 17.471 4.77 0.5038 3.93 0.82 0.02 1.57 222369 0.95 29.024 0.84 2.74 60470 0.5798 0.76 31.688 14455 2.24 0.56 2.36 30.873 0.82 40214 0.10 0.6912 2.99 30.204 0.68 2.20 0.6748 3.66 0.93 2.73 0.6749 0.71 0.91 3.10 0.56 0.85 0.80 0.79 16961 22.729 0.26 3.75 0.5542 19643 0.45 3.48 15.432 0.09 0.93 3.18 0.4073 0.53 2.37 0.74 13121 0.10 17.400 5.67 0.57 0.4832 0.65 5.10 0.90 25176 19.553 4.10 0.5627 3.35 0.82 0.79 1.31

U Th/U 206Pb 207Pb* 36 58 543 701 123 325 258 384 216 362 185 328 285 453 224 435 346 398 484 308 144 200 ppm ppm 204Pb 235U* (%) 2754 1511 1006 Ratios Isotope Corrected (Ma) Apparent Ages were used in the calculation of of inzircon used event growth the calculation were

bold

01 Spots in more did not because have the sample to calculate not used averages 5 than but were on Paleogene not filter used was a dates. as Discordance Spot SK11- Paleoarchean SK11S-01_36 SK11S-01_38 SK11S-01_46 SK11S-01_41 SK11-01M_129 SK11-01M_143 SK11-01L_231 SK11-01M_142 SK11S-01_30 SK11-01L_230 SK11-01M_237 SK11S-01_39 SK11S-01_32 SK11-01L_196 SK11-01M_137 Mesoarchean 2 SK11-01M_136 SK11-01M_148 SK11S-01_31 SK11-01M_126A SK11-01L_207 SK11S-01_48 SK11-01L_200 SK11-01M_145 SK11-01M_135 SK11-01M_126B

Table C1: Corrected Isotope Ratios and Apparent Ages for Spencer Kilgore for Ages Apparent Ratios and C1: Corrected Table Isotope

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

168

28 26 23 28 13 15 15 17 26 19 35 17 33 16 30 15 25 40 33 22 21 16 17 85

3 % 1 3 7 2 0 5 6 9

95 71 87 63 80 68 63 67 57 46 70 79 75 35 57 54 24 24 42 57 87 91 68 51 92 67 74 21 86 76 ±2s 122 733 128

520 2456 3194 3086 2996 3095 2464 2524 2380 3102 2746 2962 2676 2907 2652 2539 2304 2465 2056 2507 2100 2514 2136 2483 2627 2475 2038 3030 2190 2438 2454 2544 2481

206Pb*

55 31 38 29 42 39 32 37 29 70 21 35 41 45 20 32 34 20 20 24 32 53 48 34 32 62 51 36 43 12 43 ±2s 402 193 (Ma) 238U* (Ma) disc.

2880 3184 3137 3099 3133 2862 2874 2791 3098 2945 3031 2896 2987 2867 2782 2660 2732 2529 2746 2544 2729 2541 1242 2689 2754 2854 2631 3078 2672 2758 2757 2770 2720 235U

207Pb*

53 22 29 24 46 38 24 31 30 77 17 30 43 52 18 32 32 29 26 24 23 60 45 19 27 57 35 28 44 14 27 ±2s 385 360

881 3192 3177 3170 3167 3158 3156 3130 3104 3095 3084 3077 3053 3042 3021 2942 2935 2933 2927 2920 2892 2882 2848 2848 3133 3126 3109 3061 3001 2988 2963 2939 2902 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 16.060 5.73 22.002 0.4638 3.16 20.967 4.63 0.6413 3.96 20.162 0.81 2.84 0.6140 3.01 20.881 0.90 3.53 0.5915 4.34 0.89 2.61 0.6162 0.87 3.24 15.953 0.75 3.36 0.4791 3.00 14.628 0.89 3.89 20.128 0.4466 2.98 17.179 3.37 0.6180 7.28 18.790 0.87 2.30 0.5311 2.20 0.77 5.44 0.5832 0.75 1.94 17.953 0.88 4.30 15.829 0.5697 4.73 3.38 0.5089 0.79 3.46 0.73 12.727 2.13 0.4297 1.82 11.065 0.86 3.63 13.947 0.3757 2.13 11.246 3.04 0.4754 2.09 0.84 1.15 0.3850 0.54 1.34 0.64 11.211 3.46 0.3927 13.129 3.15 5.59 14.060 0.91 0.4698 5.07 4.23 0.5031 0.76 4.24 0.84 2.398 26.88 0.0841 15.18 0.56 2 19.728 6.42 0.6001 5.31 0.83 14.482 42.33 0.4828 34.93 0.83 93 395 860 6308 2937 2564 1064 2201 6168 8508 2914 3451 6103 6677 4070 5927 1909 1763 4803 9481 1854 2131

1.44 0.07 994828 15.757 4.09 0.4654 3.31 0.25 0.81 0.13 138837 16.325 3.69 0.5146 3.18 0.86 0.52 0.15 17413 13.734 3.42 0.4658 2.80 0.33 0.82 25284 13.696 2.49 0.4770 2.02 0.81 0.30 0.15 0.51 58289 0.45 15.617 3.51 18682 0.4680 12.351 3.30 3.37 0.15 0.94 0.3719 0.99 2.90 0.35 0.86 27367 12.902 5.41 0.12 0.4045 0.15 4.96 18145 0.09 0.92 14.123 10051 3.75 14.115 0.23 0.4596 4.55 3.32 0.4633 13883 0.89 3.62 14.305 0.21 0.80 1.31 0.63 0.4839 0.77 1.00 0.76 13487 13.561 0.23 4.50 0.4693 4.17 0.93 0.67 0.81 1.01 1.10 0.67 0.70 0.70 0.51 2.64 4.63 U Th/U 206Pb 207Pb* 88 53 64 48 63 74 75 65 88 42 23 581 925 453 801 238 113 556 722 708 334 298 186 708 154 583 ppm ppm 204Pb 235U* (%) 3806 1003 1450 1071 1226 1150 Ratios Isotope Corrected (Ma) Apparent Ages -01L_211 11 Spot SK11-01M_141 SK11-01L_203 SK11-01L_204 SK11-01L_209 SK11-01M_139 SK11-01M_131 SK11-01S_259 SK11-01S_258 SK11-01L_208 SK11-01M_132 SK11-01M_235 SK11-01M_128 SK11-01M_238 SK11-01L_195 SK11-01S_252 SK11-01M_138 SK11-01L_202B SK11-01L_202A SK11-01M_147 SK11-01M_127 SK11-01M_149 SK11-01S_257 SK SK11-01M_146 SK11S-01_44 SK11-01L_210 SK11S-01_35 SK11-01M_125 Neoarchean SK11S-01_29 SK11-01S_254 SK11-01M_140 SK11-01M_144 5 SK11-01M_150 1.81

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

169

98 97 21 24 98 52 12 50 30 27 40 12 14 12 47 11 13 32 24 32 44 42 28 31 44 19

% %

4

80 75 33 70 59 81 82 54 63 87 33 87 57 55 55 48 47 46 56 83 64 29 ±2s ±2s 108 166

8 6 3 79 94 84 2327 2254 1520 3082 1567 2097 2152 1799 2486 2411 2994 1532 2982 2728 2494 2025 2206 1993 1665 1708 2019 1935 1557 2818 206Pb* 206Pb*

55 40 40 47 16 35 34 48 45 74 37 85 37 48 29 44 38 31 32 27 28 37 46 50 52 32 84 ±2s ±2s (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

262 303 315 2609 2573 2153 2927 2176 2480 2500 2300 2641 2590 2839 2067 3166 2781 2672 2424 2509 2397 2193 2218 2361 2295 2038 3129 235U 235U

207Pb* 207Pb*

16 50 50 34 54 29 34 41 57 37 43 70 51 33 24 24 58 70 49 73 23 44 43 ±2s ±2s 120 363 227 108

2836 2835 2827 2822 2813 2811 2781 2761 2733 2731 2653 2600 2568 3285 2829 2820 2809 2796 2779 2763 2730 2634 2568 3336 2762 2731 2671 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 9.602 3.10 0.3622 2.75 0.89 9.229 5.43 0.3678 4.78 0.88 6.660 3.26 0.2684 2.39 0.73 12.063 4.22 11.606 0.4347 4.98 4.11 0.4186 7.338 0.97 3.94 16.866 3.91 0.79 3.54 0.2660 0.6131 7.527 2.45 2.86 0.63 5.39 0.81 0.2752 4.25 0.79 12.474 9.00 11.814 0.4707 3.99 5.24 0.4535 15.380 0.58 3.11 5.04 0.78 0.5912 3.65 0.72 21.607 4.57 0.5883 3.66 0.80 7.671 4.12 0.2948 3.15 0.76 0.364 5.73 0.0132 14.469 3.81 0.67 4.03 0.5268 2.55 12.890 0.63 3.32 10.729 0.4725 7.99 2.66 0.3964 0.80 4.50 0.56 7.888 5.13 0.3033 8.586 3.72 0.73 5.69 0.3500 6.443 3.81 0.67 3.60 0.2732 2.12 0.59 20.801 8.64 0.5482 7.26 0.84 0.295 23.83 0.347 0.0123 15.23 9.66 0.0147 0.41 6.92 0.45 48 87 67 50 28 118 308 966 237 942 453 729 366 4778 4113 1899 1850 1232 7210 5152 1142 12 2198 2053 173 299

Corrected Isotope Ratios Isotope Corrected (Ma) Apparent Ages 0.66 0.11 38776 10.503 4.86 0.3844 4.52 0.93 0.11 0.33 0.13 0.29 0.18 12350 0.94 9.888 35150 10.830 3.51 2.93 0.3691 0.4081 3.17 2.55 0.90 0.87 0.86 1.00 0.43 0.97 0.70 0.98 2.19 0.96 18129 8.631 4.03 2.33 0.3218 1.14 3.44 0.57 0.86 5.01 3.33 1.45 0.22 0.21 2.53 0.94 2.22

U Th/U 206Pb 207Pb* 78 42 52 44 33 38 53 32 53 27 55 52 17 23 95 80 76 34 45 76 331 477 370 753 410 ppm ppm 204Pb 235U* (%) ppm 204Pb 235U* (%) 1773 1998 Ratios Isotope Corrected (Ma) Apparent Ages

01_45 02 Spot SK11S-01_28 SK11S-01_49 SK11-01L_197 SK11S-01_42 SK11S-01_33 SK11S-01_34 SK11-01L_206 SK11-01M_130 SK11S-01_37 SK11-01M_236A SK11-01L_201 SK11S-01_40 SK11-01S_255 SK11-01S_256 SK11-01M_236B SK11S-01_47 SK11-01L_205 SK11-01M_133 SK11-01L_198 SK11-01M_234 SK11S- SK11-01S_253 SK11S-01_43A SK11S-01_43B SK11-01L_199 Spot number SK11- U Mesoarchean 1 SK11-02M_240 Th/U SK11S-02_57 206Pb 207Pb*

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

170

12 12 17 23 13 12 14 15 21 16 16 17 27 11 31 15 15 21 19 10 9 3 % 8 4 0 8 7 7 1 7 5 7 5 36 77 50 69 71 51 56 70 42 34 92 68 50 37 70 56 50 80 42 89 89 79 53 49 28 40 ±2s 110 222 109 116 114 146 106

3049 2950 3133 3219 2918 3015 2776 2573 2827 2836 2794 2760 2955 3276 2876 2547 2682 2626 2591 2327 2973 3094 3128 3065 3115 2928 2357 2806 2778 3030 2566 2577 2613

206Pb*

20 38 26 35 52 32 28 31 40 24 19 47 34 24 52 21 36 27 26 53 19 41 42 38 57 70 26 23 63 51 16 26 ±2s 103 (Ma) 238U* (Ma) disc.

27 3178 3133 3194 32 3106 3137 3035 2924 3028 3027 3006 2991 3066 3173 3013 2860 2920 2865 2840 2707 2991 3206 3210 3184 3194 3104 2838 3035 2999 3082 2875 2847 2751 235U 207Pb*

22 36 29 37 40 23 29 30 45 27 20 42 32 25 75 26 24 29 16 15 70 15 36 35 35 52 72 23 17 38 29 16 34 ±2s

2 2 326 3261 3253 3233 3231 3230 3216 3211 3175 3164 3156 3151 3150 3140 3109 3106 3089 3089 3037 3022 3005 3002 3276 3260 3244 3220 3201 3190 3151 3115 3099 3045 2853 0.85 error 207Pb* ±2s 2.31 (%) corr. 206Pb* (Ma) 5344 4.12 0.84 238U 0. 206Pb* ±2s 22.607 4.24 21.873 0.6246 2.06 3.58 0.6047 20.889 0.84 1.49 3.95 0.72 0.5803 22.243 3.24 2.70 22.993 0.82 0.6257 3.58 20.305 2.01 0.6477 5.33 0.74 2.73 0.5725 20.961 0.76 4.69 3.27 18.868 0.88 0.5963 2.92 2.94 0.5383 0.90 2.25 16.802 0.77 3.23 18.725 0.4905 4.19 18.704 2.62 0.5504 2.51 0.81 3.07 0.5527 18.308 0.73 1.83 1.95 0.73 0.5426 1.50 0.77 18.438 10.65 0.5622 15.724 9.56 5.44 16.743 0.90 0.4846 2.24 5.19 0.5160 0.95 1.66 0.74 14.016 2.79 0.4999 1.86 0.67 942 3832 1085 2905 1280 5054 5649 2048 8416 4570 7435 3462 4832 6632 5749 5755 0.16 0.04 25635 0.03 15.796 206519 15.397 3.73 43716 2.82 0.5029 13.387 0.4947 3.26 2.75 2.64 0.87 0.4347 0.94 2.57 0.94 0.24 0.31 129248 22.505 0.36 1.97 0.6161 0.13 40943 1.71 0.45 22.003 0.87 1.04 4.29 30585 0.6088 22.230 0.11 3.67 3.90 0.36 0.86 0.6212 3.21 57934 1.04 0.82 20.265 0.09 5.92 0.37 0.5750 31214 4.92 15.367 344422 1.54 0.83 18.868 7.35 2.72 0.4413 0.5455 2.30 5.76 0.62 0.78 113605 0.43 18.175 2.44 231177 1.88 0.5386 18.025 2.18 4.89 0.89 10307 0.43 19.798 0.20 6.50 0.53 0.6000 43881 0.59 6.03 15.971 0.56 0.93 5.34 0.4890 16144 5.02 15.515 0.94 1.66 0.4915 1.32 0.80 0.99 0.87 1.86 2.37 1.35 1.54 58010 2.41 19.484 3.51 18649 0.5816 21.759 2.88 2.49 0.82 0.6622 1.94 0.78 0.88 U Th/U 206Pb 207Pb* 68 87 47 83 56 38 64 47 355 415 809 218 531 123 181 696 260 494 491 184 181 364 399 155 154 460 171 396 181 ppm ppm 204Pb 235U* (%) 1088 4592 1320 Ratios Isotope Corrected (Ma) Apparent Ages

02_56 Spot SK11S-02_50 SK11-02M_163 SK11S-02_58 SK11-02M_151 SK11-02S_264 SK11-02M_153 SK11-02M_152 SK11-02M_154 SK11-02S_260 SK11-02M_157 SK11S-02_64 SK11S-02_62 SK11-02M_241 SK11S-02_65 SK11S- SK11S-02_52 SK11-02L_213 SK11-02L_212A SK11S-02_54 SK11S-02_56 SK11-02M_155 SK11-02M_162 SK11-02L_212B SK11-02M_156A SK11-02M_158 SK11-02L_215 SK11S-02_53 SK11-02L_214 SK11-02M_160 SK11-02S_261 SK11-02S_263 SK11-02M_156B 54 Neoarchean SK11S-02_61 2.09 106820 18.016 5.48 0.5860 3.36 0.61

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

171

16 10 11 11 32 27 15 22 22 15 4 1 % % 6 6 3 2 9 7 8 6 3 2 5 8 6 1 34 85 31 38 73 42 29 68 66 83 55 73 60 40 52 48 48 35 46 41 44 45 92 96 ±2s ±2s 109 123

2677 2443 2581 2548 2511 2634 1903 2576 3236 3345 3054 3100 2867 3067 3092 3180 3208 3152 3114 2669 3052 2250 2614 2724 3267 2859 206Pb* 206Pb*

21 51 19 22 41 24 32 36 29 41 28 40 27 20 24 23 23 53 18 23 20 28 33 60 44 52 ±2s ±2s (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

2757 2647 2707 2688 2654 2707 2283 3017 3285 3308 3194 3206 3108 3188 3193 3227 3237 3213 3198 3013 3172 2531 2696 2734 3281 3103 235U 235U 207Pb* 207Pb*

24 56 23 25 41 26 50 32 22 43 27 44 17 20 21 21 23 51 19 18 17 32 46 50 44 54 ±2s ±2s

2817 2807 2803 2795 2764 2763 2643 3326 3315 3286 3283 3274 3268 3264 3257 3256 3254 3251 3251 3251 3249 2765 2758 2741 3289 3266 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 5000 2.11 0.60 238U 238U 0. 206Pb* 206Pb* ±2s ±2s .736 .736 2.02 0.6054 1.69 0.84 21 14.112 2.16 0.5147 1.57 0.73 12.556 5.42 13.386 0.4607 2.03 13.121 4.18 0.4925 2.35 0.77 1.45 0.4849 12.647 0.72 1.79 4.33 13.386 0.76 0.4762 2.50 3.52 0.5047 0.81 1.93 8.474 0.77 3.50 0.3435 1.75 0.50 18.516 3.77 24.401 0.4912 2.97 3.19 0.6519 24.990 0.84 2.61 4.22 22.235 0.88 0.6801 2.84 22.515 3.18 0.6059 4.07 20.354 0.75 2.28 0.6174 2.80 0.80 2.97 0.5602 22.086 0.73 2.59 2.07 0.92 0.6093 23.004 1.62 2.32 23.227 0.78 0.6378 2.40 22.677 1.90 0.6449 5.47 0.82 1.91 0.6307 18.436 0.80 4.39 2.38 0.80 0.5130 2.08 0.87 11.098 3.04 0.4176 2.33 13.228 0.77 3.49 24.310 4.54 0.6599 3.59 0.79 20.251 5.39 0.5580 4.15 0.77 0 0 22.214 2.51 0.6154 2.14 0.85 664 821 552 403 439 1908 1357 6212 2237 3688 5390 5748 3157 1968 3395 1324 6465 2178 187 4528 2764 1997 2132 5073 Corrected Isotope Ratios Isotope Corrected (Ma) Apparent Ages 1.00 0.57 0.92 0.53 148266 13.765 6.31 0.5258 5.54 0.88 2.26 1.11 0.82 0.69 1.01 0.90 0.62 1.58 1.59 1.62 1.53 1.83 1.73 2.13 1.86 1.96 3 1.89 1.90 2.31 1.69 2.00 2.26 14239 22.315 1.89 0.6209 1.43 0.76

U Th/U 206Pb 207Pb* 92 89 47 83 60 45 57 59 37 58 71 77 95 53 82 86 76 91 97 85 82 111 113 179 122 100 ppm ppm 204Pb 235U* (%) ppm 204Pb 235U* (%) Ratios Isotope Corrected (Ma) Apparent Ages

02_66 03 Spot SK11S- SK11-02M_239 SK11S-02_55 SK11S-02_63 SK11S-02_51 SK11-02M_161 SK11-02L_216 SK11S-02_60 SK11-02M_159 SK11S-02_59 Spot number SK11- U Mesoarchean 1 SK11-03M_121 Th/U SK11S-03_02 SK11-03S_246 206Pb 207Pb* SK11-03M_104 SK11S-03_19 SK11-03M_102 SK11S-03_24 SK11-03M_115B SK11S-03_06 SK11S-03_10 SK11S-03_23 SK11S-03_17 SK11-03M_100 SK11S-03_15 SK11S-03_20 SK11S-03_25

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

172

14 17 27 28 17 11 12 11 27 46 10 25 10 35 27 16

% 5 7 9 7 1 1 4 2 4 3 9 1 5 1 9 9 4 4 68 95 87 55 64 37 80 64 90 46 75 69 44 54 71 74 86 88 86 42 52 37 58 33 60 78 47 96 58 76 91 ±2s 103 147

56 9 9 3109 2880 3060 2794 2999 2509 3047 2477 3207 3253 3116 3162 299 3115 2762 2936 3134 3499 2965 2903 3207 3070 2470 1894 3120 2983 2561 2970 2974 2246 2476 3064 3051 2748 206Pb*

35 44 44 49 26 35 18 43 30 24 36 29 31 25 33 33 39 41 42 42 20 28 30 27 68 18 27 37 31 54 28 41 59 ±2s (Ma) 238U* (Ma) disc. 43

61 3194 3101 3170 3061 3146 2934 31 2915 3220 3236 3183 3200 3134 3180 3033 3105 3183 3316 3110 3078 3197 3143 2878 2576 3141 3141 2958 3119 3120 2775 2884 3123 3112 2986 235U 207Pb*

37 33 45 35 21 30 16 36 28 41 27 35 25 26 27 39 29 45 36 35 41 18 25 37 25 53 17 25 30 32 50 27 46 74 ±2s

3248 3247 3241 3241 3241 3240 3234 3233 3228 3226 3226 3224 3222 3221 3218 3216 3213 3207 3205 3194 3190 3189 3177 3168 3155 3245 3240 3216 3214 3187 3183 3161 3151 3150 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 22.239 3.61 20.202 0.6197 4.58 2.76 0.5634 21.700 0.76 4.07 4.57 0.89 0.6075 21.151 3.58 2.66 0.78 0.5923 16.983 2.29 3.64 0.86 0.4759 16.650 3.08 4.50 22.836 0.85 0.4684 3.06 23.222 3.87 0.6447 4.38 21.987 0.86 2.52 0.6562 2.50 22.379 0.82 3.54 0.6214 3.73 20.904 0.81 1.85 0.6332 2.97 21.916 0.74 3.02 0.5925 3.22 0.81 2.51 0.6212 0.85 2.79 0.86 25.198 3.98 20.385 0.7208 4.28 2.76 0.5840 22.293 0.69 3.62 4.29 0.85 0.6446 3.40 0.79 16.018 2.98 11.647 0.4670 3.22 2.54 0.3416 21.061 0.85 2.23 2.81 0.69 0.6225 2.33 0.83 20.580 2.82 0.5852 20.591 2.35 3.79 0.83 0.5863 3.26 0.86 14.384 3.22 16.122 0.4168 5.63 2.49 0.4684 0.77 4.67 0.83 17.929 6.17 0.5316 4.07 0.66 329 784 995 658 991 2815 1382 1374 3754 1157 2026 2778 1955 3815 7880 3966 2165 2621 1160 2107 6007 2605 2233 0.11 10872 21.063 7.04 2.45 0.5883 6.18 15442 0.88 17.419 1.88 0.4878 1.55 0.82 2.36 0.07 1.61 2.38 30351 2.17 20.665 2.92 13321 0.6084 20.428 2.39 4.28 0.82 0.6053 3.13 0.73 1.81 1.61 1.78 1.90 1.73 17370 19.376 1.76 5.06 1.71 0.5426 1.57 4.53 1662077 21.487 1.82 0.90 1.86 1.86 0.6043 1.97 1.54 2.04 0.83 1.84 2.00 0.99 97610 1.58 18.822 1.94 2.61 48097 2.14 0.5348 20.290 1.96 3.36 188383 1.24 0.75 21.976 0.5770 1.69 3.41 2.28 1.84 0.6261 0.68 16165 2.87 1.55 19.720 0.84 1.30 4.37 10774 1.59 0.5689 21.092 1.97 3.76 2.09 1.57 0.86 0.6101 1.73 0.83 1.82 U Th/U 206Pb 207Pb* 98 91 87 91 65 96 79 84 84 90 72 73 97 85 25 85 80 56 62 80 62 75 57 52 87 44 42 153 103 106 247 108 104 108 ppm ppm 204Pb 235U* (%) Ratios Isotope Corrected (Ma) Apparent Ages Spot SK11-03M_103 SK11-03M_95A SK11-03M_233 SK11-03M_95B SK11-03M_122 SK11-03L_180 SK11-03L_181 SK11-03M_96 SK11-03L_194 SK11-03M_99 SK11-03M_106 SK11-03M_105 SK11S-03_01 SK11-03M_124 SK11-03M_94 SK11-03M_113 SK11-03L_188 SK11-03L_192 SK11-03M_120 SK11S-03_27 SK11S-03_21 SK11-03S_250 SK11S-03_03 SK11-03M_118 SK11-03M_97 SK11S-03_16 SK11-03L_189 SK11-03M_115A SK11-03M_107 SK11S-03_13 SK11-03L_186 SK11-03M_109 SK11-03M_116 SK11-03M_119B

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

173

31 14 28 19 24 17 20 40 46 27 21 30 10 1 4 5 9 % 4 5 3 5 5 9 5 6 1 9 6 2 1 4 42 47 87 67 91 51 48 58 39 49 39 59 43 84 30 45 67 78 60 86 47 70 44 45 52 48 ±2s 100 100 206 135 108

2318 2786 3038 2407 2639 3003 2487 3079 3038 2960 2996 2957 2819 2589 2816 2446 1867 1683 2732 1935 3000 3088 2891 2884 2565 2900 3060 2136 2623 2778 2658

206Pb*

25 42 44 55 52 24 31 49 27 18 48 26 22 42 23 51 24 38 57 33 32 65 48 53 26 35 32 32 28 31 ±2s 110 (Ma) 238U* (Ma) disc.

2788 3001 3102 2827 2932 3082 2846 3098 3081 3037 3050 3033 2954 2826 2879 2715 2383 2273 2795 2230 3087 3109 3025 3015 2869 2992 3035 2539 2759 2789 2712 235U

207Pb*

23 61 43 74 55 21 35 48 22 15 44 26 25 56 23 56 30 46 83 16 35 54 55 35 29 36 39 43 30 40 ±2s 114

3148 3148 3143 3142 3140 3133 3110 3110 3109 3089 3086 3084 3047 3000 2923 2922 2859 2856 2513 3144 3123 3116 3104 3090 3055 3018 2879 2861 2841 2797 2753 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 27 1.65 0.86 238U 0.5926 3.27 0.95 206Pb* ±2s 3.42 14.570 2.59 0.4326 19.910 2.15 20.211 0.83 4.51 0.6021 3.61 19.801 0.80 2.51 0.5933 2.13 15.490 0.85 3.20 20.128 0.4709 5.10 19.787 2.34 0.6122 2.77 0.73 4.09 0.6020 0.80 2.41 18.909 0.87 1.91 0.58 18.829 2.65 0.5820 17.342 2.08 2.30 0.79 0.5486 15.168 1.71 4.43 0.74 0.4942 16.038 2.75 2.37 13.499 0.62 0.5478 5.39 1.90 0.4615 0.80 4.11 9.449 0.76 8.380 2.58 0.3358 4.18 1.83 0.2984 0.71 3.07 0.73 7.993 6.36 0.3501 3.99 0.63 20.365 3.27 18.678 0.6144 6.71 2.45 0.5659 0.75 5.79 0.86 18.480 5.03 15.866 0.5642 5.54 3.68 0.4887 0.73 5.08 0.92 18.867 3.65 0.6076 2.87 0.79 11.190 3.42 14.140 0.3928 3.38 2.41 0.5021 0.70 2.09 14.682 0.62 11.62 14.591 0.5277 2.94 13.453 9.27 0.5387 3.27 0.80 2.31 0.5103 0.79 2.20 0.67 706 454 960 469 611 841 603 436 602 661 3590 4759 1639 5048 4295 1442 2957 3144 1030 1920 1296 1367 2452 3080 6113 1239 0.43 2.43 0.71 13366 18.041 2.71 0.5680 2.03 0.75 2.32 1.61 142463 1.82 18.204 1.23 4.38 0.5406 1.99 268219 2.09 1.93 15.192 0.48 13749 1.41 5.73 16.950 0.97 0.4527 5.47 3.32 1.27 0.5059 0.58 1.56 4.22 2.09 0.77 1.38 1.40 1.47 1.53 14467 19.163 2.04 5.02 1.15 0.5917 2.01 4.19 0.83 2.57 1.40 1.38 0.75 1.50 1.38 1.17 0.72 0.60 0.30 U Th/U 206Pb 207Pb* 85 73 86 90 55 97 71 52 59 33 98 65 57 62 55 80 29 87 83 58 47 28 67 80 41 34 29 22 261 104 140 ppm ppm 204Pb 235U* (%) Ratios Isotope Corrected (Ma) Apparent Ages Spot SK11S-03_18 SK11-03M_110A SK11S-03_07 SK11-03M_108 SK11S-03_04 SK11-03M_119A SK11-03L_187 SK11-03M_114 SK11-03S_249 SK11-03L_185 SK11S-03_05 SK11-03L_183 SK11-03M_123 SK11S-03_14 SK11-03L_182 SK11-03M_117 SK11S-03_09 SK11S-03_22 SK11-03M_111 SK11S-03_08 SK11-03M_112 Neoarchean SK11S-03_26 SK11-03M_101A SK11-03L_193 SK11S-03_11 SK11-03L_190 SK11-03L_179 SK11-03M_101B SK11S-03_12 SK11-03L_191 SK11-03M_98

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

174

16 17 15 11 12 23 27 10 27 17 13 17 32 28 25 22 25 17 32 30

1 5 1 8 5 0 6 7 6

% 8 7

76 92 74 78 92 91 66 ±2s 129 144 203 229 174 107 133 197 123 111 143 164 196 134 174 107 184 148 104 118 167 124 143 138

1 1 2776 2839 3048 3248 2837 2926 3083 3182 2906 2609 3029 2475 2905 2462 2951 2686 2790 2663 2226 2313 2861 2919 2601 2676 3063 242 2483 3303 2666 2902 2102

206Pb*

77 65 32 92 47 60 45 36 69 39 76 73 87 65 72 51 85 59 85 45 87 64 82 64 64 55 ±2s 111 122 111 105 102 (Ma) 238U* (Ma) disc.

18 Pb* Pb* 070 3108 3176 3237 3072 3105 3167 3202 3090 2957 3135 2887 30 3065 2865 2935 2980 2914 2677 2716 2931 2920 2998 3020 3164 2880 2859 3191 2925 2991 2531 235U 207

3

38 15 93 33 51 27 34 62 87 35 92 72 84 47 93 42 75 67 90 29 96 57 87 57 43 75 97 ±2s 129 123 123 106

3286 3259 3230 3224 3220 3215 3213 3203 3203 3188 3183 3171 3161 3148 3111 3092 3038 3031 2979 2921 3258 3229 3229 3219 3136 3121 3110 3108 3052 2895 3277 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 23.236 11.42 0.6551 7.95 20.294 0.70 9.47 0.5744 7.41 22.423 0.78 6.19 19.980 11.47 0.6382 0.5696 5.28 20.917 8.43 0.85 3.72 0.73 0.5998 3.06 19.462 0.82 4.01 15.796 0.5694 7.94 19.560 3.33 0.4650 7.56 0.83 5.43 0.5806 0.68 6.04 0.80 16.638 6.80 0.5116 12.964 6.13 7.62 0.90 0.4124 16.929 4.91 8.85 0.64 0.5587 16.739 7.54 6.16 0.85 0.5728 4.55 0.74 11.089 5.89 0.3856 3.65 0.62 410 5670 8829 5718 4933 1569 4061 8387 3675 5805 8538 7157 2780 Corrected Isotope Ratios Isotope Corrected (Ma) Apparent Ages 0.12 74913 0.13 20.339 6.71 38338 0.5534 21.837 6.26 3.25 0.93 0.6045 3.11 0.96 0.15 11197 21.619 4.85 0.07 0.6132 4.38 22847 0.02 0.90 17.397 0.03 4.64 12165 0.4988 16.167 23181 4.30 7.18 18.536 0.93 0.4680 7.95 6.00 0.5383 0.84 5.73 0.31 0.72 11703 17.008 9.11 0.5169 7.45 0.04 0.82 49332 13.509 5.36 0.4316 4.66 0.87 0.15 0.54 11962 0.07 18.580 0.06 8.83 25468 0.5146 19.598 62716 12.67 6.74 21.561 0.76 0.5529 0.13 4.64 9.97 0.6084 0.79 20776 0.35 4.26 16.059 0.92 9.15 0.4559 6.82 0.75 0.11 0.16 0.10 34257 15.712 30882 0.08 6.75 22.156 0.41 0.4700 8.47 56473 0.27 5.72 0.6692 17.813 18194 0.17 0.85 10.94 6.46 16.826 0.5416 0.13 0.76 6.71 19678 8.67 0.5122 18.033 0.79 0.13 5.67 6.68 0.84 0.5686 6.12 0.92 0.78 2.17 1.67 1.68 0.83 1.10 3.01 2 2 0.12 30377 18.162 10.55 0.4970 8.58 0.81

76 73 65 66 62 45 44 97 693 261 608 512 620 302 722 664 897 836 460 459 330 447 575 ppm 204Pb 235U* (%) 1508 2604 1435 1160 1362 1270 1087 1028

07 Spot number SK11- U Mesoarchean 1 SK11-07M_27 Th/U SK11-07S_53 SK11-07M_36 206Pb 207Pb* SK11-07S_54 SK11-07S_41 SK11-07S_58 SK11-07M_35 SK11-07S_49 SK11-07M_30 SK11-07S_51 SK11-07L_87 SK11-07S_40 SK11-07M_25 SK11-07M_21 SK11-07S_45 SK11-07S_48 SK11-07M_20 SK11-07S_50 SK11-07L_94 SK11-07M_24 SK11-07S_56 SK11-07S_47 SK11-07S_46 SK11-07S_38 SK11-07M_31 SK11-07M_28 SK11-07S_52 SK11-07M_26 SK11-07M_29 Neoarchean SK11-07L_93 SK11-07L_86

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

175

sc. 12 17 45 29 27 39 20 28 20 26 21 22 28 28 di

6 3 5 0 3 % % 8 4 5 1 8

79 69 82 76 67 63 61 58 65 68 96 97 ±2s ±2s 160 488 107 118 116 107 159 140 206 143 140 139

2965 2975 2889 2578 2674 2355 2631 2720 2633 2560 1624 2698 1996 2042 1733 2187 1857 2869 2613 2746 2847 2240 1930 2603

206Pb* 206Pb*

74 50 54 36 50 43 35 72 35 51 65 80 60 42 93 87 71 51 73 57 ±2s ±2s 206 111 102 104 (Ma) 238U* (Ma) (Ma) 238U* (Ma) disc.

64 2890 2844 2687 2725 2577 2699 2735 2696 2659 2151 2696 2351 2369 2188 2432 2164 3212 3040 3085 31 2807 2514 2242 3070 235U 235U

207Pb* 207Pb*

40 71 37 56 47 34 89 36 61 75 92 49 91 57 72 68 95 59 ±2s ±2s 111 100 132 102 124 109

2832 2812 2770 2763 2757 2750 2747 2744 2735 2701 2695 2675 2664 2646 2645 3434 3314 3293 2779 2743 2541 2468 3393 3336 error 207Pb* error 207Pb*

±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* .36 0.3339 8.66 0.76 ±2s ±2s 11 16.226 21.58 15.458 0.5864 5.23 20.49 0.95 0.5654 4.61 13.634 0.88 3.85 11.658 0.5140 5.36 13.265 3.14 0.4410 4.52 13.789 0.82 4.14 0.5040 3.67 13.229 0.77 3.51 0.5248 7.67 0.78 3.04 0.5044 12.720 0.83 5.46 3.73 7.320 0.71 0.4876 5.66 3.00 9.128 0.2866 0.80 9.309 4.28 8.70 0.76 12.10 0.3630 0.3726 9.974 6.23 9.08 0.72 4.57 0.75 0.4038 3.49 0.76 19.865 9.03 21.554 0.5310 7.65 6.24 0.5839 0.69 6.73 0.88 7.624 6.73 0.3084 3.82 0.57 14.876 7.44 0.5552 6.02 0.81 10.894 5.49 0.4156 3.58 0.65 8.100 7.422 8.08 0.3491 5.78 0.71 58 768 440 754 425 1893 5320 1155 2162 2388 2865 1568 1116 1573 8130 3251 2457 8167 5031 Corrected Isotope Ratios Isotope Corrected (Ma) Apparent Ages 0.06 1659251 22.658 10.66 0.5606 8.91 0.84 2.49 2.39 1.09 0.46 1.14 0.13 16124 0.15 19.573 0.04 5.90 34474 0.85 0.4974 18.969 4.52 9.63 0.76 0.4999 6.65 0.69 0.78 1.22 0.93 1.33 1.20 10992 1.45 13.099 5.71 2.27 0.4917 1.51 3.71 0.92 0.65 1.61 1.37 12494 13.232 0.91 6.94 0.5198 0.95 1 5.24 1.17 0.76

U Th/U 206Pb 207Pb* 32 55 42 79 52 61 76 54 28 47 67 29 80 71 148 141 111 125 108 408 700 354 101 ppm ppm 204Pb 235U* (%) ppm 204Pb 235U* (%) 2696 Ratios Isotope Corrected (Ma) Apparent Ages _88 -60

07L 08 08S Spot SK11-07S_57 SK11-07M_33 SK11-07S_44 SK11-07L_92 SK11-07M_34 SK11-07L_95 SK11- SK11-07L_96 SK11-07L_90 SK11-07M_18B SK11-07M_19 SK11-07L_89 SK11-07L_91 SK11-07S_37 SK11-07S_43 SK11-07M_18A SK11-07M_32 SK11-07S_55 SK11-07S_42 Spot number SK11- U Paleoarchean SK11-08S_69 Th/U SK11- Mesoarchean 2 206Pb 207Pb* SK11-08S_77 SK11-08S_65 SK11-08M_15A

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

176

13 22 18 18 12 36 12 42 16 14 56 24 26 27 29 26 13 10 19 12 26 14 15 21 42 12 18 2 8 8 5 1 2 %

38 79 81 89 75 97 ±2s 204 120 145 148 244 102 171 249 104 214 493 125 285 146 105 129 107 103 109 159 130 142 160 114 153 136 156 3

3231 2932 2664 2752 2761 2874 2204 3471 2979 2016 2722 3394 1514 3152 2325 2263 2218 2114 2166 2481 2545 2641 2736 2303 2478 2551 3606 2811 2635 1994 2767 2497 2780

206Pb*

99 55 91 89 60 62 52 95 67 90 76 41 48 50 66 42 50 70 85 85 67 84 85 85 ±2s 121 110 120 117 225 110 159 191 104 (Ma) 238U* (Ma) disc.

3258 3133 3016 3042 3039 3068 2755 3291 3100 2634 2968 3194 2268 3039 2646 2609 2581 2488 2505 2649 2672 2707 2747 2549 2626 2964 3380 3037 2954 2600 2938 2739 2757 235U

207Pb*

97 38 99 70 73 48 74 95 31 46 39 80 38 40 84 99 76 43 88 93 98 ±2s 129 219 125 111 162 107 107 102 114 118 190 121

3274 3265 3228 3197 3183 3178 3151 3070 3041 2902 2889 2879 2810 2792 2780 2770 2757 2756 2752 2741 3259 3249 3240 3190 3187 3179 3139 3114 3058 2966 2740 3258 2924 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 0.5360 6.80 0.78 206Pb* ±2s 8.75 .849 .849 8.97 0.4730 6.59 0.74 13 23.737 10.12 20.885 0.6506 5.64 8.04 0.5759 0.79 5.08 0.90 19.514 6.23 0.5618 4.39 24.562 0.70 12.33 0.7133 20.171 9.27 6.36 12.385 0.75 0.5875 5.49 4.36 0.3671 0.69 4.59 22.232 0.83 23.18 0.6930 8.335 18.68 0.81 12.13 0.2647 9.30 0.77 12.055 20.36 0.4205 17.74 0.87 10.782 8.18 12.584 0.3994 4.35 12.900 5.79 0.4694 5.06 13.386 0.71 3.91 0.4840 5.32 13.966 0.90 4.21 0.5064 6.91 11.312 0.83 4.76 0.5287 4.49 12.276 0.89 4.91 0.4293 5.31 0.71 3.86 0.4688 0.86 4.71 0.89 11.949 7.19 0.3624 6.67 0.93 887 3883 2224 4502 2794 8957 1755 7869 3903 6824 1365 2111 9006 1065 3758 8303 5449 6270 0.13 230321 18.935 12.57 0.5347 10.88 0.87 0.39 379017 12.546 10.13 0.09 0.4343 7.47 71434 0.74 11.698 7.21 0.4106 5.60 0.78 0.05 13296 17.529 10.78 0.4855 7.55 0.70 0.17 0.77 0.14 15614 0.17 18.493 0.75 9.50 13418 0.5117 26.912 171267 0.89 19.008 6.65 7.11 0.70 1.16 9.23 0.7496 0.10 0.5324 4.70 26249 6.59 0.66 0.28 18.905 0.71 15044 0.57 8.86 14.072 0.78 11.65 0.5466 23355 0.4076 6.24 17.342 9.17 0.33 0.71 8.81 0.79 0.46 0.5049 86103 0.15 7.40 17.592 0.15 0.84 12.15 0.5254 23154 9.63 0.30 17.058 0.79 1.40 25726 18.953 16.45 0.6305 0.81 11.45 0.70 1.03 1.60 0.79 0.73 1.19 17125 14.106 8.94 0.5392 6.90 0.77 1.01 1.10 0.75 0.96 10090 10.597 0.88 9.70 0.72 0.3881 7.16 0.74 03 U Th/U 206Pb 207Pb* 68 74 86 96 98 99 218 154 508 304 855 152 227 869 191 677 738 410 117 524 519 139 364 113 167 154 156 111 155 ppm ppm 204Pb 235U* (%) 10 1955 1032 3637 Ratios Isotope Corrected (Ma) Apparent Ages Spot SK11-08S_64 SK11-08M_16 SK11-08S_63 SK11-08S_66 SK11-08S_61_B SK11-08S_84 SK11-08S_62 SK11-08M_15B SK11-08S_68 SK11-08S_79 SK11-08S_80 SK11-08S_67 SK11-08S_85 SK11-08M_7A SK11-08S_70 SK11-08M_13 SK11-08S_61_a SK11-08S_73 SK11-08M_7B SK11-08S_72 SK11-08S_83 SK11-08S_71 Neoarchean SK11-08S_78 SK11-08S_74 SK11-08S_82 SK11-08L_99 SK11-08M_17 SK11-08M_8 SK11-08M_12 Sk11-08L_98 SK11-08M_9 SK11-08M_10 SK11-08S_81

372 373 374 375 376 377 378 379 380 381 382

177

37 35 31 36 63 36

% 9 60 54 85 ±2s 103 105 134 116

1842 3468 1992 1859 1115 1723 2240 206Pb*

81 45 78 41 51 88 62 ±2s (Ma) 238U* (Ma) disc.

2298 3016 2375 2286 1765 2117 2338 235U

207Pb*

41 55 40 53 87 ±2s 100 107

2733 2726 2723 2694 2654 2524 2425 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 8.47 0.3620 7.80 0.92 73 8.616 18.489 8.88 4.62 9.3 0.3307 0.7125 8.504 6.46 3.90 0.73 4.690 4.46 0.84 7.041 0.3342 6.15 9.000 3.74 0.1888 9.94 0.84 5.26 0.3064 6.80 0.86 7.64 0.4155 0.77 4.49 0.66 1015 1967 2860 1316 1095 2475 1015 0.99 1.54 0.95 0.81 0.78 0.48 0.73 U Th/U 206Pb 207Pb* 89 124 164 151 102 121 159 ppm ppm 204Pb 235U* (%) Ratios Isotope Corrected (Ma) Apparent Ages Spot SK11-08S_75 SK11-08M_14 SK11-08M_11 SK11-08M_6 SK11-08M_5 SK11-08S_76 SK11-08L_97

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

178

10 13 12 12 10 11 10 10 16 11 16 19 14 13 6 9 9 7 9 7 6 8 7 7 4 % ±2s 130 140 129 106 142 163 132 101 126 169 119 158 139 118 120 110 125 119 114 131 142 140 106 115 120

2890 2984 2870 2757 2848 2849 2938 2898 2960 2916 2857 2963 2886 2872 2972 2719 2916 2835 2690 2936 2931 2619 2738 2772 2981 206Pb*

62 60 63 50 70 76 64 47 78 59 72 66 55 52 55 60 58 58 58 62 76 50 58 53 ±2s were less than discordant, 30% were

(Ma) 238U* (Ma) disc.

60 3040 3069 3000 2947 3035 3035 3068 3051 3071 3050 3025 3069 3031 3024 3065 2958 3039 3001 2934 3035 3033 2896 2947 2961 3043 235U 207Pb*

49 34 55 36 61 54 56 35 51 59 52 55 53 40 31 47 52 49 49 38 36 71 33 53 35 ±2s bold and italics bold and

138 6Pb* (Ma) 3140 3125 3088 3080 3161 3160 3154 3154 3144 3139 3138 3128 3127 3127 3125 3120 3115 3106 3102 3101 3094 3092 3092 3085 20 error 207Pb* ±2s (%) corr. 238U 206Pb* ±2s 18.955 6.40 0.5658 5.59 0.87 19.535 6.26 0.5885 5.88 0.94 17.221 5.24 0.5337 4.74 0.90 2782 3092 9680 0.24 727802 18.189 6.54 0.5608 5.56 0.85 0.76 0.39 17173 18.863 0.84 89878 7.26 18.863 0.46 53756 0.5555 7.85 19.524 0.66 24676 6.16 0.5558 6.63 19.185 0.77 96586 0.85 7.08 0.5774 4.84 19.580 0.45 0.90 5.59 0.5676 6.18 0.67 11236 0.84 4.32 0.5828 19.152 0.59 15122 0.89 5.29 8.11 18.667 0.59 24919 0.86 0.5720 6.11 19.533 0.54 10891 7.22 0.5576 7.49 18.784 0.71 36416 0.89 5.17 0.5836 6.82 18.659 0.94 19131 0.85 6.65 0.5647 5.69 19.466 269903 0.61 0.89 17.414 5.95 0.5613 5.40 0.43 0.87 5.77 3 5.10 0.5857 349823 0.99 0.5246 0.90 18.937 5.04 146385 4.97 0.93 6.26 18.221 0.86 1.21 0.5721 6.01 0.78 34842 5.32 0.5523 18.872 0.85 0.43 27921 5.18 6.05 18.826 0.86 0.99 53850 0.5769 6.44 16.323 0.65 19837 5.55 0.5758 7.89 17.214 16381 0.92 6.02 0.5013 5.18 17.469 0.92 0.93 6.53 0.5293 6.09 1.28 18664 0.83 4.76 0.5373 19.033 0.92 5.10 5.50 0.84 0.5879 5.05 0.92 4 4 0.27 108390 16.990 6.00 0.5179 5.17 0.86 U Th/U 206Pb 207Pb* 541 582 881 486 144 192 670 503 657 791 195 170 494 117 855 266 91 578 745 106 531 512 563 474 ppm ppm 204Pb 235U* (%) 1351 Ratios Isotope Corrected (Ma) Apparent ages were used in the calculation of of inzirconaverages. used event growth the calculation Spots inwere

01 bold Spots in more did not because less have the sample to calculate 30%. not used than averages 5 spots withthan discordance but were on Paleogene not filter used a dates. was as Discordance Spot CRMO11- Mesoarchean 2 CRMO11-01_L_37 CRMO11-01_L_7 CRMO11-01_L_40 CRMO11-01_S_198 CRMO11-01_L_29 CRMO11-01_L_15 CRMO11-01_L_39 CRMO11-01_L_31 CRMO11-01_L_41 CRMO11-01_L_12 CRMO11-01_M_128 CRMO11-01_M_123 CRMO11-01_L_23 CRMO11-01_M_124 CRMO11-01_L_28 CRMO11-01_L_24 CRMO11-01_L_25 CRMO11-01_S_209 CRMO11-01_M_129 CRMO11-01_L_35 CRMO11-01_S_200 CRMO11-01_L_32 CRMO11-01_L_10 CRMO11-01_M_132 CRMO11-01_M_120

Table C2: Corrected Isotope Ratios and Apparent Ages of Craters of the Moon the of Craters of National Ages Apparent Ratios and and PreserveMonument C2: Corrected Table Isotope

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

179

15 10 26 14 16 33 21 17 10 28 18 43 17 34 10 17 16 13 19 18 16 15 18 11 20 13 14 31 33 29 6 2 8 8 %

99 97 87 92 82 ±2s 118 153 106 158 121 109 120 107 121 109 149 123 117 124 137 104 140 110 110 157 128 115 112 130 114 148 127 115 123

2696 2919 2814 2385 2698 2639 2186 2484 2604 2769 2277 2511 1845 2516 2082 2839 3027 2651 2674 2746 2586 2864 2609 2654 2680 2580 2811 2744 2502 2691 2634 2163 2110 2218 206Pb*

59 72 49 82 57 52 54 63 52 55 65 71 64 59 69 56 59 50 67 56 57 73 61 55 53 61 54 71 44 59 55 70 57 45 ±2s (Ma) 238U* (Ma) disc.

2911 3001 2956 2763 2902 2865 2649 2790 2843 2912 2663 2772 2421 2754 2543 2981 3058 2900 2905 2935 2863 2983 2873 2890 2897 2840 2931 2902 2792 2875 2839 2596 2562 2616 235U 207Pb*

49 59 35 56 36 33 34 52 35 34 61 33 53 30 56 36 34 34 44 51 49 53 36 35 34 32 40 52 32 35 34 53 53 33 ±2s

3064 3056 3054 3052 3046 3029 3025 3021 3018 3012 2972 2967 2948 2934 2934 3079 3079 3078 3070 3067 3065 3064 3063 3058 3051 3030 3014 3014 3009 3007 2989 2954 2943 2940 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 0.3987 6.68 0.90 206Pb* ±2s 7.46 17.377 5.12 14.191 0.5473 8.64 4.63 0.4476 16.426 0.90 7.91 5.94 0.92 0.5198 5.50 0.93 15.450 5.44 0.4977 4.99 0.92 11.896 9.849 6.89 0.3313 6.04 0.88 6106 3086 2773 7002 3917 6354 0.21 41895 16.584 6.19 0.5192 0.34 5.37 53731 0.87 18.204 7.50 0.5726 6.52 0.87 0.97 34140 15.810 0.18 3218440 5.42 14.615 0.5058 6.65 5.02 0.4700 0.93 5.80 0.36 0.87 69269 16.597 5.77 0.5365 0.16 5.37 0.56 18501 0.93 12.777 12673 6.86 14.327 0.4236 7.47 5.71 0.4764 0.83 7.19 0.21 0.96 0.16 70575 14.068 24291 6.21 11.231 0.4774 7.44 5.92 0.3812 0.95 6.58 0.88 0.32 29526 12.585 5.75 0.4037 5.33 0.93 1.38 0.44 11782 17.841 0.86 93858 5.83 19.328 0.12 32445 0.5532 6.07 16.396 360005 0.73 16.484 5.38 0.5993 5.22 0.36 16426 0.92 6.97 5.68 0.5086 17.005 17853 0.5141 0.94 4.78 5.86 15.778 0.72 6.40 0.91 0.5312 6.01 0.92 0.69 13153 4.94 0.4935 17.868 0.60 29038 0.84 5.16 7.55 15.935 34605 0.86 0.5594 6.35 16.216 0.66 6.78 0.4990 5.75 0.63 0.90 5.95 0.5095 0.21 0.94 5.31 112233 0.74 0.92 16.340 0.36 5.53 34274 0.5156 15.396 5.10 6.43 0.92 0.4922 0.09 6.11 0.63 0.95 0.87 15372 16.930 25776 5.58 16.431 0.49 0.5466 7.37 0.82 64070 5.00 0.5306 14.638 0.50 20545 0.90 6.61 4.63 15.971 20696 0.90 0.4742 6.19 15.387 4.17 0.5180 5.72 0.59 0.90 5.78 0.5046 0.28 0.93 5.31 0.34 0.93 0.68 12507 11.473 132155 12.153 6.06 4.83 0.3873 0.4108 5.09 4.39 0.84 0.91 U Th/U 206Pb 207Pb* 751 158 714 190 832 993 442 245 205 239 202 148 991 179 862 633 337 778 802 627 681 152 374 793 892 ppm ppm 204Pb 235U* (%) 1027 1736 1074 1477 1330 1467 1438 2448 1723

Ratios Isotope Corrected (Ma) Apparent ages O11-01_M_133 Spot CRMO11-01_S_207 CRMO11-01_M_134 CRMO11-01_S_205 CRM CRMO11-01_L_20 CRMO11-01_L_16 CRMO11-01_L_17 CRMO11-01_L_11 CRMO11-01_M_125 CRMO11-01_M_136 CRMO11-01_L_38 CRMO11-01_M_138 CRMO11-01_L_18 CRMO11-01_M_135 CRMO11-01_M_121 CRMO11-01_M_126 CRMO11-01_S_201 CRMO11-01_M_130 CRMO11-01_L_19 CRMO11-01_M_142 CRMO11-01_S_197 CRMO11-01_M_131 CRMO11-01_M_139 CRMO11-01_S_203 CRMO11-01_S_208 CRMO11-01_M_141 CRMO11-01_L_36 CRMO11-01_M_119 CRMO11-01_L_22 CRMO11-01_L_8 CRMO11-01_L_27 CRMO11-01_S_199 CRMO11-01_S_196 CRMO11-01_L_9

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

180

99 20 18 26 17 22 58 26 86 98 88 77 34 65 33 23 22 16 73 24 26 153 8 9 % %

87 99 99 70 78 41 ±2s ±2s 104 107 104 143 101 115 106 102 108 141

4 2 3 3 3 3 2 2 50 40 40 40 39 39 38 38 589 880 2431 2475 2252 2385 2266 1287 2111 2851 2087 2343 2295 2439 2187 2257 206Pb* 206Pb* (Ma)

2 28 45 50 52 48 59 61 56 58 67 14 45 60 63 57 54 57 79 ±2s ±2s (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

4 6 3 3 3 2 44 92 44 41 37 39 39 187 2709 2721 2601 1634 2612 2546 1947 2441 2974 2537 2652 2589 2653 2708 2498 2613 235U 235U

207Pb* 207Pb*

35 34 32 53 57 57 39 38 50 32 61 54 52 51 32 65 81 ±2s ±2s 240 150 256 245 119 146 140

73 58 273 314 167 107 2923 2909 2886 2812 2792 2777 2747 2728 3059 2729 2919 2897 2827 2821 2798 2762 2902 1818 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 716 716 6.93 0.5562 6.19 0.89 17. 0.037 0.039 8.97 0.039 0.0060 8.06 6.71 0.0060 6.14 0.75 5.50 0.0059 0.68 5.10 0.83 - 11.800 6.78 12.636 0.4277 6.10 5.93 0.4598 13.400 0.87 5.21 5.73 0.85 0.4943 4.80 10.706 0.84 6.16 0.4039 5.84 0.95 0.044 0.095 8.38 15.61 0.0062 0.0062 0.041 5.24 6.68 0.63 8.39 0.43 0.0061 6.68 0.80 3.997 5.93 12.092 0.1462 6.27 11.271 4.98 0.84 0.4477 6.58 5.19 0.4212 5.806 0.83 5.59 10.062 6.42 0.85 6.24 0.2210 0.3875 5.96 5.80 0.93 0.93 0.202 16.27 0.0078 7.24 0.045 0.45 13.07 0.0062 7.41 0.57 72 57 74 80 26 80 97 118 110 113 209 197 129 265 1828 1751 1408 0.24 1400221 13.409 4.80 0.51 0.4581 35413 13.583 4.28 0.89 5.26 0.36 0.4681 144038 11.963 4.82 0.92 5.55 0.4182 5.19 0.94 0.52 0.72 0.23 0.55 0.28 11654 11.167 0.24 4.78 17983 0.3824 12.624 133.51 4.35 6.35 0.91 128.84 0.4383 179.70 5.12 0.81 103.30 180.30 75.83 150.35 162.41 109.20 0.33 0.40 64306 13685 12.116 1.46 8.44 0.68 0.4192 1.33 7.41 0.84 0.88

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 745 511 160 184 315 199 107 162 382 233 184 747 190 595 942 614 454 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 1626 1043 2043 3128 2005 9766 2100 Ratios Isotope Corrected Apparent ages RatiosIsotope Corrected (Ma) Apparent ages

_M_106 03 03 Spot CRMO11-01_M_137 CRMO11-01_M_140 CRMO11-01_M_127 CRMO11-01_L_34 Neoarchean CRMO11-01_S_206 CRMO11-01_L_14 CRMO11-01_L_21 CRMO11-01_L_13 CRMO11-01_L_30 CRMO11-01_L_26 CRMO11-01_L_33 CRMO11-01_S_204 CRMO11-01_S_202 CRMO11-01_M_122 Spot CRMO11- Mesoarchean 2 CRMO11-03_M_112 CRMO11-03_M_95 Paleogene CRMO11-03_S_188A CRMO11-03_M_92 CRMO11-03_M_103 CRMO11-03_M_108 CRMO11- CRMO11-03_M_91 CRMO11-03_M_118 CRMO11-03_M_96

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

181

99 51 81 52 56 70 50 98 29 69 61 30 98 69 87 43 85 78 83 84 91 36 67 89 88 89 884 132 199 692 942 551 1221 % ±2s 3 2 2 2 3 2 2 3 2 3 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 8U* (Ma) disc. 36 38 37 37 37 37 37 37 37 37 37 36 36 36 36 36 36 36 36 36 36 36 36 35 35 35 35 35 35 34 34 33 36 23 206Pb*

16 10 ±2s (Ma)

3 2 3 3 2 2 4 2 8 2 3 3 3 4 2 6 3 3 2 2 3 3 2 4 4 3 4 4 4 3 3 37 38 40 38 38 38 35 37 93 36 38 37 36 37 68 38 40 36 37 39 35 37 38 38 41 35 34 36 38 38 36 35 104 235U

207Pb*

93 82 90 88 57 94 76 90 71 69 94 70 ±2s 233 106 124 272 315 142 159 170 186 199 256 200 207 182 103 211 116 251 113 224 146

76 76 84 25 28 93 12 51 63 54 117 193 122 116 117 268 233 156 205 221 375 104 303 280 280 1985 2227 1397 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 0.037 0.038 7.23 0.0059 6.53 0.038 5.72 0.0058 0.79 5.55 8.06 0.85 0.038 0.0058 7.16 5.76 4 0.89 0.0057 0.096 5.24 0.91 9.19 0.0057 0.037 7.55 0.82 0.036 7.28 0.0057 7.16 5.38 0.0057 0.74 6.11 0.85 0.036 6.81 0.0056 5.59 0.82 0.038 5.82 0.0055 3 4.98 0.86 0.040 6.86 0.038 0.0058 5.67 6.43 0.83 0.035 0.0058 11.27 4.75 0.0057 0.74 7.36 0.65 0.038 7.59 - 0.0057 0.037 5.49 0.72 11.61 0.069 0.0056 15.54 0.038 4.93 0.0056 5.03 0.42 6.30 0.036 0.0056 0.41 0.037 4.03 8.41 0.80 0.0056 7.12 5.99 0.0056 0.71 5.32 0.75 0.037 5 0.038 9.08 0.0055 9.20 0.041 6.01 0.0055 0.66 0.035 5.58 9.77 0.61 11.10 0.034 0.0055 0.0054 0.036 5.25 9.74 5.90 0.54 12.34 0.039 0.0054 0.53 0.0054 10.29 0.038 5.19 5.87 0.0053 0.53 11.72 0.036 0.48 5.37 0.0053 9.59 0.52 7.45 0.0051 0.64 -4 5.38 0.56 0.035 9.43 0.0056 7.24 0.77 -8 0.040 14.66 0.0056 5.13 0.35 0.108 16.24 0.0056 9.12 0.56 83 84 699 418 123 360 528 272 684 493 241 448 878 621 172 195 175 187 548 449 257 1130 2429 9906 2324 1657 1435 2861 1456 2811 0.52 0.74 0.23 0.51 0.25 0.63 10893 0.037 0.66 6.63 0.61 0.0057 5.34 0.81 0.88 0.59 0.77 0.50 111572 0.039 0.55 5.81 0.0056 4.98 0.86 1.40 0.52 0.56 0.59 0.63 0.90 0.66 1.15 1.48 0.61 0.62 0.63 0.94 0.73 0.63 U Th/U 206Pb 207Pb* 666 478 585 637 591 737 854 966 737 851 442 520 980 ppm ppm 204Pb 235U* (%) 3671 3724 4911 4319 7668 1514 1894 1923 6013 2174 1442 7035 5209 1117 1447 Ratios Isotope Corrected (Ma) Apparent ages _M_107 03 Spot CRMO11-03_M_97 CRMO11-03_S_185 CRMO11-03_M_111 CRMO11-03_M_109 17604 CRMO11-03_M_115 0.34 CRMO11-03_S_194 12859 CRMO11-03_M_102 0.25 CRMO11-03_M_114 CRMO11-03_M_98 CRMO11-03_M_99 23731 CRMO11-03_M_104 0.33 CRMO11-03_L_4 10695 CRMO11-03_M_101 15308 0.037 CRMO11-03_M_116 0.20 5.95 CRMO11-03_M_113 0.0057 CRMO11-03_S_193 5.03 CRMO11-03_M_93 0.85 CRMO11-03_M_117 CRMO11-03_S_187 CRMO11-03_S_192 CRMO11-03_L_3 CRMO11-03_L_6 CRMO11- CRMO11-03_S_191 CRMO11-03_S_189 CRMO11-03_S_186 15994 CRMO11-03_M_94 0.44 CRMO11-03_M_110 CRMO11-03_S_195 CRMO11-03_S_190 CRMO11-03_L_5 CRMO11-03_M_100 CRMO11-03_S_188B

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

182

98 49 85 45 93 99 75 13 37 78 71 55 65 66 61 95 41 60 83 51 28 76 88 77 95 84 80 59 95 51 118 394 % ±2s 3 5 3 2 3 3 2 3 3 3 3 2 2 2 2 3 2 3 3 4 2 2 2 2 3 2 3 2 4 3 2 2 40 45 42 41 41 41 40 40 40 40 39 39 39 39 38 38 38 38 38 38 38 38 38 38 37 37 37 37 37 37 37 37 206Pb*

21 16 ±2s (Ma) 238U* (Ma) disc.

6 4 3 5 3 3 3 4 5 3 3 3 3 3 4 3 3 5 4 3 3 3 3 5 3 2 4 3 5 3 46 46 41 52 42 40 41 42 41 40 40 38 40 39 50 38 39 41 38 38 39 42 39 50 40 36 39 38 49 36 100 159 235U

207Pb*

79 02 78 91 95 95 91 87 89 96 92 93 86 84 93 92 ±2s 375 154 144 144 175 158 183 111 151 101 150 182 156 143 217 117

1

1 13 89 29 46 63 87 18 98 64 94 77 52 90 24 265 572 163 180 137 111 113 674 220 153 312 164 725 234 179 707 1979 2770 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 60 6.16 0.85 238U 206Pb* ±2s 6.34 0.0058 4.78 0.75 - 36 0.041 8.33 0.0065 0.043 5.84 0.70 0.041 7.02 0.041 0.0063 7.52 6.19 0.0063 7.66 0.88 6.48 0.0063 0.86 0.041 6.53 0.85 11.59 0.0061 0.040 8.89 7.12 0.77 0.040 0.0061 0.039 5.97 7.23 0.84 0.00 7.92 0.039 0.0059 0.039 6.80 8.17 0.86 0.0059 8.09 6.95 0.0059 0.85 0.038 7.09 0.88 0.040 6.89 0.0058 6.83 0.039 5.70 0.0058 0.83 5.75 7.64 0.84 0.040 0.0058 6.75 8.08 0.88 0.039 0.0058 11.55 6.99 0.0058 0.87 9.61 0.83 0.047 13.50 0.0071 11.80 0.87 0.052 0.170 9.57 11.06 0.0064 0.0064 6.44 6.73 0.67 0.61 0.043 9.27 0.0062 6.90 0.74 0.041 13.07 0.0059 10.41 0.80 0.042 6.85 0.051 0.0058 4.82 9.69 0.70 0.0 0.0058 6.56 0.68 0.050 10.23 0.037 0.0057 7.33 5.61 0.0057 0.55 5.47 0.75 2 2 0.040 7.03 0.0061 5.77 0.82 0.103 22.31 0.0062 7.41 0.33 0.038 10.48 0.0059 5.14 0.49 45 61 325 167 411 183 478 940 124 683 161 308 8702 1285 1755 1827 2067 511 2660 7211 3276 9772 1626 8569 8743 9847 1626 2057 0.50 1.37 0.44 11747 0.046 0.43 10.06 0.0065 0.27 6.38 0.18 0.63 0.26 0.38 0.52 0.28 0.25 0.31 0.43 0.28 76102 0.051 0.78 8.79 0.0059 4.78 0.54 0.28 0.38 0.56 0.44 0.93 0.73 1.05 1.25 1.43 0.78 0.76

150 150 0.56 U Th/U 206Pb 207Pb* 512 396 589 839 449 ppm ppm 204Pb 235U* (%) 1440 2384 1626 1116 8870 9621 6197 1341 1096 8038 7732 3203 5059 5025 1079 6445 2043 8897 1747 1214 2342 12 Ratios Isotope Corrected (Ma) Apparent ages 04

Spot CRMO11- Paleogene CRMO11-04_S_68 CRMO11-04_S_65 CRMO11-04_S_66 CRMO11-04_S_82 CRMO11-04_S_85 CRMO11-04_S_56 CRMO11-04_S_59 CRMO11-04_S_69 CRMO11-04_S_57 CRMO11-04_S_87 CRMO11-04_S_77 CRMO11-04_S_88 CRMO11-04_S_84 CRMO11-04_S_75 CRMO11-04_S_81 13822 CRMO11-04_S_70 19471 0.18 CRMO11-04_M_171 1.00 36713 CRMO11-04_S_62 0.038 CRMO11-04_S_78 7.15 16420 CRMO11-04_S_67 0.0060 0.39 CRMO11-04_M_181 6.16 0.86 CRMO11-04_S_71 15190 CRMO11-04_L_1 0.20 CRMO11-04_M_172 CRMO11-04_S_61 CRMO11-04_S_80 CRMO11-04_S_73 CRMO11-04_M_174 CRMO11-04_S_60 CRMO11-04_S_79 19918 CRMO11-04_S_55 0.36 CRMO11-04_S_86 17853 0.038 8.22 0.0057 7.25 0.88

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

183

45 69 60 89 45 97 82 94 97 82 50 78 98 56 90 96 89 94 19 18 16 14 74 127 149 % % 9 61 58 47 43 66 ±2s ±2s

3 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 4 2 37 37 37 36 36 36 36 36 36 36 36 36 36 36 36 35 35 35 35 34 35 3063 3249 2743 2817 2837 206Pb* 206Pb*

12 28 27 24 21 29 ±2s ±2s (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

3 3 2 4 3 6 4 5 5 2 6 3 3 3 4 5 4 3 6 3 37 38 37 41 36 62 39 46 55 39 37 38 33 78 36 40 50 40 34 43 37 3403 3403 3029 3061 3056 235U 235U

207Pb* 207Pb*

21 24 20 18 14 78 68 54 99 ±2s ±2s 134 211 166 175 203 145 119 247 228 182 217 128 141 359 170 144 173

66 91 25 72 80 14 133 118 329 198 613 976 195 165 356 836 325 584 133 3609 3496 3225 3225 3204 1227 1690 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 0.037 6.29 0.0057 5.36 0.85 0.047 11.22 0.0056 0.039 6.15 5.75 0.55 0.038 0.0056 4.94 8.13 0.86 0.0056 0.036 6.35 0.78 7.22 0.0056 6.85 0.95 0.043 13.33 0.0053 12.53 0.94 27.533 2.86 27.558 0.6083 2.74 2.51 0.6553 0.88 2.26 19.378 0.83 2.17 19.286 0.5481 3.04 1.86 0.5528 0.86 2.90 0.95 0.037 8.81 0.0057 0.041 6.98 0.79 10.35 0.036 0.0057 0.063 7.68 4.52 10.37 0.039 0.0056 0.44 0.0056 4.93 9.49 6.01 0.64 0.056 0.0056 0.58 5.77 8.55 0.61 0.037 0.0056 15.94 4.72 0.0056 0.55 0.033 5.15 0.079 9.92 0.32 15.88 0.0056 0.0056 7.13 8.50 0.72 0.041 0.54 11.33 0.0055 - 5.16 0.035 0.46 7.89 0.0054 5.15 0.65 0.037 9.38 0.0055 5.83 0.62 0.051 11.03 0.040 0.0055 10.65 6.71 0.0055 0.61 4.67 0.44 86 71 735 254 601 105 135 462 101 183 117 299 468 242 6560 4120 1518 1103 6242 1084 7822 8309 3297 7666 0.45 0.55 15768 0.038 0.48 8.18 0.0057 5.86 0.72 0.84 0.85 0.70 0.47 0.87 1.19 0.02 39942 18.755 2.47 0.5304 2.13 0.86 1.41 2.28 1.00 0.90 1.97 0.60 0.97 1.75 0.08 1.39 0.04 0.08 1.30

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 440 589 635 700 374 316 843 455 621 211 481 543 607 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 1930 1423 2297 2082 4076 1123 1176 1004 1516 1280 Ratios Isotope Corrected (Ma) Apparent ages Ratios Isotope Corrected (Ma) Apparent ages

_M_176 05 04 Spot CRMO11-04_S_64 CRMO11-04_S_83 CRMO11-04_S_63 CRMO11-04_M_180 21338 CRMO11-04_S_89 0.36 CRMO11-04_M_170 CRMO11-04_S_76 CRMO11-04_S_90 CRMO11-04_M_177 CRMO11-04_M_178 CRMO11-04_M_179 CRMO11-04_S_72 CRMO11-04_S_74 CRMO11-04_L_2 CRMO11-04_M_182 13310 CRMO11- 0.22 CRMO11-04_M_173 CRMO11-04_S_58 CRMO11-04_M_175 CRMO11-04_M_169 CRMO11-04_M_168 16301 0.24 Spot CRMO11- Paleoarchean CRMO11-05M_172 CRMO11-05S_276 Mesoarchean 1 CRMO11S-05_90 CRMO11-05S_267 CRMO11-05S_270

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

184

12 33 27 28 22 16 14 15 23 17 12 19 10 21 37 15 20 11 21 29 12 17 14 17 8 1 % 3 8 7 6 7 7 9 51 68 42 68 50 72 76 32 31 83 37 45 42 67 39 54 45 54 42 82 60 33 45 60 75 82 41 86 69 ±2s 232 103 123 106

2884 2271 2431 2406 2522 2683 2715 2626 2424 2579 2798 2941 2860 2629 2408 2572 2300 1901 2617 2461 2665 2896 2956 2933 2879 2511 2834 2207 2618 2481 2624 2493 2406

206Pb*

27 39 23 32 24 35 41 18 17 48 56 39 18 27 26 58 47 21 30 26 25 19 39 30 18 21 38 36 42 23 43 36 ±2s 119 (Ma) 238U* (Ma) disc.

913 3068 2770 2837 2819 2847 2924 2845 2752 2822 2914 2957 2903 2792 2661 2710 2581 2370 2722 2651 2969 3059 3062 3023 2985 2819 2933 2612 2790 2716 2744 2686 2629 235U 207Pb*

2 27 35 18 74 12 26 39 16 16 33 44 31 11 29 31 49 52 20 27 27 17 12 32 19 26 18 15 41 24 33 23 29 29 ±2s

046 3191 3156 3140 3130 3086 3072 3005 3002 3001 2995 2968 2934 2912 2860 2814 2810 2803 2800 2800 3181 3167 3133 3082 3077 3057 3001 2943 2917 2895 2834 2834 2806 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 14.297 4.16 0.4224 3.55 15.064 0.85 12.47 0.4524 11.57 0.93 16.811 3.63 0.5237 3.24 15.484 0.89 4.29 14.029 0.5028 1.87 3.53 0.4565 15.110 0.82 1.59 1.75 0.85 0.4920 1.46 17.396 0.83 5.87 0.5780 16.449 5.20 4.06 0.89 0.5583 14.633 3.59 1.87 0.88 0.5035 12.745 1.73 2.86 0.93 0.4528 2.23 13.421 0.78 2.76 11.706 0.4903 6.23 1.98 0.4288 9.323 0.72 5.47 13.591 5.16 0.88 2.20 12.615 0.3430 0.5008 3.14 4.08 1.83 0.4649 0.79 0.83 2.65 0.85 3793 4282 2522 9191 6067 7507 4532 8289 4377 4571 8901 1550 7462 9043 8405 0.01 56051 19.518 2.76 0.5641 0.04 2.17 71460 0.79 15.343 2.36 0.04 0.4580 25155 2.09 15.507 0.88 3.35 0.4787 3.25 0.04 0.97 28541 15.052 1.93 0.4764 1.58 0.82 0.04 51864 3 16.629 4.97 0.5435 4.52 0.91 0.68 0.04 147077 0.02 17.609 0.05 11239 2.66 19.332 0.5121 2.55 0.02 2.06 0.5671 0.78 0.14 23429 2.31 19.407 0.91 1.92 0.04 0.5817 0.06 94089 1.75 18.624 0.02 10889 0.91 4.01 16.621 0.02 0.5762 2.55 19034 3.46 0.5161 17.916 0.07 0.86 2.27 3.08 0.08 0.89 0.5631 0.05 2.59 0.04 17473 0.84 16.960 2.17 0.5521 0.12 1.97 0.07 0.91 15074 12.099 0.42 4.07 0.19 10344 0.4082 14.610 0.49 3.19 3.81 0.55 82212 0.78 0.5010 13.507 0.49 3.51 4.47 0.31 29235 0.92 0.4694 13.920 0.62 14993 4.00 2.39 13.084 0.89 0.5024 4.53 0.81 1.91 0.4722 0.93 22895 0.80 4.17 12.324 0.70 0.92 3.86 0.4524 3.44 0.89 0.38 1.23

U Th/U 206Pb 207Pb* 96 96 182 584 909 895 504 629 513 790 483 313 768 708 976 603 270 952 141 753 223 217 227 217 171 104 114 137 ppm ppm 204Pb 235U* (%) 4177 2203 1640 1290 4907 Ratios Isotope Corrected (Ma) Apparent ages Spot CRMO11-05L_228 CRMO11-05M_176 CRMO11-05S_265 CRMO11-05S_269 CRMO11-05L_224A CRMO11S-05_80 CRMO11-05S_271 CRMO11-05L_224B CRMO11-05L_221 CRMO11S-05_82 CRMO11-05M_178 CRMO11-05S_266 CRMO11S-05_89 CRMO11-05M_243 CRMO11S-05_83 CRMO11-05L_219 CRMO11S-05_88 Neoarchean CRMO11-05M_242 CRMO11-05S_273 CRMO11-05M_168 CRMO11-05M_173 CRMO11-05S_274 CRMO11S-05_93 CRMO11-05S_275 CRMO11-05S_268 CRMO11S-05_91 CRMO11-05M_167 CRMO11-05L_217 CRMO11-05M_245B CRMO11-05M_177 CRMO11-05M_244 CRMO11S-05_81 CRMO11S-05_92

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

185

21 21 14 10 18 26 20 18 16 14 15 45 12 30 24 15 11 86 9

% % 3 7 9 2 2 3 8

44 50 55 46 63 65 40 95 57 42 86 55 59 50 36 43 52 ±2s ±2s 113 175 184 181 187 144 211 166 208

538 2289 2291 2703 2618 2448 2541 2558 2356 2158 2723 2298 2780 2319 2699 2727 2816 2650 1831 2665 2175 2703 2574 2213 2402 2803 206Pb* 206Pb*

24 74 28 26 27 32 32 22 54 30 28 41 31 80 83 81 86 88 96 88 28 27 21 24 92 88 ±2s ±2s (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

2564 2562 2748 2710 2633 2671 2677 2582 2484 2745 2546 2756 2540 2931 2931 2951 2874 2443 2832 2592 2742 2683 2513 2597 2973 1354 235U 235U 207Pb* 207Pb*

20 88 32 18 30 26 25 20 43 29 33 33 29 42 37 43 42 51 43 44 20 28 20 22 44 98 ±2s ±2s

2789 2785 2782 2779 2778 2772 2768 2764 2762 2761 2750 2740 2721 3095 3074 3044 3034 3001 2953 2936 2772 2767 2766 2752 3089 3071 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 5010 2.57 0.92 238U 238U 0. 206Pb* 206Pb* ±2s ±2s 930 930 3.13 0.5257 2.58 100 0.82 4.30 0.5391 3.79 0.88 13. 14. 11.488 2.57 11.471 0.4263 7.93 13.980 2.28 0.4266 2.99 13.420 0.89 5.86 0.5210 2.79 12.365 0.74 2.29 2.91 0.76 0.4618 12.886 2.26 3.38 12.963 0.77 0.4831 3.44 2.98 0.4870 0.88 3.08 11.712 0.90 2.35 10.542 0.4411 5.79 2.02 0.3975 0.86 5.17 0.89 11.200 3.32 0.4330 2.80 0.85 16.932 8.36 0.5198 7.94 0.95 17.280 8.39 0.5477 7.95 0.95 11.837 9.41 0.4012 9.00 0.96 11.270 2.97 0.4282 2.17 0.73 13.053 2.91 0.4909 2.37 0.81 2.794 11.82 0.0871 10.09 0.85 830 820 517 7540 4387 1445 2301 2962 4190 5933 2189 2341 7798 1934 5656 3758 1300 0.71 0.69 0.43 11470 16.923 0.48 8.61 0.18 0.5265 0.72 54345 8.28 15.946 50942 0.96 9.00 10.094 0.5085 9.55 0.50 8.61 0.3285 0.96 9.01 0.94 0.49 26398 17.681 9.57 0.5448 9.17 0.96 0.66 0.49 0.71 1.09 0.69 12571 13.894 0.92 2.93 1.03 0.5208 0.39 2.67 12045 0.91 10.885 2.27 0.53 0.4095 113037 0.95 1.90 11741 0.84 11.902 2.54 0.83 0.4516 2.16 0.85 1.13 1.84 2.54 1.18 1.13 2.90

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 95 75 69 96 74 44 188 212 139 202 189 188 105 259 330 119 116 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 2033 3210 1543 1770 2963 1733 2424 2455

Ratios Isotope Corrected (Ma) Apparent ages Ratios Isotope Corrected (Ma) Apparent ages

07 Spot CRMO11-05L_226 CRMO11-05M_245A CRMO11S-05_84 CRMO11-05M_171 CRMO11-05M_174 CRMO11-05L_220 CRMO11S-05_86 CRMO11S-05_85 CRMO11-05L_218 CRMO11-05L_229 CRMO11S-05_87 CRMO11-05L_223 CRMO11-05M_169 CRMO11-05L_227 CRMO11-05L_222 CRMO11-05M_170 CRMO11-05M_175 Spot CRMO11- Mesoarchean 1 CRMO11-07_M_127 CRMO11-07_S_211 CRMO11-07_S_206 CRMO11-07_M_131 CRMO11-07_S_207 CRMO11-07_M_140 CRMO11-07_M_133 12942 CRMO11-07_M_130 0.23 Neoarchean 155025 CRMO11-07_M_128 15.261 10.05 0.5119 9.69 0.96

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

186

15 40 14 39 32 17 49 23 53 37 10 13 35 34 47 54 33 33 33 10 78 28 23 35 6

% %

71 ±2s ±2s 196 135 179 132 215 280 121 163 116 136 182 177 200 160 106 160 134 115 137 131 189 179 136 139

705 2570 1916 2582 1914 2078 2420 1585 2257 1465 1897 2544 2565 3066 2218 2256 1808 1569 2031 2000 1961 2684 2620 2653 2220

206Pb* 206Pb*

91 81 85 79 82 83 81 80 86 82 93 83 84 60 93 73 81 74 86 90 66 77 ±2s ±2s 115 136 100 (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

9 9 282 2774 2443 2773 2434 2509 2652 2195 2558 2104 2364 2668 2645 1390 3290 2755 2770 2475 2309 2454 2428 2379 3089 3021 2742 235U 235U

207Pb* 207Pb*

45 39 53 48 48 42 67 50 42 41 49 44 41 37 40 48 57 53 71 60 39 66 46 52 ±2s ±2s 103

2934 2926 2917 2915 2903 2878 2834 2827 2806 2804 2795 2764 2707 2690 3430 3176 3170 3079 3048 2825 2809 2760 3411 3276 3153 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 15.223 9.04 0.5165 10.089 8.61 8.78 14.349 0.95 0.3460 8.93 9.994 8.14 0.4926 10.831 8.52 0.93 12.35 8.42 0.3457 0.3804 0.94 7.690 12.08 8.00 0.98 0.94 11.419 9.11 8.91 6.942 0.2788 0.4193 9.255 8.58 9.17 8.54 0.94 12.843 0.2552 8.78 0.96 9.08 12.528 8.83 0.3420 0.4839 0.96 8.70 2.932 8.26 8.67 0.4886 0.94 12.28 0.96 8.34 0.1155 0.96 10.60 0.86 14.077 8.90 0.4107 8.54 0.96 681 4186 1150 1948 1654 3791 3237 2285 3234 2877 4650 1219 4948 0.54 0.52 0.56 0.44 0.55 0.51 0.53 0.37 0.76 0.31 0.07 0.40 66337 24.549 8.51 0.6089 0.60 8.18 0.95 0.96 3 1042914 14.303 6.34 0.4189 0.47 5.56 39941 0.88 8.718 0.10 10.18 0.19 11664 0.2756 10.208 32900 9.62 7.92 9.930 0.95 0.3704 8.77 6.60 0.3638 0.83 7.97 0.91 0.44 0.71 18842 19.961 0.66 9.34 16607 0.5013 18.595 8.32 6.89 0.45 0.89 0.5091 15021 6.25 13.886 0.91 8.11 0.4110 7.43 0.92

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 893 551 588 529 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 2538 1191 1319 1682 1836 1371 2334 1367 1365 2281 4716 6802 2875 3148 1481 1349 2972 10278 0.19 12948 10.442 10.75 0.3237 10.15 0.94 0 Ratios Isotope Corrected (Ma) Apparent ages Ratios Isotope Corrected (Ma) Apparent ages

12 -07_S_213 11 Spot CRMO11-07_M_129 CRMO11-07_M_141 22589 CRMO11-07_M_134 0.32 CRMO11-07_S_218 178909 14.360 CRMO11-07_S_216 9.57 CRMO11-07_S_212 0.4898 17923 CRMO11-07_M_138 9.26 CRMO11-07_M_139 0.25 0.97 CRMO11-07_M_135 20674 12.627 CRMO11-07_S_217 14.47 CRMO11-07_S_220 0.4556 13.88 CRMO11-07_S_209 0.96 CRMO CRMO11-07_M_136 Spot CRMO11- Paleoarchean CRMO11-12_S_184 CRMO11-12_L_17 Mesoarchean 1 CRMO11-12_L_14 CRMO11-12_S_179 CRMO11-12_L_13 CRMO11-12_L_7 CRMO11-12_S_19 CRMO11-12_L_36 Neoarchean CRMO11-12_L_31 CRMO11-12_L_16 CRMO11-12_S_181 20648 0.36 234933 9.415 8.08 0.3556 7.73 0.96

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

187

43 64 49 32 16 48 26 59 19 29 39 24 10 20 39 29 17 31 38 47 19 29 37 38 24 72 80 37 1 7 3 4 5 %

60 99 86 80 98 77 83 55 40 ±2s 120 204 106 129 157 112 145 144 208 340 108 124 126 170 149 147 155 154 139 166 178 141 125 247

832 620 1710 1092 2681 1490 1893 2232 1451 1993 1181 2145 1916 2687 1664 2029 2318 2106 1659 2461 1887 2144 1838 1657 1452 2097 1866 1657 2389 1643 2170 2402 1679

206Pb*

80 55 95 74 59 76 55 81 78 57 71 76 81 94 55 56 60 79 66 97 78 85 52 62 83 87 90 80 76 65 ±2s 164 110 150 (Ma) 238U* (Ma) disc.

261 2231 1769 2670 2032 1490 1246 2422 1966 2285 1769 2363 2242 2609 2093 2297 2438 2333 2085 2499 2210 2342 2179 2065 1933 2305 2177 2054 2434 2041 2472 2465 2082 235U 207Pb* 2

66 47 63 47 49 51 57 46 44 42 46 39 40 56 51 42 56 43 44 60 46 41 39 43 54 48 39 64 42 46 48 53 46 ±2s

2751 2698 2662 2639 2614 2612 2589 2586 2562 2558 2558 2557 2555 2548 2546 2545 2541 2537 2537 2530 2524 2519 2518 2500 2496 2495 2485 2479 2473 2472 2731 2518 2507 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 8.000 8.91 0.3038 12.867 7.96 10.04 0.89 0.5157 3.340 9.30 0.93 7.61 0.1378 2.411 7.02 0.92 7.63 0.1010 6.84 0.90 5.708 8.683 7.14 0.2526 9.12 6.37 0.3845 0.89 8.67 0.95 10.039 17.77 0.4326 17.45 0.98 10.717 7.09 0.4649 6.14 0.87 6.558 10.21 0.2932 9.48 0.93 6.769 16.95 0.2976 16.73 0.99 945 813 803 911 7433 8569 3207 3055 6361 4620 0.13 0.11 0.27 22962 4.708 0.12 0.49 20890 6.61 6.399 0.1846 5.95 8.42 0.90 0.2601 7.93 0.94 0.26 41274 8.492 0.32 21137 6.31 9.253 0.3622 0.23 5.78 8.26 0.92 0.29 59551 0.3948 6.855 7.92 45691 0.96 8.607 0.23 6.23 169476 0.35 0.2944 6.17 8.947 5.45 16584 0.3700 0.87 6.52 6.795 5.64 0.3864 0.91 8.90 5.99 0.2936 0.92 8.50 0.96 0.49 0.12 17518 6.640 0.44 5.84 0.2931 0.73 5.26 0.90 0.87 11579 9.996 19870 6.465 8.66 12.55 0.4486 0.2903 8.30 12.25 0.96 0.98 0.42 19200 10.412 8.16 0.4002 7.63 0.94 0.43 0.45 10293 10.333 7.00 0.4515 3.06 6.25 0.89 1.83 11471 12.054 10.06 1.77 0.5171 9.48 0.94 2.00 1.81 U Th/U 206Pb 207Pb* 127 66 47 52 73 362 937 915 124 ppm ppm 204Pb 235U* (%) 8286 1261 3498 1128 1265 2249 2045 1140 1719 1134 2557 2285 3927 2003 1224 Ratios Isotope Corrected (Ma) Apparent ages Spot CRMO11-12_S_201 CRMO11-12_L_26 CRMO11-12_L_22 CRMO11-12_S_178 CRMO11-12_L_29 CRMO11-12_L_12B CRMO11-12_S_185 19679 Paleoproterozoic 0.06 CRMO11-12_L_12A 131509 CRMO11-12_S_189 29844 8.266 CRMO11-12_S_196 0.07 8.42 17590 CRMO11-12_L_25 458571 0.3413 0.07 CRMO11-12_S_203 9.861 13230 7.85 54162 CRMO11-12_S_200 0.93 8.79 0.13 5.932 CRMO11-12_S_197 7 0.4137 15375 51433 9.02 CRMO11-12_L_18 8.34 0.12 4.712 0.95 0.2524 CRMO11-12_L_34 17170 8.45 8.63 CRMO11-12_L_32 8.101 0.96 0.2010 CRMO11-12_L_8 9.00 8.00 CRMO11-12_L_21 0.95 0.3461 CRMO11-12_L_9 8.68 0.96 CRMO11-12_L_19 CRMO11-12_S_191 17954 CRMO11-12_S_199 0.18 23883 134380 CRMO11-12_L_37A 0.15 7.812 CRMO11-12_S_202 16782 30276 10.73 CRMO11-12_S_187 9.038 0.3401 0.07 CRMO11-12_L_23 10.38 8.56 0.97 20528 CRMO11-12_L_20 0.3946 7.550 CRMO11-12_S_188 8.19 9.47 0.96 CRMO11-12_S_204 15582 0.3299 CRMO11-12_L_35 0.12 9.19 396079 CRMO11-12_S_182 0.97 7.537 CRMO11-12_S_194 9.76 0.3357 9.48 0.97

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

188

22 26 22 13 42 33 45 14 35 12 23 21 28 23 11 27 27 11 9 6 6 3 4 2 0 % %

96 82 99 ±2s ±2s 197 121 132 167 105 107 207 197 142 210 276 196 197 167 169 200 195 187 206 106 126 231

2927 1988 1887 1989 2177 1516 1731 1456 3105 2875 2278 3034 3123 2847 2526 3000 2538 2335 2484 2779 3067 1864 1858 2207 3067

206Pb* 206Pb*

85 69 77 58 86 59 66 74 85 86 75 89 87 96 74 82 94 87 85 60 64 67 ±2s ±2s 111 102 101 (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

66 2228 2170 2224 2317 1945 2076 1904 3201 3095 2811 3133 3163 3033 30 2867 3052 2853 2742 2812 2935 3039 2150 2144 2322 3065 235U 235U 207Pb* 207Pb*

52 49 52 46 50 46 41 37 43 45 47 40 45 43 57 53 48 53 46 58 43 48 47 47 71 ±2s ±2s

2456 2450 2447 2443 2440 2437 2435 3262 3241 3219 3197 3188 3158 3158 3117 3086 3083 3058 3057 3044 3020 2435 2432 2424 3063 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 7.970 7.478 7.70 7.936 0.3612 8.57 8.797 7.05 0.3400 6.42 0.92 5.793 8.07 0.3615 9.43 0.94 6.723 5.63 0.4018 6.77 0.88 9.02 0.2651 7.46 0.96 6.09 0.3081 0.90 6.95 0.93 22.397 8.74 0.6187 8.41 20.872 0.96 9.19 0.6010 8.69 19.475 0.95 8.80 15.842 10.08 0.5747 0.4797 8.37 15.602 9.42 0.95 8.59 0.93 0.4825 13.892 10.74 8.04 14.956 0.4364 0.94 9.86 16.999 10.22 0.95 0.4700 9.04 18.944 9.44 0.5389 8.86 0.96 8.29 0.6092 0.92 8.44 0.95 14.938 7.91 0.4240 7.37 0.93 19.457 10.45 0.6092 9.46 0.91 967 731 2295 1545 1995 4855 5662 7471 2959 3345 1750 7918 7253 4737 1566 1595 2771 0.53 1.80 1.17 1.33 48490 20.077 1.11 8.92 1.07 0.5621 116555 0.79 21.535 8.50 226326 0.72 11.45 0.95 18.822 0.6234 1.13 8.99 11.16 0.98 0.5553 1.31 8.52 0.95 1.07 0.74 1.91 0.91 0.71 0.63 2.53 10017 7.310 0.60 1.60 52191 6.73 7.264 11189 0.3354 8.839 6.10 7.15 0.91 0.3340 7.30 6.59 0.4083 0.92 6.76 0.93 0.58 1.42 0.71 1.23 1.49 30659 19.198 7.71 0.5925 6.96 0.90

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 86 86 319 576 249 185 202 542 367 436 905 882 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 1154 2377 1008 1867 1209 5375 1408 1133 1988 1862 2041 1902 Ratios Isotope Corrected (Ma) Apparent ages Ratios Isotope Corrected (Ma) Apparent ages

13 Spot CRMO11-12_L_10 CRMO11-12_S_180 CRMO11-12_L_24 CRMO11-12_S_192 CRMO11-12_L_33 CRMO11-12_L_30 CRMO11-12_L_11 CRMO11-12_S_183 26998 CRMO11-12_L_15 0.07 CRMO11-12_L_28 45258 5.524 8.56 0.2535 Spot 8.21 0.96 CRMO11- Mesoarchean 2 CRMO11-13_S_177 CRMO11-13_S_175 CRMO11-13_L_5 CRMO11-13_S_164 CRMO11-13_S_166 CRMO11-13_S_160 CRMO11-13_S_144 CRMO11-13_S_157 CRMO11-13_L_3B CRMO11-13_S_152 CRMO11-13_S_161 CRMO11-13_S_150 CRMO11-13_S_172 CRMO11-13_S_176 CRMO11-13_S_151

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

189

50 60 11 16 23 21 49 56 20 50 16 17 22 10 25 37 28 13 23 70 9 9 2 7 9 % %

78 ±2s ±2s 126 106 214 192 210 162 165 138 131 105 156 108 140 212 219 158 149 129 167 135 367 154 159 187

880 1649 1377 3177 2537 3104 2253 2259 1520 2496 1334 2224 1463 2601 2274 2192 3101 3512 2743 2214 1857 3059 2151 3408 2963

206Pb* 206Pb*

85 80 86 90 91 85 85 95 75 83 84 75 71 63 61 87 82 78 93 67 84 ±2s ±2s 100 121 111 147 (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

2324 2141 3030 2753 2974 2550 2524 2090 2610 1951 2472 2021 2624 2469 2383 3525 3642 2882 2539 2314 1503 2738 2291 3563 3380 235U 235U

207Pb* 207Pb*

59 41 42 41 69 55 50 56 81 66 58 41 48 51 49 44 45 54 51 65 98 50 52 ±2s ±2s 140 115

2984 2983 2933 2916 2888 2796 2744 2711 2699 2688 2682 2652 2642 2550 3776 3715 2981 2811 2745 2634 2541 2510 2419 3652 3637 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 32.428 6.85 0.6966 6.00 0.88 8.859 9.37 7.234 0.2915 18.764 8.63 8.91 0.92 8.90 0.2382 0.6370 17.712 8.54 8.52 0.96 9.52 0.96 0.6185 8.52 0.90 6.833 12.070 10.73 0.2659 7.99 5.829 10.19 0.4729 10.406 0.95 9.56 6.31 9.02 6.322 0.2300 0.79 0.4120 8.68 8.59 8.31 0.91 0.2548 0.92 9.450 8.22 0.96 12.10 0.4050 11.76 0.97 31.202 7.26 35.136 0.6177 6.39 6.42 0.7242 0.88 5.50 0.86 12.259 10.66 0.4970 6.54 0.61 11.195 9.34 0.4098 8.764 8.93 8.97 0.96 0.3339 8.35 0.93 10.379 13.03 0.4230 3.396 11.06 0.85 13.833 9.99 15.56 8.547 0.1463 0.6072 10.22 15.07 9.52 0.97 0.3960 0.95 8.44 0.83 502 963 956 457 831 403 857 1107 3507 9299 6445 2245 1890 1839 3543 3700 9329 2092 8848 105382 0.79 1.67 0.80 0.61 25569 14.051 1.07 9.48 0.63 0.4822 0.71 69901 9.15 11.328 0.96 9.14 0.4184 8.51 0.59 0.93 0.61 0.94 0.34 1.10 0.55 1.31 14202 16.094 6.36 0.5304 5.76 0.91 0.64 0.72 0.12 0.51 0.49 0.59 0.31 47716 26.892 8.55 0.5835 7.86 0.92 1.25 0.98 0.91

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 44 16 42 150 767 128 714 186 212 297 964 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 1428 2270 1032 4296 1643 2852 1202 2220 1288 2917 3549 1733 1062 Ratios Isotope Corrected (Ma) Apparent ages Isotope Ratios Corrected (Ma) Apparent ages

14 Spot Neoarchean CRMO11-13_S_159 CRMO11-13_L_6 CRMO11-13_S_142 CRMO11-13_S_165 CRMO11-13_S_147 CRMO11-13_L_3A CRMO11-13_S_154 CRMO11-13_S_146 CRMO11-13_S_168 CRMO11-13_S_162 13525 CRMO11-13_S_173 0.45 CRMO11-13_L_2 78335 CRMO11-13_S_174 11.004 CRMO11-13_S_156 9.17 0.4196CRMO11-13_S_148 8.65 CRMO11-13_L_1 0.94 CRMO11-13_S_143 CRMO11-13_S_153 CRMO11-13_S_169 CRMO11-13_S_149 CRMO11-13_S_171 Spot CRMO11- Paleoarchean CRMO11-14S_98 CRMO11-14S_83 CRMO11-14S_86 CRMO11-14M_44

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

190

14 15 33 21 13 19 31 16 22 24 21 21 25 23 16 18 16 10 12 13 28 13 19 10 16

7 6 4 5 8 7 6 9 % 44 ±2s 149 170 149 178 161 265 164 148 197 234 158 137 155 212 133 131 127 143 132 115 150 141 140 164 125 148 147 148 133 159 140 127

1

030 2868 3138 2556 3305 2839 3064 2765 2421 3062 3111 3121 2934 2870 2863 2829 2600 2653 2841 3122 2772 2817 2994 2935 2889 2498 2890 2742 3065 3070 2979 2987 2803

206Pb*

3 70 74 84 75 77 79 76 67 85 98 73 67 75 97 67 66 62 65 66 57 67 65 66 76 67 69 72 68 61 74 64 62 ±2s 136 (Ma) 238U* (Ma) disc.

88 3409 3135 3418 3191 3284 3071 2900 30 3163 3181 3409 3321 3285 3226 3186 2998 3013 3091 3205 3058 3073 3161 3146 3121 3102 2929 3100 3034 3168 3169 3132 3134 3055 235U

207Pb*

51 78 52 56 58 55 50 57 51 52 54 60 57 51 49 52 54 57 49 50 51 54 55 57 51 55 54 48 59 49 51 ±2s 137

50 3572 3529 3485 3421 3278 3252 3234 3226 3582 3565 3549 3461 3421 3420 3278 3262 3257 3257 3252 3245 3245 3245 3244 3242 3240 3239 3234 3234 3232 3231 3229 3228 3226 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 20.918 8.69 27.966 0.4867 7.65 7.06 0.6699 0.81 6.87 0.90 16.392 7.92 0.4557 7.11 0.90 4997 7984 3993 0.66 815410 27.705 7.58 0.6271 6.83 0.90 0.24 250386 22.173 7.89 0.5532 0.35 7.02 0.89 167300 19.585 8.18 0.5356 7.31 0.89 0.67 886973 19.927 7.19 0.5603 6.46 0.90 0.59 250405 21.941 8.78 0.6202 7.99 0.91 0.13 267647 27.711 0.07 10.02 0.6229 0.21 25645 25.341 9.45 0.84 21224 0.94 7.51 24.409 0.54 0.5763 6.86 0.11 6.69 0.5608 374186 0.89 22.983 5.90 0.75 0.86 7.74 664032 0.40 0.5591 24.385 13.99 10085 6.69 22.061 0.6086 0.86 10.88 9.94 0.78 0.30 0.5509 0.56 13836 9.25 18.164 0.43 15688 0.93 6.98 18.431 0.49 58557 0.4969 6.80 19.988 790652 0.72 22.478 6.20 0.5091 6.45 0.47 0.89 6.71 6.04 0.5538 0.70 31954 0.6231 0.89 5.54 19.323 0.57 17793 5.76 0.86 3420801 6.86 19.626 0.86 21.484 0.61 0.5373 5.93 6.95 0.67 28439 5.84 0.5480 21.165 0.6001 0.27 47870 0.85 5.04 6.73 20.628 6.20 367487 0.40 0.85 20.216 0.89 0.5912 6.86 0.58 14380 7.88 5.90 0.5765 16.892 25435 0.5655 0.88 5.96 7.03 20.183 0.46 7.06 0.87 0.4732 7.13 0.90 552990 0.50 18.851 6.04 0.5656 0.58 76248 0.86 7.45 6.35 21.645 0.49 36058 0.5300 0.89 6.97 21.672 0.47 72192 6.58 0.6088 6.24 20.848 0.88 0.52 27183 6.06 0.6101 7.64 20.893 0.52 48932 0.87 5.45 0.5873 6.60 21.540 10040 0.87 6.66 0.5893 6.86 19.269 0.87 5.84 0.6080 6.44 0.88 6.08 0.5446 0.89 5.58 0.87 U Th/U 206Pb 207Pb* 817 582 456 256 133 997 889 165 511 769 580 892 118 828 460 803 904 863 159 606 658 861 592 846 589 615 851 573 ppm ppm 204Pb 235U* (%) 1856 2327 1411 1001 1016 Ratios Isotope Corrected (Ma) Apparent ages Spot CRMO11-14S_89 CRMO11-14S_92 CRMO11-14M_41 CRMO11-14M_40 CRMO11-14L_17B CRMO11-14M_46 CRMO11-14M_45B CRMO11-14M_42 CRMO11-14L_31B CRMO11-14M_45A Mesoarchean 2 CRMO11-14M_34 CRMO11-14XL_25 CRMO11-14L_13 CRMO11-14XL_33 CRMO11-14M_65 CRMO11-14L_17A CRMO11-14M_56 CRMO11-14L_24 CRMO11-14XL_31 CRMO11-14XL_36 CRMO11-14L_1 CRMO11-14XL_27 CRMO11-14M_39 CRMO11-14L_22 CRMO11-14L_6 CRMO11-14M_38 CRMO11-14S_97 CRMO11-14XL_20 CRMO11-14M_67 CRMO11-14XL_24 CRMO11-14S_91 CRMO11-14L_23 CRMO11-14M_51

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

191

10 10 12 14 25 11 11 13 11 15 15 12 12 15 18 28 18 19 18 10 9 4 9 6 6 8 7 6 9 7 8 6 8 5 % ±2s 137 163 147 138 147 138 131 138 132 146 123 148 145 128 176 149 153 162 173 137 137 143 141 181 151 148 136 152 110 115 148 157 124 116

704 2992 3129 2978 2962 3062 3053 2936 2886 2987 2818 2504 3048 3064 2937 2947 2896 2994 2941 3031 2831 2828 2894 3000 3051 3008 2879 2809 2707 2430 2724 3057 2685 2904 206Pb*

2 64 71 67 64 67 63 62 66 62 70 65 66 65 60 78 69 69 74 77 66 68 69 65 79 70 71 65 78 61 58 68 76 62 56 ±2s (Ma) 238U* (Ma) disc.

7 7 3133 3185 3118 3111 3150 3142 3093 3067 3105 3028 3156 3161 3110 3114 3092 3133 3109 3145 3060 3056 3083 3126 3144 3125 3071 3040 2990 2862 2993 3130 2974 2980 3052 287 235U 207Pb*

51 52 50 50 54 51 50 54 52 56 48 47 48 50 49 54 52 58 58 51 55 56 56 51 69 52 48 54 53 49 47 52 49 52 ±2s

3225 3220 3210 3209 3207 3199 3197 3188 3181 3170 3225 3224 3224 3223 3223 3220 3219 3210 3209 3208 3204 3201 3199 3197 3186 3183 3180 3177 3176 3172 3151 3149 3223 3214 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 0.92 29116 20.878 6.59 0.5905 5.74 0.87 0.80 50064 20.558 0.79 6.93 53363 0.5871 20.414 0.60 6.19 6.60 30831 0.89 0.5832 21.255 5.79 6.95 0.83 0.88 0.6081 132712 21.073 6.04 0.58 0.87 6.53 18158 0.6058 20.037 1.09 5.68 6.40 0.87 79615 0.5769 19.497 5.55 6.83 0.61 0.87 0.5646 144614 20.275 5.94 0.87 6.41 0.5894 5.51 0.86 0.14 50588 18.721 7.30 0.5483 6.39 0.88 0.51 82342 22.023 7.34 0.6248 6.56 0.89 0.38 0.55 51734 21.370 348313 0.58 21.502 6.84 41478 6.67 0.6045 20.389 0.57 0.6084 6.11 6.21 166908 0.64 5.96 0.89 20.021 0.5771 0.89 22953 7.11 5.41 20.871 0.42 0.5671 0.87 7.12 0.56 15717 6.37 0.5912 20.371 0.90 27926 6.40 7.65 21.142 0.35 0.90 0.5781 7.89 40437 6.85 0.6003 19.285 0.39 0.89 7.16 7.02 18054 0.91 0.5506 19.835 0.42 6.01 7.13 39528 0.85 0.5666 20.731 0.40 6.12 6.68 128251 0.44 0.86 21.123 0.5926 31188 8.19 5.87 20.705 0.27 0.6053 0.88 7.20 16439 7.43 0.5946 19.578 0.91 0.32 6.28 7.32 17649 0.87 0.5629 18.965 1.00 6.39 6.78 0.40 59398 0.87 0.5460 18.010 15342 5.96 8.16 15.759 0.46 0.88 0.5219 6.35 950113 0.63 18.069 6.88 0.4577 0.25 61906 0.84 6.01 5.45 20.816 0.59 13484 0.5258 0.86 6.97 17.709 14835 5.19 0.6068 7.87 17.825 0.86 0.56 6.06 0.5166 6.40 207291 0.19 0.87 19.200 7.14 0.5212 26061 0.91 5.79 5.60 15.999 0.5690 0.88 6.77 4.97 0.4747 0.86 5.94 0.88 0.52 23327 20.467 8.07 0.5796 7.43 0.92 0.71 28540 19.361 6.80 0.5514 5.96 0.88 U Th/U 206Pb 207Pb* 862 366 522 978 494 632 578 881 248 526 148 546 511 333 323 210 298 785 983 476 766 934 212 467 745 ppm ppm 204Pb 235U* (%) 1327 1515 1027 1168 1430 1231 1924 1303 2270

Ratios Isotope Corrected (Ma) Apparent ages 14 L_23 L_12 14X 14 Spot CRMO11-14L_29 CRMO11-14XL_21 CRMO11-14XL_37 CRMO11-14XL_19 CRMO11-14L_ CRMO11-14L_7 CRMO11-14L_16 CRMO11- CRMO11-14M_64 CRMO11-14S_90 CRMO11- CRMO11-14M_35 CRMO11-14L_4 CRMO11-14M_61 CRMO11-14L_8 CRMO11-14L_11 CRMO11-14M_55 CRMO11-14M_47 CRMO11-14S_100 CRMO11-14L_10 CRMO11-14M_66 CRMO11-14S_95 CRMO11-14M_62 CRMO11-14L_30 CRMO11-14L_31A CRMO11-14XL_29 CRMO11-14S_96 CRMO11-14XL_32 CRMO11-14M_54 CRMO11-14S_82B CRMO11-14L_5 CRMO11-14M_58 CRMO11-14XL_22 CRMO11-14XL_35

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933

192

12 11 41 37 16 15 27 41 11 57 15 16 11 14 16 19 15 17 27 26 28 30 27 24 11 32 31 6 7 1 9 4 9 %

95 76 98 97 ±2s 116 134 139 144 107 189 111 158 149 288 133 132 119 137 139 136 137 133 150 117 153 132 111 114 163 119 106 124 102

2835 2849 2983 2949 2000 3134 2121 2677 2716 3696 1988 2781 1439 2761 2719 2856 2902 2763 3005 2705 2614 2719 2663 2379 2850 2397 2332 2287 2356 2429 2744 2183 2198

206Pb*

58 65 64 66 67 86 66 77 72 60 66 61 65 60 65 65 66 64 68 76 60 75 57 64 62 64 85 65 62 62 62 58 ±2s 108 (Ma) 238U* (Ma) disc.

3016 3017 3071 3056 2605 3120 2662 2914 2930 3306 2569 2936 2183 2988 2958 3014 3032 2971 3069 2941 2898 2944 2908 2773 2979 2773 2739 2716 2744 2772 2908 2627 2627 235U 207Pb*

50 54 52 50 57 72 54 58 53 65 52 58 55 53 51 51 51 55 60 55 53 55 56 54 51 52 62 56 58 54 52 60 54 ±2s

3139 3130 3130 3128 3116 3111 3103 3082 3081 3077 3066 3044 2979 3144 3125 3122 3119 3111 3102 3082 3074 3067 3060 3055 3053 3043 3032 3024 2989 2976 3115 3107 3101 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 17.113 7.09 0.5214 6.03 0.85 18.497 5.97 18.511 0.5523 6.73 19.592 5.06 0.5558 6.68 0.85 5.81 0.5884 0.86 5.82 0.87 12.011 7.18 0.3638 6.23 0.87 16.634 8.06 0.5149 24.939 11.01 7.21 0.7742 0.89 10.24 0.93 11.558 6.46 0.3613 5.57 0.86 17.019 6.91 0.5393 5.89 0.85 7.581 6.81 0.2501 5.88 0.86 17.657 6.88 0.5351 6.06 0.88 17.162 6.30 0.5247 5.29 0.84 36 81 39 001 1485 2798 22 10 5024 1435 2451 4858 5112 8239 129 0.80 28178 19.291 6.86 0.5801 6.09 0.89 0.72 35179 20.602 8.83 0.6261 7.60 0.86 0.18 99891 16.919 7.50 0.5239 6.74 0.90 0.41 54621 17.967 1.49 6.76 1.25 0.5347 3 5.88 0.75 0.87 0.38 18865 17.418 1.15 80398 6.26 18.463 46384 0.5247 6.75 18.805 5.39 0.5573 6.76 0.86 5.96 0.5686 0.40 0.88 5.94 31143 0.88 19.539 6.65 0.25 0.5939 29096 5.71 16.362 0.54 0.86 7.94 1.40 15253 0.4999 16.528 7.00 7.82 0.88 0.5115 0.51 7.02 0.43 19804 0.90 14.349 0.15 24842 5.96 17.798 0.18 0.4464 6.70 0.53 18235 4.95 0.5560 14.353 0.53 28425 0.83 5.74 6.55 13.849 60505 0.86 0.4503 6.75 13.511 0.54 5.52 0.4359 9.01 100324 0.61 0.84 13.912 5.84 0.4258 115183 1.51 0.87 6.84 14.334 8.44 0.33 15593 0.4411 0.94 6.53 16.534 11665 6.03 0.4576 6.53 12.287 0.88 0.46 5.25 0.5306 6.57 0.81 365996 12.291 5.53 0.4030 0.85 6.18 5.51 0.4062 0.84 5.20 0.84 1.18 1.73 2.70 2.10 1.80 10587 12.759 3.20 7.00 0.3897 6.12 0.87 1.21 1.66 2.09 U Th/U 206Pb 207Pb* 58 70 55 73 76 54 74 65 63 508 118 131 809 392 921 471 969 825 108 987 482 757 891 686 492 638 616 102 533 700 ppm ppm 204Pb 235U* (%) 1052 1276 1723 Ratios Isotope Corrected (Ma) Apparent ages Spot CRMO11-14S_94 CRMO11-14XL_30 CRMO11-14L_3 CRMO11-14L_21 CRMO11-14L_25 CRMO11-14L_32 CRMO11-14S_88 CRMO11-14L_33 CRMO11-14L_18A CRMO11-14L_27 CRMO11-14M_52 CRMO11-14M_59 CRMO11-14M_48 CRMO11-14L_18B CRMO11-14M_37 CRMO11-14L_26 CRMO11-14M_49 CRMO11-14S_82A CRMO11-14M_57 CRMO11-14M_53 CRMO11-14XL_28 CRMO11-14M_63 CRMO11-14L_19 CRMO11-14M_36 CRMO11-14L_15A CRMO11-14L_2 CRMO11-14S_81 CRMO11-14L_15B CRMO11-14S_93 CRMO11-14S_99 CRMO11-14S_87 CRMO11-14L_20 CRMO11-14S_84

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

193

26 43 41 15 30 39 37 23 18 13 11 15 14 14 41 26 34 17 22 10 10 16 1 5 % %

2 2 97 93 98 ±2s ±2s 110 102 104 107 123 13 157 214 116 121 195 124 138 108 177 142 126 120 133 136 116

2281 1811 1820 2466 2073 1832 2340 2726 2821 2970 3009 2899 3259 2915 2922 1828 3307 2708 2421 2856 2690 3015 3534 2849 206Pb* 206Pb*

62 71 63 56 66 62 68 65 72 92 55 60 80 59 65 72 80 70 55 60 60 62 59 57 ±2s ±2s (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

2629 2377 2339 2664 2455 2312 2965 3103 3118 3173 3185 3140 3281 3139 3141 2366 3393 3143 2989 3122 3049 3183 3377 3111 235U 235U 207Pb* 207Pb*

53 68 55 51 62 59 50 50 45 46 48 53 46 48 50 63 70 50 46 47 48 49 52 46 ±2s ±2s

2908 2906 2829 2818 2789 2769 3421 3356 3315 3304 3298 3298 3294 3285 3284 2867 3444 3434 3396 3298 3295 3291 3285 3284 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 48 4.83 0.85 238U 238U 206Pb* 206Pb* ±2s ±2s 12.313 6.62 9.395 0.4245 7.72 5.74 0.3244 0.87 12.790 6.49 0.84 5.98 0.4661 5.08 0.85 22.034 5.71 0.59 21.030 6.16 0.5679 5.17 0.84 20.998 6.11 21.055 0.5718 6.68 5.29 0.5734 0.87 5.88 0.88 9.013 6.95 0.3263 8.751 6.09 0.88 6.84 0.3286 5.80 0.85 458 879 1449 9569 4069 1450 8915 7411 8032 0.08 601404 17.543 0.04 7.05 52960 0.4376 20.232 0.31 6.28 6.72 0.89 0.33 45754 0.5264 20.553 598954 21.767 5.92 7.43 0.88 9.47 0.5491 0.5853 6.86 9.00 0.92 0.95 0.36 25333 24.302 8.16 0.6578 7.62 0.93 0.38 1.17 1.21 10827 9.275 7.84 0.3279 6.81 0.87 0.83 156010 0.14 27.253 41192 8.19 21.093 0.23 0.6702 7.18 13190 6.83 0.5220 17.977 0.83 6.41 5.68 0.89 0.4558 4.85 0.86 0.85 0.31 0.50 13228 20.653 0.45 6.21 28686 0.5575 19.138 0.29 5.45 6.24 0.47 62554 0.88 0.5178 21.980 0.61 19782 5.46 6.34 26.815 0.57 0.87 0.5963 5.99 0.37 5.52 0.7301 18065 0.87 5.01 20.403 0.84 5.85 0.5557 5.06 0.86 3.50 2.84 2.41 2.42 14495 10.221 7.13 0.3792 6.05 0.85

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 35 78 55 48 238 104 128 445 428 566 118 536 228 515 505 424 189 187 536 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 2543 1498 1875 1877 1666 Ratios Isotope Corrected (Ma) Apparent ages Isotope Ratios Corrected (Ma) Apparent ages

15 Spot Neoarchean CRMO11-14S_85 CRMO11-14M_43B CRMO11-14M_43A CRMO11-14XL_34 CRMO11-14L_28 CRMO11-14M_60 CRMO11-14M_50 Spot CRMO11- Paleoarchean CRMO11-15S_116 CRMO11-15S_117 CRMO11-15S_108 CRMO11-15XL_41 CRMO11-15S_107 Mesoarchean 1 CRMO11-15XL_42 CRMO11-15XL_50 CRMO11-15XL_51 CRMO11-15XL_46 CRMO11-15S_110 CRMO11-15XL_48 CRMO11-15XL_55 CRMO11-15S_103 CRMO11-15S_109 CRMO11-15XL_54 CRMO11-15S_101 CRMO11-15XL_39

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

194

15 13 12 13 30 10 21 40 37 42 11 11 66 34 11 10 14 16 43 32 39 14 41 121

3 3 % %

98 78 ±2s ±2s 134 136 132 127 143 145 134 112 143 114 115 129 121 137 244 139 144 108 109 108 134 (Ma) disc.

3 2 2 U* 34 38 31 2894 2935 2963 2901 2440 2989 2673 2111 2206 2046 2814 2806 3170 3034 3344 3355 2909 2823 2055 2371 2168 2864 2060 238 206Pb* 206Pb*

65 64 62 62 74 68 67 67 79 69 56 61 11 42 56 60 96 65 68 65 61 62 63 51 ±2s ±2s (Ma) (Ma) 238U* (Ma) disc.

4 3 39 35 38 29 3126 3150 3109 2905 3142 3000 2724 2772 2686 2978 2966 3364 3186 31 3298 3300 3124 3084 2719 2879 2776 3090 2683 235U 235U

207Pb* 207Pb*

54 50 53 49 54 51 51 52 52 46 46 27 46 50 50 46 50 50 50 49 45 46 48 ±2s ±2s 228 112 908

57 151 100 3279 3270 3246 3245 3242 3227 3217 3214 3211 3092 3076 3482 3284 3273 3270 3267 3266 3259 3259 3257 3254 3240 3192 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 20.736 6.68 0.5667 5.75 0.86 20.366 6.39 0.5683 21.081 5.45 6.97 0.85 0.5900 6.06 0.87 0.035 12.38 0.038 0.0053 7.24 7.77 0.0059 0.63 5.50 0.76 0.029 37.33 0.0049 7.46 0.20 - 41 1346 3743 4866 8067 1318 0.21 393092 21.238 6.37 0.5835 5.54 0.87 0.15 23568 16.472 7.71 0.11 0.4601 0.13 29909 7.05 18.191 0.05 88571 0.91 6.93 13.624 0.04 14971 0.5138 7.03 14.326 11300 6.13 0.3874 8.32 13.088 0.40 0.88 6.25 0.4080 7.32 0.34 91128 0.89 7.66 0.3735 17.791 190763 0.92 17.554 6.53 5.83 0.89 6.35 0.5472 0.03 0.5454 5.05 5.66 0.87 0.89 0.31 154586 26.469 4.30 0.6352 3.93 0.91 0.71 0.28 17722 22.061 0.47 5.79 32821 0.6011 21.019 0.63 4.99 6.60 0.52 12964 0.86 0.5765 24.732 0.44 42461 5.78 6.14 24.797 0.62 38859 0.88 0.6799 9.79 20.687 0.17 21296 5.26 0.6828 6.76 19.847 0.25 17846 0.86 9.34 0.5702 7.02 13.558 0.08 14830 0.95 5.95 0.5495 6.91 16.036 0.39 39439 0.88 6.28 0.3754 6.33 14.395 0.89 6.15 0.4445 6.55 0.50 0.89 5.52 0.3997 0.26 0.87 5.87 27309 0.90 19.967 6.48 0.5595 5.79 0.08 0.89 41890 13.040 5.36 0.3766 0.08 4.43 0.83 1.30

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 526 402 518 443 594 845 165 695 820 786 353 395 497 877 849 119 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 1491 1148 1083 1336 1519 2137 4080 6000 3273 2028 Ratios Isotope Corrected (Ma) Apparent ages Ratios Isotope Corrected (Ma) Apparent ages

16 Spot CRMO11-15XL_45 CRMO11-15S_115 CRMO11-15S_118 CRMO11-15S_104 CRMO11-15S_102 CRMO11-15XL_40 CRMO11-15S_120 CRMO11-15S_125 CRMO11-15S_122 CRMO11-15XL_44 CRMO11-15XL_39A CRMO11-15S_114 CRMO11-15S_124 CRMO11-15S_113 CRMO11-15XL_49 CRMO11-15S_121 CRMO11-15S_119 CRMO11-15S_105 CRMO11-15S_123 CRMO11-15XL_52 CRMO11-15XL_43 CRMO11-15XL_53 Paleogene CRMO11-15S_111 CRMO11-15S_112 CRMO11-15S_106 Spot CRMO11- Neoarchean CRMO11S-16_71

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

195

18 11 13 21 15 11 27 17 20 13 12 14 11 18 12 19 21 23 15 16 17 23 18 18 30 1 7 % 0

39 26 39 77 65 64 92 39 54 40 44 76 44 49 61 54 80 ±2s 112 156 122 195 165 104 125 135 138 112 106

2791 2959 2920 2678 3269 2827 3212 3216 2702 2857 2741 3028 2940 2904 2955 2760 2924 2723 2651 2579 3180 3257 2986 2931 2731 2782 2776 2439 206Pb*

22 14 18 41 47 33 30 69 57 60 93 24 26 20 19 36 20 24 35 27 73 57 60 64 69 62 60 54 ±2s (Ma) 238U* (Ma) disc.

3070 3139 3118 3014 3248 3069 3218 3407 3174 3137 3061 3251 3134 3118 3136 3051 3105 3020 2975 2923 3440 3376 3248 3223 3103 3069 3063 2907 235U 207Pb*

24 15 14 33 30 28 52 64 50 64 21 18 10 24 14 16 19 54 64 49 52 54 64 65 64 30 37 ±2s 37

02 3258 3257 3248 3246 3234 3231 3222 32 3522 3488 3321 3278 3261 3259 3254 3249 3224 3224 3169 3595 3448 3413 3411 3353 3263 3257 3249 3392 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 19.570 2.31 0.5419 1.71 0.74 22.787 3.07 17.724 0.6458 3.65 2.52 0.5087 0.82 2.82 0.77 27.663 7.04 0.6469 6.18 0.88 3888 1876 8914 6985 0.62 512257 21.017 1.46 1.75 0.5826 0.38 43743 1.10 20.554 0.75 0.49 39492 1.87 18.457 162280 0.35 23.493 0.5729 4.23 25976 4.84 1.64 0.5149 19.535 0.6605 0.88 3.50 3.43 4.37 0.83 0.5504 0.90 2.83 0.83 0.34 115575 21.777 5.89 0.5206 4.17 0.71 0.18 61871 20.967 0.47 6.18 47886 0.5577 19.378 5.27 9.62 0.85 0.5300 8.72 0.91 0.43 140820 18.572 2.45 0.5256 2.23 0.91 1.96 134387 1.22 20.896 128495 0.99 2.64 20.560 0.5778 2.04 0.97 2.29 0.5690 0.87 0.57 94674 1.70 20.939 0.83 61846 1.98 19.185 0.5816 3.72 1.87 0.5344 0.94 3.40 0.78 0.92 18697 20.280 2.05 0.08 0.5739 0.13 1.86 22037 0.91 16.783 2.78 0.4918 2.53 0.91 0.14 0.70 15786 28.600 7.44 0.65 0.6378 0.42 10263 6.57 26.806 158721 0.11 0.88 23.493 5.80 0.32 20860 6.12 0.6573 22.913 16369 0.5892 4.05 6.63 20.233 5.25 0.70 0.5756 7.11 0.86 5.73 0.5274 0.20 0.86 6.22 266408 0.33 0.87 19.544 0.78 21834 6.43 19.426 11847 0.5396 6.24 16.509 4.97 0.5383 5.67 0.77 4.70 0.4598 0.75 3.94 0.69 0.46 60253 23.577 2.50 0.5996 1.62 0.65 1.76

U Th/U 206Pb 207Pb* 53 865 906 123 756 865 666 641 931 405 216 423 728 633 683 778 848 355 873 ppm ppm 204Pb 235U* (%) 1002 1385 1887 1627 1650 1511 1071 1124 1463

Ratios Isotope Corrected (Ma) Apparent ages 130 73

16_74b 16_68 16_75 16_79 16_ 17 Mesoarchean 1 CRMO11S-16_69 CRMO11S-16_70 CRMO11S-16_72 CRMO11S-16_77 CRMO11S-16_67 CRMO11S-16_76 CRMO11S-16_78 CRMO11S-16_74a CRMO11-16M_164 CRMO11S- CRMO11S- CRMO11S- CRMO11S- CRMO11-16M_166 CRMO11-16M_165 Spot CRMO11- Paleoarchean CRMO11-17M_75 CRMO11-17M_73 CRMO11-17S_149 CRMO11-17S_142 CRMO11-17S_ CRMO11-17M_72 CRMO11-17M_76 CRMO11-17S_134 Mesoarchean 1 CRMO11-17S_138 CRMO11-17S_148 CRMO11-17S_147 CRMO11-17S_145

CRMO11S-

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

196

97 20 14 33 19 16 26 19 17 24 27 21 10 22 11 18 15 17 20 99 15 9 5 1 % %

14 99 96 87 84 98 93 ±2s ±2s 172 139 165 122 162 121 104 199 177 129 129 134 127 145 111 144

6 89 39 2714 2988 2860 2315 2722 2783 2504 2962 2995 2639 3179 2553 2681 2960 2645 2929 2728 2825 2734 2636 2924 3266

206Pb* 206Pb*

55 83 64 76 57 62 76 64 56 58 55 84 86 54 66 58 61 66 62 70 58 55 62 ±2s ±2s 250 (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

319 156 3022 3137 3081 2829 3012 3029 2903 3281 3288 3031 3255 2991 3005 3122 2983 3102 3016 3057 2996 2946 3161 3287 235U 235U

207Pb* 207Pb*

58 49 52 50 53 51 51 63 63 65 55 50 63 66 65 49 50 51 53 52 64 46 ±2s ±2s 204 2813

3234 3234 3228 3219 3212 3197 3193 2817 2759 3482 3472 3303 3302 3300 3230 3227 3219 3216 3214 3213 3177 3165 3315 3299 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 0060 15.62 0.09 238U 238U 0. 206Pb* 206Pb* ±2s ±2s 20.967 6.60 0.5897 19.782 5.82 7.85 0.88 0.5584 7.13 0.91 16.451 6.67 0.4747 5.83 0.88 24.320 5.72 24.487 0.5833 5.94 4.03 0.5914 0.70 4.34 0.73 23.667 8.66 18.020 0.6375 8.98 7.92 0.4859 0.91 8.38 0.93 0.369 20.20 0.0139 15.93 0.79 33 3072 7897 7330 5739 5764 5977 3795 0.28 50516 18.618 8.60 0.5234 7.78 0.91 0.25 37559 15.219 6.00 0.4322 0.43 5.08 0.28 17083 0.85 18.428 15253 6.44 18.755 0.5254 7.86 5.49 0.5398 0.85 7.16 0.91 0.10 160292 18.791 5.74 0.5059 4.00 0.70 0.11 0.27 0.32 15508 18.292 0.20 5.56 356053 0.24 20.637 0.5158 15597 6.85 3.85 17.868 0.34 0.5827 0.69 6.08 0.35 44584 5.44 0.5072 20.216 0.80 0.63 27486 4.49 6.32 18.501 61604 0.74 0.5752 6.81 19.301 5.50 0.5269 6.42 0.18 0.87 6.02 0.5499 0.38 0.88 5.56 0.09 44593 0.87 18.114 42673 7.30 17.202 0.5282 6.09 6.49 0.5052 0.89 5.12 0.84 0.41 0.46 0.48 72786 21.487 0.97 5.66 0.5740 0.70 3.95 44637 0.70 24.453 6.32 0.6597 5.61 0.89 1.69 0.90 9 0.166 172.91 0.81

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 48 43 86 220 432 517 365 769 848 883 906 265 944 568 137 434 640 182 454 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 1060 2732 1239 1016 2217 Ratios Isotope Corrected (Ma) Apparent ages Ratios Isotope Corrected (Ma) Apparent ages

18 Spot CRMO11-17S_132 CRMO11-17S_126 CRMO11-17S_144 CRMO11-17S_131 CRMO11-17S_143 CRMO11-17S_146 CRMO11-17S_135 CRMO11-17S_128 CRMO11-17M_74 CRMO11-17S_139 CRMO11-17S_137 CRMO11-17S_140 CRMO11-17S_133 CRMO11-17S_129 CRMO11-17S_127 Neoarchean CRMO11-17S_136 CRMO11-17S_150 Spot CRMO11- Paleoarchean CRMO11-18S_156 CRMO11-18S_155 Mesoarchean 1 CRMO11-18S_153 CRMO11-18S_152 CRMO11-18M_77 CRMO11-18XS_61 CRMO11-18XS_56

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

197

20 45 19 12 20 12 28 31 25 27 26 48 23 85 91 81 75 13 19 19 21 16 37 8 6 % %

84 81 84 93 ±2s ±2s 137 129 180 126 122 122 116 125 109 155 126 112 121 122 100 129 112

4 2 3 2 3 3 48 48 47 46 46 2764 2002 2775 2968 2734 2956 2499 2424 2597 2550 2561 1899 2652 3050 3149 2944 2774 2739 2697 2838 2228 206Pb* 206Pb*

65 61 62 80 61 58 63 61 63 54 55 61 62 72 10 57 54 59 60 53 61 63 ±2s ±2s (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

6 7 3 3 53 58 51 49 46 3083 2709 3082 3162 3058 3151 2950 2915 2993 2971 2976 2637 3013 3175 3239 3156 3069 3047 3025 3084 2801 235U 235U

207Pb* 207Pb*

44 67 45 51 46 47 46 45 46 64 64 51 64 58 45 46 46 47 48 46 45 91 ±2s ±2s 405 208 289 130

45 320 529 247 181 3298 3290 3290 3287 3278 3278 3275 3274 3272 3270 3270 3266 3264 3254 3296 3294 3268 3256 3251 3248 3245 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 416 416 6.46 0.3641 4.87 0.75 13. 19.816 6.40 0.5379 5.72 21.272 0.89 5.97 0.5818 5.16 0.87 12.429 6.54 18.445 0.3426 6.46 5.66 0.5090 0.87 5.00 0.77 0.059 10.55 0.0074 0.050 4.57 0.047 6.28 0.43 0.0072 7.71 4.91 0.0072 0.78 5.46 0.71 0.051 14.01 0.0073 6.21 0.44 0.054 19.29 0.0074 7.39 0.38 77 410 1601 1624 4073 1794 6083 2699 4347 0.53 62575 19.822 6.71 0.5353 6.09 0.33 0.91 0.32 76475 21.508 104721 19.313 8.23 0.22 6.36 0.5847 0.46 43658 0.5281 7.56 17.279 0.08 21707 5.65 0.92 6.58 16.649 0.89 167524 0.07 18.070 2902874 0.4735 6.41 17.658 0.04 6.51 5.89 0.4564 5.61 37549 0.4961 0.89 5.73 17.751 0.4852 5.83 0.89 5.68 3.87 0.90 0.69 0.4878 3.99 0.23 0.70 211766 21.795 7.38 0.6050 6.38 0.86 0.47 0.51 0.99 0.78 14461 23.297 0.85 25598 5.81 21.383 1.13 24068 0.6300 5.56 5.06 0.5788 0.87 4.72 0.79 0.85 0.47 117961 0.22 19.547 0.77 6.11 0.34 0.5378 31835 5.38 19.094 0.88 0.16 6.21 0.36 34919 0.5295 18.679 168544 0.09 19.846 5.45 5.47 48875 0.88 6.35 0.5195 14.783 0.5530 4.55 6.62 5.63 0.83 0.4128 0.89 5.97 0.90 0.44 1.24 0.73

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 329 459 195 292 129 490 313 114 421 492 796 967 256 505 381 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 2378 1981 1380 1969 1480 2482 1075 2081 2236 1421 1233

Ratios Isotope Corrected (Ma) Apparent ages Ratios Isotope Corrected (Ma) Apparent ages

19 18S_157 Spot CRMO11-18XS_72 CRMO11-18XS_69 CRMO11-18XS_73 CRMO11-18S_151 CRMO11-18XS_70 CRMO11-18M_79 CRMO11-18XS_71 CRMO11-18XS_62 CRMO11-18XS_60 CRMO11-18XS_64 CRMO11-18XS_68 CRMO11-18S_154 CRMO11- CRMO11-18XS_59 CRMO11-18XS_65 CRMO11-18S_158 CRMO11-18XS_58 CRMO11-18M_78 CRMO11-18XS_57 CRMO11-18XS_67 CRMO11-18XS_74 Spot CRMO11- Paleogene CRMO11-19XS_79 CRMO11-19XS_83 CRMO11-19XS_82 CRMO11-19XS_78 CRMO11-19XS_75

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

198

88 83 41 14 % ±2s 2 2 2 2 2 4 45 44 44 42 40 206Pb* ±2s (Ma) 238U* (Ma) disc. 5 4 4 3 2 52 48 44 42 40 235U

207Pb*

98 ±2s 165 141 163 102

31 43 35 381 249 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 0.044 0.042 8.51 0.041 0.0069 6.58 5.13 0.0065 6.23 0.60 5.03 0.0063 0.76 4.69 0.75 0.053 8.99 0.0070 5.20 0.58 0.049 7.84 0.0069 4.87 0.62 230 467 3042 9173 9145 0.61 0.41 0.37 1.95 U Th/U 206Pb 207Pb* 868 ppm ppm 204Pb 235U* (%) 1180 2345 2076 Ratios Isotope Corrected (Ma) Apparent ages Spot CRMO11-19XS_81 1102 CRMO11-19XS_80 1.28 CRMO11-19XS_85 CRMO11-19XS_76 CRMO11-19XS_84

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

199

71 74 12 44 60 22 20 87 76 32 74 69 91 67 86 83 78 86 89 78 83 83 87 88 90

%

53 63 61 41 54 93 70 54 25 67 52 81 84 27 17 40 85 33 30 50 12 ±2s 114 131 130 133

412 746 788 920 273 969 413 498 656 425 319 643 497 495 371 360 292 1156 1031 2435 1606 1151 2097 2760 1904

206Pb*

58 33 84 67 49 77 53 75 52 68 81 98 44 33 48 58 49 82 24 78 65 ±2s 111 109 115 120 were less than discordant, 40% were

(Ma) 238U* (Ma) disc.

718 951 955 781 843 825 702 2183 2047 2582 1002 1422 2108 1442 1564 1760 2354 1594 1073 1261 1236 1051 1048 3078 2286 235U

207Pb*

65 64 27 74 57 59 33 67 64 63 67 39 70 37 45 44 28 85 93 27 42 35 85 75 ±2s 136 bold and italics bold and

3363 3318 2700 2699 2660 2641 2605 2590 2586 2585 2584 2560 2559 2554 2525 2519 2515 2501 2499 2497 2439 2439 2411 3292 2647 error 207Pb* ±2s averages. Spots in (%) corr. 206Pb* (Ma) 99 6.96 0.78 238U 206Pb* ±2s 10.17 0.0432 9.44 0.93 1.028 7.582 6.507 6.49 12.66 0.1964 0.1734 5.00 11.99 0.77 11.722 0.95 3.49 1.684 0.4590 13.19 3.057 3.10 0.0660 8.82 0.89 10.31 0.78 6.972 0.1227 7.62 5.48 0.86 3.666 0.2829 4.661 4.29 6.64 0.78 13.05 9.159 0.1534 0.1955 6.33 8.19 12.42 0.95 0.95 3.808 0.3844 7.24 8.44 0.88 1.877 0.1622 17.40 2.463 7.42 0.0803 0.88 13.56 1.561 16.88 0.1072 0.97 1.158 7.06 13.39 0.99 2.377 0.0682 6.05 1.814 6.52 0.0507 6.71 0.92 18.41 1.806 5.46 0.1049 0.0802 0.90 1.294 6.49 8.88 17.70 0.97 0.96 1.254 0.07 8.47 14.50 0.996 0.0592 0.0574 8.32 4.75 14.29 0.98 0.99 0.0463 4.27 0.90 6263 3979 5948 2622 2466 1908 4775 1462 9733 1249 1442 1706 3409 6948 1337 2094 1631 4637 1274 2256 1203 0.30 0.40 0.36 0.17 0.53 0.57 27625 3.136 10.03 0.14 0.1301 0.14 9.39 0.58 0.94 0.25 15535 1.551 0.37 13.12 0.36 0.0661 0.47 12.90 0.98 0.30 0.23 0.14 0.40 0.69 0.25 18459 0.53 19.725 8.02 0.5344 0.10 5.91 0.23 0.74 31913 8.497 7.20 0.16 0.3437 0.06 5.62 0.78 0.13 U Th/U 206Pb 207Pb* 277 294 711 690 877 603 903 ppm ppm 204Pb 235U* (%) 1485 1041 2023 1363 1422 1126 1439 1135 1541 1257 1468 1584 1237 1626 1395 1895 1848 2062 Ratios Isotope Corrected (Ma)Ages Apparent were used in the calculation of of inzircon used event growth the calculation were

Corrected Isotope Rations and Apparent Ages Square Mountain Apparent for Rations and Ages Corrected Isotope bold

A3 Spots in more did not because less have the sample to calculate 40%. not used than averages 5 spots withthan discordance but were on Paleogene not filter used a dates. was as Discordance Spot SM10- Mesoarchean SM10A3S_35B SM10A3S_36B SM10A3S_35A Neoarchean SM10A3S_37 SM10A3S_36A SM10A3S_32A SM10A3S_38A SM10A3S_31 SM10A3S_22A SM10A3S_26A SM10A3S_33B SM10A3S_43 SM10A3S_39 SM10A3S_32B SM10A3S_34 SM10A3S_23A SM10A3S_23B SM10A3S_25 SM10A3S_42A SM10A3S_41A SM10A3S_33A SM10A3S_42B SM10A3S_40 SM10A3S_27A SM10A3S_24

Table C3: Table

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

200

42 95 16 14 20 14 15 37 39 11 41 36 53 41 91 90 89 91 53 56 71 69 81 75

% %

40 17 51 61 78 76 80 91 24 21 17 16 67 79 61 70 ±2s ±2s 134 135 130 107 138 101 178 118

126 255 257 276 217 822 881 542 686 1579 2430 2445 2132 2261 2232 1728 1653 2272 1581 1696 1287 1564 1535 1392

206Pb* 206Pb*

41 32 49 41 36 35 72 69 34 32 56 71 72 53 89 57 76 62 79 84 55 ±2s ±2s 112 129 (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

73

26 988 333 607 601 614 503 2633 2631 2361 2423 2407 2132 2077 20 2394 2015 1420 2078 1802 1467 1082 1245 2209 2065 235U 235U

207Pb* 207Pb* 1

82 62 79 82 62 49 41 25 65 60 53 38 51 46 93 58 42 47 34 29 76 58 54 ±2s ±2s 104

8 8 2311 2277 2262 2196 2172 2794 2778 2565 2562 2558 2548 2530 2518 2500 2495 2482 2481 2464 2463 2462 2428 240 2910 2826 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 0.819 10.74 0.808 0.0404 0.389 9.02 9.61 14.60 0.830 0.0407 0.89 0.0197 0.641 8.26 7.76 13.31 0.92 0.91 0.0438 8.89 6.27 0.0343 0.81 7.53 0.85 12.376 7.63 0.4578 6.62 0.87 9.568 7.83 3.048 0.4225 11.63 6.742 7.21 0.1360 0.92 6.41 10.25 0.88 0.3010 5.40 0.84 1.904 11.89 2.407 0.0877 11.69 11.77 0.1122 0.99 10.81 0.92 7.806 6.07 0.2689 4.89 0.81 358 4240 4475 1372 2354 1143 2171 7065 8359 5978 9391 3679 Corrected Isotope Ratios Isotope Corrected (Ma) Apparent Ages

0.46 0.66 0.59 0.79 0.59 0.04 0.05 263605 0.23 12.349 0.18 7.29 47663 0.4613 0.14 9.227 22561 6.65 0.05 0.91 9.876 16157 3.70 0.17 9.701 57619 0.3919 3.52 0.14 7.164 2.79 11177 0.4202 7.92 0.05 1738167 0.75 6.736 6.352 3.19 0.4138 6.28 0.06 0.91 6.90 0.3075 7.98 0.03 3.65 0.87 5.14 15673 0.2922 0.2775 0.06 0.82 6.276 7.34 2.89 0.04 0.92 0.79 6.08 0.04 66031 0.2779 0.04 4.901 5.44 15386 0.06 0.89 127767 6.082 8.99 0.04 3.243 0.2210 7.15 14.44 8.65 0.2745 0.1465 0.96 14.30 6.58 0.99 0.92 0.62 1.03 11007 6.642 14.63 0.2409 14.24 0.97

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 511 321 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 2274 2101 3175 2650 2312 1342 2251 1144 1518 1800 2367 2938 4133 1156 3515 1926 1293 2520 2435 1595 4414 1693

Ratios Isotope Corrected (Ma) Apparent Ages

C2 Spot SM10A3S_28A SM10A3S_29B SM10A3S_30 SM10A3S_41B SM10A3S_29A Spot SM10- Mesoarchean SM10C2M_17 SM10C2M_20A SM10C2M_20B SM10C2S_70A Neoarchean SM10C2S_80 SM10C2S_73 SM10C2S_78 SM10C2S_69 SM10C2S_74 SM10C2S_79 SM10C2S_71 SM10c2M_18 SM10C2S_72B SM10C2S_76 SM10C2S_68 SM10c2M_21B SM10c2M_21A SM10C2S_77 SM10C2S_75

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

201

24 11 18 20 63 19 28 34 34 14 14 13 30 20 44 25 37 30 34 26 52 32 26 33 37 77 91 3

% 6 3 37

82 80 52 48 84 51 59 57 89 45 50 53 66 76 62 61 68 58 53 89 73 87 35 41 ±2s 182 174 140 168 120 141 129

673 259 2968 3121 2275 2148 2437 1081 2508 2140 1942 1805 1790 2493 2249 2240 2266 1892 2105 1539 1986 1714 1865 1783 1705 1950 1333 1805 2760 2308 1700

206Pb*

77 37 40 30 23 71 24 30 97 36 53 72 24 26 27 41 44 37 38 43 36 33 53 88 43 84 46 77 24 ±2s 109 147 (Ma) 238U* (Ma) disc.

671 3411 2966 2495 2381 2510 1692 2539 2363 2259 2182 2172 2526 2409 2405 2417 2224 2335 2011 2270 2116 2202 2155 2109 2245 1280 1865 2163 3220 2824 2110 235U 207Pb*

29 31 15 28 12 25 12 11 49 27 26 64 20 14 14 33 38 30 32 22 38 25 21 43 34 48 22 97 40 54 23 ±2s

3683 2863 2679 2588 2570 2564 2563 2562 2560 2559 2555 2552 2548 2547 2547 2546 2543 2538 2537 2534 2532 2531 2529 2527 2523 2522 2522 2512 3521 3217 2537 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 17.563 3.83 0.6228 3.31 0.87 9.810 2.88 8.969 0.4212 6.246 2.77 4.80 0.96 12.44 0.3861 0.2696 4.22 12.31 0.88 0.99 2.526 20.25 0.1100 20.15 1.00 7777 9475 9871 7137 2437 Corrected Isotope Ratios Isotope Corrected (Ma) Apparent Ages 0.34 31738 27.778 7.89 0.5847 0.47 7.66 0.22 0.97 39028 0.12 10.672 26110 0.47 4.28 9.437 68488 0.18 1100523 0.4233 10.849 4.295 3.29 0.28 4.18 4886087 2.48 11.185 0.3953 0.98 0.11 8.58 0.4595 2.54 2.85 35954 0.1826 0.04 2.38 0.86 0.4756 9.253 10896 8.45 0.96 0.21 2.44 0.98 8.249 55679 3.30 0.46 0.96 10.75 7.578 72587 0.3938 0.14 0.3515 7.494 3.23 22371 3.96 0.17 10.36 0.98 11.030 0.96 407861 0.3231 5.93 9.727 7.77 3.62 41205 0.3201 0.16 0.4721 0.91 2.64 9.682 5.71 0.07 6.77 0.4174 0.96 102544 2.80 0.07 0.87 7.937 2.36 0.4156 0.89 4.51 2.66 0.07 0.3410 0.95 0.18 4.05 55567 0.06 0.90 8.355 25040 0.04 7.039 14996 4.10 0.15 7.744 10387 0.3609 4.26 0.11 7.352 3.63 81818 0.3046 4.77 0.06 0.89 6.978 4.06 12992 0.3354 4.03 0.49 0.95 8.129 4.21 0.3187 3.73 0.43 0.88 3.75 20335 0.3028 5.89 0.93 5.273 3.52 23332 0.3533 0.94 10.37 7.415 5.30 0.2298 0.90 4.81 9.97 0.3232 0.96 4.64 0.96 0.08 16044 6.987 2.71 0.3017 2.32 0.86 0.95 1.13 148383 1.10 22.842 13762 4.69 15.146 0.5343 8.04 3.90 0.4306 0.83 7.29 0.91 0.20 U Th/U 206Pb 207Pb* 478

233 232 261 850 ppm ppm 204Pb 235U* (%) 1199 1639 3721 5080 5507 1568 2923 2866 4054 1377 4408 2739 3195 1426 1556 1816 2755 1933 2333 3501 2416 2156 6691 3448 2687

C3 Spot SM10- Paleo/Mesoarchean SM10C3S_61 SM10C3M_2B SM10C3M_2A SM10C3M_1B Neoarchean SM10C3M_1A SM10C3S_62 2 SM10C3M_16 SM10C3S_64 SM10C3M_6 SM10C3M_5 SM10C3S_67 SM10C3S_45 SM10C3S_57 SM10C3S_65 SM10C3M_7 SM10C3M_15 SM10C3M_4 SM10C3S_63 SM10C3S_49 SM10C3S_60A SM10C3M_13A SM10C3M_14A SM10C3S_58 SM10C3S_53 Sm10C3M_12A SM10C3S_52 SM10C3S_48 SM10C3M_3 SM10C3S_66A SM10C3M_11 SM10C3S_47B 26174 0.23 40812 0.937 17.20 0.0411 16.21 0.94

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272

202

31 52 32 11 31 22 27 97 19 17 20 11 11 12 30 58 23 33 73 45 95 73 10 11 15

% % 2 2 81 85 64 53 68 12 46 26 40 37 94 47 50 85 46 96 83 80 50 75 44 36 ±2s ±2s 142 121 151 163

7

75 776 142 754 1830 1314 1794 2250 1809 1989 1849 2745 2213 2231 2152 2361 2352 2332 1905 1223 2083 1847 1483 2407 2355 2548 2244

206Pb* 206Pb*

50 59 86 38 32 18 39 78 84 31 25 20 28 20 46 25 25 51 26 57 29 37 21 22 ±2s ±2s 102 115 108 (Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

407 218 2170 1839 2143 1377 2378 2147 2232 2137 1320 2715 2434 2426 2387 2486 2479 2469 2251 1815 2345 2219 1950 2521 2490 2576 2426 235U 235U 207Pb* 207Pb*

41 31 64 17 41 24 27 30 77 19 48 29 28 35 12 20 21 13 40 25 19 38 31 31 17 25 12 ±2s ±2s

2509 2500 2496 2490 2489 2488 2465 2463 2426 2412 2335 2693 2625 2595 2594 2590 2586 2585 2583 2583 2582 2582 2490 2615 2602 2583 2597 error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* .43 0.2587 12.29 0.99 ±2s ±2s 12 5.69 0.3437 5.17 0.91 .637 .637 2.20 0.4848 2.09 0.95 8.182 11 9.073 2.83 0.3814 2.59 0.91 9.403 4.18 0.4178 8.007 3.38 0.81 4.35 0.3614 0.240 3.98 0.91 15.90 0.0117 15.66 0.98 13.493 2.68 9.994 0.5308 2.20 2.04 0.4095 0.76 1.38 0.63 21 7026 2429 6257 2037 7464 9099 0.26 0.22 32774 0.13 7.476 55087 5.118 13886 5.63 0.80 12.06 7.249 0.3283 0.2260 431876 5.07 6.65 0.18 11.92 5.824 0.90 0.99 0.3209 5.46 70159 0.82 7.284 0.07 3.63 184285 0.3239 7.204 3.34 0.92 8.78 0.3323 7.51 0.86 1.02 0.76 1.20 22382 0.34 90017 0.45 9.908 15611 0.29 9.491 15945 3.00 1.77 10.573 0.4135 18938 2.15 0.56 4.92 10.495 2.12 0.3962 15580 0.98 0.4424 0.71 2.70 10.382 2.04 4.78 0.95 0.4403 2.67 36082 0.97 0.21 2.38 0.4358 4.974 0.38 0.88 2.56 14235 13.59 0.96 0.2090 18929 13.51 0.99 7.890 6.37 0.3318 5.95 0.93 0.04 0.12 1.29 0.34 0.41 45302 10.981 21367 3.13 10.612 0.4526 3.94 2.50 0.4410 0.80 3.81 0.97 0.14 39828 9.910 2.42 0.4164 1.89 0.78 U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 580 935 264 669 974 783 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) 5331 7186 3548 1802 5885 2222 1154 2168 2123 2920 2641 1835 2304 2069 4436 2153 1998 Ratios Isotope Corrected (Ma) Apparent Ages Ratios Isotope Corrected (Ma) Apparent Ages

C4 Spot SM10C3S_55 SM10C3S_56 SM10C3S_66B SM10C3M_8A 10844 SM10C3S_44 SM10C3S_46 0.13 SM10C3S_59 SM10C3M_8B 17690 38224 SM10C3M_10 2.880 SM10C3S_50 11.39 0.23 0.1279SM10C3S_51 11.35 10171 SM10C3S_54 1.00 12351 64535 0.493 0.37 5.29 0.11 0.0222 15328 5.05 Spot 2.670 0.95 11.34 0.1242 SM10- 11.28 Neoarchean 1.00 SM10C4M_32 SM10C4M_14B SM10C4M_40 SM10C4M_5B SM10C4M_69 SM10C4M_15B SM10C4M_3 SM10C4M_30A SM10C4L_87 SM10C4M_26A SM10C4L_90 SM10C4M_49 SM10C4M_44 SM10C4L_86 SM10C4M_65

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

203

41 45 30 41 20 24 31 21 13 11 27 21 11 44 22 21 32 59 33 20 44 51 34 21 46 21 59 34 11 72 69 68 71

%

8 42 40 56 44 68 51 98 39 25 19 55 71 29 52 47 26 59 28 44 26 37 36 25 32 29 40 50 83 85 53 33 ±2s 174 181 179

827 886 906 828 1612 1546 1899 1637 2147 2053 1883 2107 2294 2336 1968 2117 2331 1563 2086 2096 1847 1182 1820 2112 1549 1382 1781 2078 1474 2074 1141 1767 2339 2401

206Pb*

31 23 45 23 37 30 51 25 14 12 31 46 21 28 27 17 47 17 29 19 24 33 87 18 21 25 51 26 37 24 46 ±2s 114 127 169 (Ma) 238U* (Ma) disc.

63 339 188 2038 2246 2094 2375 2326 2234 2353 2444 2463 2278 2356 2461 2040 2336 2204 1769 2344 2025 20 1913 2163 2324 1448 1961 1499 2304 1717 1513 2135 1435 2470 2492 235U 207Pb* 2 2

46 14 53 21 20 30 13 12 26 58 19 13 23 15 21 13 33 16 32 43 20 49 41 14 25 22 24 38 45 11 ±2s 9 16 25 22

80 2581 25 2578 2578 2577 2575 2573 2573 2571 2570 2570 2569 2569 2563 2561 2559 2555 2555 2553 2553 2553 2549 2549 2548 2547 2534 2524 2519 2515 2514 2511 2510 2503 2567 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 6.861 5.03 8.878 0.2891 3.87 4.05 0.77 0.3749 3.84 0.95 9.178 3.42 0.3888 3.04 0.89 8.977 3.03 0.3821 2.93 0.97 9.062 3.15 0.3877 5.577 2.45 0.78 14.78 0.2392 8.863 14.55 0.98 3.58 0.3805 2.05 0.57 3.111 4.77 0.1371 4.22 0.88 5782 3750 9183 6391 7725 7560 5575 1896 0.11 0.43 29719 0.91 6.440 21829 0.18 10.386 12.94 31740 0.13 0.2710 2.62 8.131 12.65 0.4373 0.98 17542 2.55 1.14 2.53 9.369 0.3426 0.47 0.97 2.42 22246 2.46 0.18 0.95 8.025 99041 0.3952 0.38 9.144 2.41 13649 3.37 0.26 0.98 10.099 14879 0.3392 5.55 0.12 2.72 10.314 3.15 85986 0.3866 0.36 0.4275 0.93 1.50 8.428 5.47 2.04 0.4368 0.99 44058 1.34 0.09 0.75 1.28 10.284 0.3570 0.85 5.02 1.14 25797 0.20 0.4357 0.85 6.453 0.36 3.63 30930 2.36 0.82 0.72 9.013 32244 0.2744 0.42 7.765 2.07 11122 2.96 0.88 4.709 68594 0.3842 1.84 0.39 7.625 2.61 0.3317 5.65 0.10 0.88 371509 1.61 0.2012 1.94 0.06 6.346 0.88 193268 5.50 0.3262 0.40 6.626 0.97 2.14 1.78 0.21 0.2715 0.92 3.51 28388 0.06 1.91 0.2841 7.417 0.08 0.89 2.95 8642542 3.162 2.68 0.16 0.84 11.28 19513 0.3183 0.14 0.1368 5.901 2.40 13758 0.52 11.00 0.90 0.98 3.375 23112 2.06 0.05 21.63 8.673 33960 0.2569 0.27 0.1474 4.423 1.88 77557 2.32 0.12 21.58 0.91 1.00 3.439 71000 0.3794 3.07 7.186 1.79 0.1936 6.47 0.77 2.79 0.1508 2.96 0.91 6.33 0.3154 0.98 2.58 0.87 0.22 0.02 24353 0.11 10.636 4.94 0.4513 4.14 0.84 0.15 U Th/U 206Pb 207Pb* 879 276 888 807 ppm ppm 204Pb 235U* (%) 1976 1462 3471 1160 1735 3300 2057 2351 1326 1744 1830 1554 2107 2704 2213 2426 1847 2337 2015 1593 3153 1210 2238 2366 1595 2706 1949 1475 3810 1529 Ratios Isotope Corrected (Ma) Apparent Ages Spot SM10C4L_81A SM10C4M_68 SM10C4M_17 SM10C4L_84A SM10C4M_57 SM10C4M_55 SM10C4L_103 SM10C4M_21B SM10C4M_51 SM10C4M_6 SM10C4M_38B SM10C4M_14A SM10C4L_90B SM10C4L_85 SM10C4M_61 SM10C4M_59 SM10C4M_12 SM10C4M_83 SM10C4L_88A SM10C4M_77 SM10C4M_24A SM10C4M_72 SM10C4L_94 SM10C4M_15A SM10C4L_100 SM10C4M_38A SM10C4M_29 SM10C4M_84 SM10C4M_27 SM10C4M_2B SM10C4M_71 SM10C4M_31 SM10C4M_47 SM10C4L_84B

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

204

23 51 92 91 77 46 82 29 12 56 15 22 68 27 31 54 38 44 22 55 65 71 88 91 87 74 87 153 286 453 %

48 30 44 70 23 23 48 55 33 ±2s

6 5 1 1 2 4 2 1 4 2 3 1 1 1 2 1 2 1 2 1 1 2 1 1 1 1 1 65 57 53 52 52 52 51 51 51 50 50 50 50 50 50 50 50 49 49 49 49 49 49 48 968 812 339 248 385 725 361 1958 1274 206Pb*

41 72 42 28 46 76 61 27 53 14 10 ±2s (Ma) 238U* (Ma) disc.

2 4 4 3 2 5 3 2 2 2 3 2 3 3 2 2 2 2 2 2 3 2 90 72 53 56 53 57 51 48 50 51 49 50 51 50 50 52 49 50 51 50 50 49 50 48 801 625 860 789 1556 1406 2207 1281 1754 235U

207Pb*

27 39 43 22 39 51 40 31 43 60 92 78 61 54 51 89 88 95 60 47 55 66 90 60 80 ±2s 263 251 169 152 130 116 220 105

97 14 51 97 53 13 71 57 43 64 39 72 80 88 63 48 814 600 225 286 112 151 107 108 2481 2474 2469 2446 2425 2424 2394 2386 2325 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 0.0078 3.29 0.64 206Pb* ±2s 5.18 7.786 0.851 3.16 1.331 0.3550 9.87 13.13 2.87 0.0393 0.0615 0.91 9.60 12.79 0.97 0.97 0.093 15.73 0.073 0.0101 14.67 0.054 9.44 0.0089 3.12 0.60 9.00 0.053 0.0083 0.61 0.058 1.82 6.79 0.58 0.052 0.0081 5.68 0.048 4.68 0.0080 4.23 0.69 11.48 4.00 0.0080 0.0079 0.70 0.051 2.67 7.17 0.63 0.049 3.49 0.62 0.051 0.0078 3.58 0.052 2.34 0.0078 3.39 - 0.67 0.050 2.81 0.0078 5.14 0.78 2.64 0.0078 4.65 0.78 3.49 0.0078 0.68 - 2.87 0.62 0.050 3.16 0.0077 0.050 2.46 0.78 0.050 4.71 0.051 0.0076 3.25 2.77 0.0076 5.74 0.59 2.04 0.0076 0.63 1.62 0.28 0.050 5.34 0.0079 3.06 0.57 0.051 0.052 0.050 6.78 0.0077 4.16 0.051 2.01 0.0077 0.30 0.050 3.31 3.24 0.80 0.0077 4.49 2.27 0.0077 0.70 3.53 0.79 418 704 408 794 560 593 8112 4877 3221 1233 4356 4765 5384 1354 2025 1182 4317 1272 2689 1808 2714 5340 1540 2004 2555 0.55 0.10 11808 0.20 129007 3.628 0.11 2.995 32178 5.19 0.11 9.40 1.201 0.1620 0.05 0.1343 4.94 7.52 0.05 9.12 0.95 0.0540 0.12 0.97 7.07 19372 0.06 0.94 2.530 79114 4.627 13950 8.34 0.04 1.175 0.1190 3.18 0.04 8.01 0.2185 9.63 0.07 0.96 2.62 0.0575 0.05 0.83 9.31 0.06 0.97 11330 0.08 0.057 0.04 7.81 0.08 0.0081 0.05 2.69 0.07 0.34 0.05 0.06 0.05 0.05 0.06 0.04 0.04 0.06 0.05 0.04 0.05 0.05 0.04 0.04 32229 0.049 4.23 0.0075 2.57 0.61 U Th/U 206Pb 207Pb* ppm ppm 204Pb 235U* (%) 1979 1857 2092 1530 1989 2259 1829 2431 3046 3282 7772 5159 4863 5397 3477 6069 4142 5666 7316 7802 8304 7895 7071 8408 6420 6760 6177 5508 4220 5775 6459 6671 3887 Ratios Isotope Corrected (Ma) Apparent Ages Spot SM10C4L_102 SM10C4M_53 SM10C4M_52 SM10C4M_2A SM10C4M_21A SM10C4M_33 SM10C4M_10 SM10C4L_93 SM10C4L_97A Paleogene SM10C4M_19 SM10C4M_18A SM10C4L_104 SM10C4M_54 SM10C4M_63B SM10C4M_82 SM10C4M_46 SM10C4L_82A SM10C4M_13B SM10C4L_96 SM10C4M_23 SM10C4L_101 SM10C4M_11 SM10C4M_37 SM10C4M_76 SM10C4M_48B SM10C4M_70 SM10C4M_79 SM10C4M_16 SM10C4M_22 SM10C4M_28B SM10C4M_75 SM10C4M_7A SM10C4M_60

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

205

71 44 77 66 53 37 44 54 47 18 35 51 75 50 30 63 73 67 45 77 69 66 921 220 313 160 201 205 259 1141 % ±2s 2 1 3 1 2 3 1 1 1 1 1 1 1 3 1 1 2 9 2 2 1 1 2 1 1 2 1 2 1 1 1 2 1 1 1 1 1 1 48 48 48 48 48 48 48 48 47 47 47 47 47 47 47 47 46 46 46 46 46 46 46 45 45 45 45 45 45 44 44 44 42 42 206Pb* ±2s (Ma) 238U* (Ma) disc. 3 2 5 2 2 4 1 2 2 2 2 2 2 1 2 4 4 4 2 5 3 2 3 2 3 2 1 2 2 2 2 3 2 3 51 49 51 50 49 47 48 46 47 48 47 47 48 47 48 47 47 47 47 49 46 45 47 46 47 47 44 47 45 47 46 45 42 42 235U

207Pb*

77 62 82 64 48 61 81 70 49 64 58 61 48 58 66 58 46 73 92 69 74 ±2s 197 179 221 107 160 174 169 148 142 116 147 102 125

40 85 76 12 85 46 18 43 88 47 57 71 95 15 91 65 15 80 12 42 166 205 140 102 101 180 163 133 194 140 128 122 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 0.051 5.15 0.0075 3.97 0.77 0.049 4.15 0.049 0.0074 3.16 3.04 0.76 0.0074 0.049 2.28 0.75 0.048 3.82 0.047 0.0074 3.31 0.049 2.42 0.0074 3.61 0.64 0.047 2.61 0.0074 3.18 0.79 2.41 0.0074 3.01 0.67 2.05 0.0073 0.65 1.61 0.54 0.047 0.048 8.04 0.049 0.0072 3.62 10.32 0.046 5.09 0.0072 0.0072 0.63 0.046 2.67 6.49 4.08 0.74 0.0072 5.33 0.40 2.72 0.0072 0.42 2.96 0.56 0.048 3.29 0.047 0.0070 4 0.045 2.16 4.37 0.66 0.048 0.0070 5.20 3.07 0.0069 3.81 0.70 3.49 0.0069 0.67 2.39 0.63 0.047 7.13 0.0070 3.47 0.49 0.045 3.25 0.0070 2.63 0.81 0.052 10.22 0.050 0.0074 4.36 5.67 0.047 0.0074 0.55 2.59 9.75 0.59 0.046 0.0074 0.047 6.30 3.50 0.65 0.0074 3.90 2.46 0.0074 0.70 1.98 5 0.51 - 0.048 0.047 3.72 0.0073 8.50 3.11 0.0073 0.84 4.36 0.51 0.047 6.80 0.0071 4.74 0.70 0.046 0.045 4.13 0.042 0.0068 7.16 0.042 2.68 0.0068 5.33 0.65 2.22 0.0066 6.09 0.31 3.25 0.0065 0.61 3.11 0.51 45 428 887 591 435 433 973 897 863 860 909 855 470 441 579 1138 1841 9535 1398 2323 1858 2332 1770 1005 1523 2197 3695 40 1789 2205 1004 1669 0.06 0.04 0.10 12183 0.16 0.049 0.05 3.72 0.09 0.0074 0.05 1 2.66 0.07 0.72 0.08 0.05 0.05 0.04 0.04 0.04 0.04 0.09 0.10 0.08 13793 0.05 0.047 0.03 8.03 0.05 0.0072 0.04 3.77 0.05 0.47 0.05 0.12 61090 0.05 0.046 3.98 0.06 0.0071 0.05 2.87 0.06 0.72 0.08 0.04 0.10 0.04 U Th/U 206Pb 207Pb* ppm ppm 204Pb 235U* (%) 6442 6709 6348 3999 8769 3546 6823 7812 3388 5605 7395 6452 7178 6272 7024 3501 3088 7954 7073 2758 8138 6224 7431 4851 7117 6002 6519 6292 6773 3206 9405 2055 2521 Ratios Isotope Corrected (Ma) Apparent Ages Spot SM10C4M_45 SM10C4M_62 SM10C4M_4A SM10C4L_83 SM10C4M_35 SM10C4M_4B SM10C4M_67 SM10C4L_91 SM10C4M_86 SM10C4M_50 SM10C4M_58 SM10C4M_42 SM10C4M_43 SM10C4M_1 SM10C4M_64 SM10C4M_66 SM10C4M_28A SM10C4L_82B SM10C4M_81 SM10C4M_74 SM10C4M_7B SM10C4M_36 SM10C4M_20A SM10C4L_95 SM10C4M_73 SM10C4M_41 SM10C4M_5 SM10C4L_98 10173 SM10C4M_13A 0.05 SM10C4L_89 SM10C4M_56 SM10C4M_48A SM10C4L_92 SM10C4L_99

1384 1385 1386 1387 1388 1389 1390 1391 1392

206

82 47 52 87 % ±2s 4 2 1 2 42 40 40 39 206Pb* ±2s (Ma) 238U* (Ma) disc. 6 3 2 3 45 41 41 43 235U

207Pb* ±2s 178 148 153 115

76 83 232 287 error 207Pb* ±2s (%) corr. 206Pb* (Ma) 238U 206Pb* ±2s 0.046 13.00 0.041 0.0065 0.041 8.07 10.46 0.81 0.0062 5.28 4.84 0.0062 0.60 2.13 0.40 0.043 7.64 0.0060 4.08 0.53 615 5218 1015 1369 0.05 0.05 0.03 0.06 U Th/U 206Pb 207Pb* ppm ppm 204Pb 235U* (%) 3786 6131 2211 7858 Isotope Ratios Corrected (Ma) Apparent Ages Spot SM10C4M_78A SM10C4M_63A SM10C4M_8 SM10C4M_80A

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

207

87 89 65 64 73 72 85 77 86 79 25 14 13

% % 7 6 8 8

19 54 48 80 56 78 36 28 26 16 33 89 99 84 82 111 100 108 104 ±2s ±2s

596 458 983 954 714 672 367 501 280 330 206Pb* 206Pb*

1990 2420 2436 2253 2378 2276 2380 2139 83 88 56 84 57 92 47 45 38 38 46 56 49 54 54 45 52 45 ±2s ±2s were less than discordant, 30% were

(Ma) 238U* (Ma) disc. (Ma) 238U* (Ma) disc.

725 858 529 518 235U 235U 207Pb* 207Pb* 1231 1717 1355 2275 1569 1493 1126 2505 2510 2423 2478 2426 2475 2355 52 77 55 99 62 69 71 67 38 33 43 36 34 36 35 100 129 100 ±2s ±2s bold and italics bold and error 207Pb* error 207Pb* ±2s ±2s (%) corr. 206Pb* (Ma) (%) corr. 206Pb* (Ma) 238U 238U 206Pb* 206Pb* ±2s ±2s 4.425 2.798 10.08 11.83 0.0968 0.0737 9.49 10.75 0.94 0.91 3624 3337 62 76 1.50 0.17 15688 9670 8.396 3.691 6.15 10.55 0.3617 0.1647 5.19 0.84 8.78 0.83 2541 2482 0.70 1.37 1.42 92954 1.05 10.792 4352 0.77 10998 5.98 10.843 0.46 9.870 3494 0.4555 0.87 5.30 25023 10.473 5.83 5.52 14406 0.4592 9.905 5.84 0.92 10.443 0.4185 2818 4.91 4.86 0.4461 0.93 5.66 5.23 9.170 0.4234 0.90 2575 5.43 0.4465 4.96 0.93 4.41 2570 5.23 0.91 0.3934 2568 0.92 2560 4.51 0.91 2554 2554 2548

U Th/U 206Pb 207Pb* U Th/U 206Pb 207Pb* 501 989 530 296 119 113 369 476 321 ppm ppm 204Pb 235U* (%) ppm ppm 204Pb 235U* (%) Ratios Isotope Corrected (Ma) Apparent ages Ratios Isotope Corrected (Ma) Apparent ages were used in the calculation of averages. of inzircon used event growth the calculation Spotswere in

bold

Spots in more did not less because have the sample to calculate 30%. than not used averages 4 spots withthan discordance but were dates. for not filter Paleogene used a was as Discordance Spot HM11-01 Paleoarchean HM11-01_M_43 HM11-01_M_42 2041 Neoarchean 2189 HM11-01_M_50 0.22 HM11-01_M_48 0.20 HM11-01_M_44 HM11-01_M_45 1206 HM11-01_M_52 1411 HM11-01_M_49 1398 0.47 Paleogene 1574 0.08 HM11-01_M_53 0.10 HM11-01_M_46 22437 2052 HM11-01_M_54 0.12 16525 3.353 1724 2.361 1635 4117 0.10 7.28 2532 12.96 2.032 0.09 0.1595 0.1172 0.10 1.041 1689 6.87 Spot 6.30 11.58 0.87 0.89 8.78 1.327 3052 0.1098 1472 HM11-06 0.0586 5.63 0.683 6.55 Neoarchean 0.665 0.82 2374 2301 7.80 0.0808 HM11-06_S_149 9.29 0.89 11.43 HM11-06_S_150 5.39 0.0444 0.0525 2154 HM11-06_S_155 0.82 5.99 10.15 HM11-06_S_152 2083 0.89 0.64 HM11-06_M_165 1943 HM11-06_S_147 1465 HM11-06_M_167 1824

Table C4: Corrected Isotope Rations and Apparent Ages for House Mountain House Apparent for Rations and Ages C4: Corrected Table Isotope

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

208

71 64 81 12 10 15 15 61 19 50 38 49 56 16 31 93 45 %

7

65 28 84 82 86 73 93 253 102 111 113 109 149 206 169 129 ±2s

2 2 38 35 809 943 416 206Pb* 1341 1629 1303 1136 2286 2325 2199 2197 1089 2355 2064 2015 1371 44 54 59 60 73 56 53 71 53 42 66 106 130 122 236 106 ±2s (Ma) 238U* (Ma) disc.

4 2 46 36 759 235U 207Pb* 1473 2427 2434 2372 2369 1670 2431 2272 1396 1834 2018 1763 1630 2174 1589 33 43 41 38 60 41 55 62 35 70 50 73 73 64 57 80 163 187 ±2s

64 509 error 207Pb* ±2s 5.48 0.85 (%) corr. 206Pb* (Ma) 55 238U 206Pb* ±2s 1.40 0.66 0.32 11635 0.24 9.916 1510 0.32 12782 9.994 0.66 4.79 9.340 7764 0.52 0.4257 5.82 4027 9.313 6.43 2522 4.36 0.4343 4.182 0.53 20133 0.4065 6.50 0.91 9.957 0.35 5.24 8.96 8.371 5.95 0.4061 0.90 0.31 6.05 5423 0.92 0.1840 0.18 2547 5.85 6.09 2312 0.4410 5.088 0.94 0.16 8.22 13034 0.3775 2527 6.294 0.92 0.48 2524 5.55 12.49 4.678 1251 4.85 0.92 14.89 17487 0.2312 2521 0.83 14.60 3.266 0.2876 12.32 2506 3.981 5108 0.2240 0.03 0.99 30.39 14.31 2495 13.10 7.511 14.31 2465 0.96 0.1575 0.98 0.1927 28.86 5.96 2349 2451 12.38 0.95 2442 0.95 0.3670 3.784 2363 4.19 8.16 2351 0.70 2344 0.2370 7.52 2328 0.92 1893

U Th/U 206Pb 207Pb* 206 111 397 781 728 148 296 666 461 332 524 782 395 460 ppm ppm 204Pb 235U* (%) Ratios Isotope Corrected (Ma) Apparent Ages Spot HM11-06_M_166 HM11-06_S_151 HM11-06_S_146A HM11-06_S_145 HM11-06_S_161B HM11-06_S_154 HM11-06_S_159 HM11-06_S_146B 1028 HM11-06_S_143 HM11-06_S_163 HM11-06_S_158 0.16 HM11-06_S_161A HM11-06_S_162 6459 HM11-06_S_144 Paleoproterozoic 2.953 HM11-06_S_160 9.37 HM11-06_S_153 1354 Paleogene 0.1337 HM11-06_S_156 8.61 0.15 HM11-06_S_157 9941 0.92 15106 2497 0.26 2458 0.28 1.111 7.90 1645 4734 0.0666 0.046 0.036 7.03 9.57 0.89 6.43 0.0058 0.00 4.35 1971 0.45

209

APPENDIX D 1455 1456 Linearized probability plots 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

210

D1: Linearized probability plots for Kilgore-Craters terrane Mesoarchean ages. 1468 Unfilled circles are considered outliers and were not used in the calculation of 1469 population averages. 1470 1471 Spencer Kilgore 1472

1473 1474 1475

1476 1477 1478

211

Craters of the Moon Moon of the Craters 212

Craters of the Moon con’t 1479

1480 1481 1482 1483

1484 1485 1486 1487 1488 1489

213

were notpopulation used inwere averages. of the calculation Spencer-Kilgore

D2: Linearized probability terrane Linearized Neoarchean Unfilled plots outliers D2: for ages. Kilgore-Craters considered and are circles

1490 1491 1492 1493

214

Craters of the Moon of the Craters

1494 1495 1496 1497

215 were notpopulation used inwere averages. of the calculation

D3: Linearized probability plots for Square Mountain terrane Neoarchean ages. Unfilled circles are considered outliers considered Unfilled are ages. Neoarchean circles probability Mountain Linearized terrane plotsD3: forSquare and 216

1498 APPENDIX E 1499 1500 1501 Geochemistry 1502

217 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

15.77 2.02 24.80 8.15 44.97 7.47 147.04 10.29 2453.50 37.48 397.94 Eu

Sm

Nd

Pr

Ce

La

Nb

Zr Y Ti

Spencer-Kilgore Trace Element Concentrations Element Trace Spencer-Kilgore

Concentrations (ppm) (ppm) Concentrations 01

SK11S-01_31 SK11S-01_31 1222.94 71.85 3024.19 769771.87 22.51 6.39 22.46 1.23 6.39 3.08 0.46 24.11 12.96 215.96 90.39 453.64 118.48 1195.47 175.92 16062.29 65.45 207.05 1510.80 Spot Spot SK11- P Paleoarchean SK11S-01_36 82.68 SK11S-01_38 34.51 567.11 133.56 SK11S-01_46 17.27 284.53 1974.04 927693.32 SK11S-01_41 35.45 174.68 914242.18 1.08 2790.57 305.95 SK11-01M_129 43.02 6.12 901617.91 0.03 2981.07 54.18 SK11-01M_143 192.38 5.71 921848.11 3203.34 0.86 20.82 738226.37 0.05 SK11-01L_231 302.40 3.80 1291.42 29.91 5.51 21.84 0.18 SK11-01M_142 9.52 489.74 758477.60 494.14 0.06 0.11 34.09 SK11S-01_30 7.60 0.03 5.17 0.13 617975.19 852.44 1272.11 1.56 9.04 0.04 SK11-01L_230 1725.92 702791.80 0.16 0.03 82.88 2.54 0.81 3030.21 4.80 38.20 0.19 6.21 SK11-01M_237 346.27 0.00 3.57 3.62 7.61 2413.68 823945.62 0.28 32.29 3.70 4.11 SK11S-01_39 0.05 576397.92 5.96 8.77 512.37 1952.47 7.37 1.17 36.93 3.08 14.33 SK11S-01_32 9.59 3.84 634112.99 1.08 42.24 0.78 0.06 384.70 57.87 1.43 3453.76 13.16 9.86 1.17 1.03 SK11-01L_196 5.11 217.35 22.28 1.23 55.80 4.07 19.34 0.02 913443.80 60.45 168.02 2564.98 36.53 0.04 11.88 7.34 9.90 66.75 250.59 0.37 927912.35 0.83 20.73 8.28 Mesoarchean 2 65.48 1.65 468.83 3.44 8.30 92.53 3.31 23.24 4.68 0.14 258.45 289.81 3.64 3.28 26.83 SK11-01M_137 715814.60 254.41 0.13 410.46 21.38 311.28 15.14 97.74 0.13 0.06 66.14 11.09 0.62 19.30 8.78 9.73 313.32 0.90 SK11-01M_136 6.51 108.96 89.53 429.67 685.69 9.05 612.66 4.08 1.47 0.20 8.32 26.14 16.18 124.75 472.86 463.21 2.26 SK11-01M_148 805.31 2.99 733355.64 94.39 90.21 831.27 1.18 47.20 42.31 8.64 106.32 5.32 3.16 0.06 15.64 108.84 71.48 15459.84 807.70 696554.71 2.82 37.61 24.52 295.32 11116.58 192.28 53.57 965.50 8.56 119.20 2.58 1.06 118.65 8.43 2.92 23.99 0.06 3.55 14.53 141916.34 2.67 115.11 47.41 16458.43 0.15 17.00 11246.07 41.82 193.07 293.39 41.09 0.01 1.09 8.75 9426.02 67.60 5.68 4.39 1.53 309.20 461.70 1.93 123.02 223.81 184.69 2.55 96.16 324.93 13.00 2.86 69.84 19.66 56.08 6.38 1.06 16.32 80.82 217.99 45.76 383.16 2.92 167.63 258.43 701.04 293.47 8867.63 213.87 23.22 350.59 428.90 47.10 0.00 383.75 79.77 59.74 7.07 0.61 5.31 26.80 305.80 78.60 0.16 50.30 17.46 692.41 0.14 256.91 10306.32 112.30 121.81 13.21 8326.23 768.55 244.78 0.82 80.48 216.26 1.42 63.24 498.47 1.15 1.76 82.45 3.83 87.08 16163.66 653.69 0.20 109.98 36.06 7591.90 0.28 126.52 2.39 367.96 45.01 361.82 938.54 65.42 185.11 9.73 2.05 1949.60 83.60 10.24 14.59 133.99 7361.18 2754.38 232.59 12157.72 3.75 746.79 4.70 3.74 60.53 327.83 7.48 99.71 55.20 158.69 70.92 15.09 11568.07 362.61 285.39 21.14 145.50 27.32 452.55 3.73 107.36 16.33 132.49 175.94 10422.72 29.07 223.60 35.18 0.52 314.95 378.95 42.80 28.63 49.51 11788.54 36.41 11440.40 1.49 1.38 112.17 154.79 434.91 345.90 Spencer-Kilore trace trace concentrationselement Spencer-Kilore Table E1.1 218 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

1.08 0.22 4.59 1.54 23.47 9.38 45.45 12.03 150.25 19.40 8208.87 0.79 35.52 238.04 Nd

Pr

Ce

La

Nb

Zr 01 Trace Element Element Concentrations con’t 01 Trace Y Ti SK11-

Concentrations (ppm) (ppm) Concentrations

Spot Spot P SK11-01L_195 SK11-01L_195 543.03 SK11-01S_252 19.02 319.64 1828.72 801.66 28.45 SK11-01M_138 724136.65 940.25 44.61 358.68 SK11-01L_202B 3.85 2249.25 760453.58 9.58 744068.55 329.31 SK11-01L_202A 25.43 898.52 11.87 0.05 6.55 807.70 619003.51 37.93 0.05 14.23 686245.59 2.13 0.12 6.94 2.09 2.75 0.03 0.28 23.40 6.01 0.50 19.89 0.56 2.55 1.95 0.02 0.13 34.85 0.46 0.68 1.29 11.11 7.06 23.99 2.97 157.54 2.92 3.70 11.08 59.22 1.60 1.51 54.98 173.90 287.76 16.95 17.52 69.69 23.84 74.73 5.63 340.11 143.27 5.12 777.33 92.55 76.61 41.28 66.60 101.20 966.41 473.44 8440.06 30.35 25.27 125.64 82.62 0.96 142.73 123.44 11527.84 16144.08 40.72 112.08 34.89 5.41 50.64 113.21 464.21 395.82 193.77 196.06 55.33 1450.19 556.01 49.49 7225.32 7825.57 0.70 0.55 52.10 45.33 74.67 64.61 SK11-01M_126A 547.27 547.27 SK11-01M_126A 22.69 SK11-01L_207 1614.51 1632.83 27.32 703384.38 SK11S-01_48 3959.20 308.70 8.24 647627.50 SK11-01L_200 425.04 17.07 0.17 866.82 8.70 18.29 SK11-01M_145 263.66 1123.77 872460.71 18.18 0.25 SK11-01M_135 20.50 239.41 691887.64 5.28 802.21 0.06 20.82 14.90 637.90 SK11-01M_126B 4.73 742945.98 1059.75 32.10 1.30 0.17 SK11-01M_141 276.19 1802.00 689404.69 3.74 3.56 1.93 695508.86 2.55 22.75 SK11-01L_203 4.13 404.68 33.00 650.65 10.60 0.44 6.60 0.03 16.12 SK11-01L_204 586.27 734406.24 0.67 1277.55 0.09 11.16 27.34 1.43 SK11-01L_209 0.18 8.63 436.81 669936.16 12.76 20.97 7.45 1.93 911.37 0.10 9.35 0.03 54.42 13.13 396.41 SK11-01M_139 1.56 2.44 0.25 1066.50 635162.80 0.03 5.42 1.25 138.38 13.13 23.27 0.01 186.90 7.29 SK11-01M_131 684490.32 0.35 1360.63 0.92 1.39 51.05 0.67 0.80 324.90 67.01 2.70 24.52 757820.48 SK11-01S_259 0.02 294.17 5.69 13.61 758.88 228.25 125.07 3.79 27.09 2.85 0.11 29.74 0.51 4.82 SK11-01S_258 1629.37 0.51 727314.29 5.91 606.58 57.01 966.36 0.46 8.14 15.48 25.01 0.39 14.84 159.79 2.15 SK11-01L_208 1.69 528.82 79.41 0.80 482.82 769978.71 1374.90 28.85 110.93 1741.36 32.00 0.09 18.46 0.11 5.32 59.46 686.82 771042.87 SK11-01M_132 5.17 27.31 27.46 2.83 0.20 30.76 199.87 37.41 0.04 1116.93 11.71 8860.66 14.07 6.82 1.58 74.28 122.03 8.88 2.09 8649.48 0.25 SK11-01M_235 2.29 439.84 685450.42 166.72 1623.15 0.07 7.93 155.24 1.07 6.17 16.07 28.51 25.89 93.96 2.74 3.91 33.03 731149.60 SK11-01M_128 8.27 41.49 23.82 11.96 159.51 57.01 2.28 2.72 255.24 933.57 263.87 45.61 4.12 112.47 33.61 617.81 0.17 415.30 4.10 12.86 483.73 1.59 SK11-01M_238 259.20 7.64 171.62 0.08 1006.50 619130.24 33.31 44.69 6.04 27.42 505.90 147.45 3.93 0.50 0.33 48.91 11.34 65.00 14.83 19.44 109.52 15378.08 0.92 1.51 758114.72 271.03 17.07 37.97 0.74 298.25 9830.57 25.29 20.85 601.33 1.30 0.09 4.86 39.78 6.63 0.61 31.18 371.03 96.50 0.53 28.14 1.25 615275.71 1.59 30.37 71.06 9.89 7.40 198.06 10870.58 29.74 0.73 0.65 82.77 11.49 0.07 44.09 27.83 0.70 0.10 8851.00 75.99 0.31 307.94 9.58 56.93 3.80 3.05 98.91 11.85 7638.96 29.98 1.46 325.66 58.10 0.17 14.95 0.10 6.40 625.12 3.08 12.88 128.49 82.89 35.96 34.35 2.14 138.76 3.66 44.02 0.21 0.03 325.98 1.09 4.71 144.44 78.99 45.61 5.54 161.77 6.33 12547.80 38.45 10.55 130.60 542.79 54.01 7463.45 11.68 200.44 200.32 0.54 30.51 2.04 41.53 78.39 426.92 121.05 0.90 21.87 0.70 49.07 173.67 4.90 423.46 0.98 49.69 41.52 0.12 29.63 35.53 581.33 115.30 477.13 58.87 48.90 7094.47 80.10 199.89 142.57 15.42 0.65 33.64 12.11 88.25 58.78 9876.96 0.21 46.67 33.16 33.76 403.71 157.40 5.61 10477.04 8.54 1.89 464.52 170.28 345.29 42.87 1.64 69.06 52.63 74.62 2.73 64.89 52.95 68.88 51.66 50.35 14922.67 236.17 68.98 28.79 64.07 10094.39 13153.69 40.82 569.99 2.61 47.89 61.14 0.81 139.22 2.62 61.85 15.80 260.01 595.88 33.87 3805.72 230.59 10762.75 135.01 76.56 73.13 453.08 924.81 23.32 358.76 21.97 9983.14 356.72 42.21 237.77 801.17 1.35 10776.65 33.32 2.23 68.84 10812.06 62.70 248.37 0.24 1003.36 49.70 73.80 Table E1.1 219 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

14.05 3.79 26.64 5.31 126.71 13.20 1878.82 1.39 30.46 334.22 Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

Zr 01 Trace Element Element Concentrations con’t 01 Trace Y Ti SK11-

Concentrations (ppm) (ppm) Concentrations

Spot Spot P SK11-01S_257 SK11-01S_257 635.10 90.34 SK11-01L_211 266.06 2065.78 SK11-01M_146 13.59 439.31 728270.36 795.08 33.42 SK11S-01_44 81.77 274.68 773877.90 1774.31 0.24 SK11-01L_210 724794.18 9.17 1.81 301.74 21.65 608.41 SK11S-01_35 6.23 12.10 989.79 890408.13 0.02 525.34 0.04 SK11-01M_125 361.95 21.99 3059.97 661942.62 2.15 7.52 0.98 10.35 11.37 918672.31 Neoarchean 0.04 812.41 6.32 0.02 0.03 1.51 6.43 743331.46 0.04 SK11S-01_29 11.62 498.58 0.62 0.43 0.05 0.40 3.87 9.90 SK11-01S_254 0.05 489.51 28.85 15.02 14.99 2.05 2.94 1554.07 53.45 SK11-01M_140 154.10 0.99 855130.02 912.13 6.91 0.14 0.51 0.60 5.58 SK11-01M_144 261.91 19.41 2.86 644927.53 2.81 115.56 108.65 1.32 12.88 0.00 24.23 12.87 SK11-01M_150 327.67 0.02 0.16 0.37 2.14 48.84 760304.54 542.81 4.68 9.54 3.47 1.42 19.53 SK11S-01_28 4.32 274.78 734943.77 0.79 9.31 337.47 9.94 0.23 667.57 141.86 64.98 0.66 0.12 77.62 SK11S-01_49 12.14 0.01 15.16 1.83 2.45 724801.31 0.03 3.82 253.00 57.47 24.67 811.55 37.43 817.60 6.25 SK11-01L_197 0.86 6.67 2.19 18.96 276.70 403.03 0.29 49.76 0.35 120.21 847566.90 121.15 15.58 552.47 SK11S-01_42 2.31 0.03 74.17 2.78 10.51 17577.38 265.96 31.68 0.04 19.33 15.61 1.59 2.66 33.91 241.70 888638.78 925.09 186.85 801.88 36.94 SK11S-01_33 14.35 19.48 329.60 88.84 0.84 0.10 210.51 0.20 5.41 97.15 0.12 1.01 556.61 700040.44 1.91 664.85 105.77 16.15 45.50 1070.59 SK11S-01_34 0.08 21.53 21.39 246.30 13.19 470.50 0.42 70.83 9309.34 930931.66 0.40 2.87 24.04 2.60 597.11 9738.46 92.41 202.54 115.42 SK11-01L_206 259.46 20.72 1.59 0.07 4.23 25.91 0.06 9.88 1.47 869713.19 0.16 9.01 0.91 772.13 3.72 1091.80 28.53 31.28 19.21 12.43 488.43 SK11-01M_130 119.61 188.26 4.16 22.75 0.85 172.48 922477.43 413.10 134.36 3.10 0.87 14398.24 69.95 1.80 361.58 1226.43 131.35 0.29 30.91 0.05 15461.63 SK11S-01_37 1206.67 297.98 1.90 633604.66 0.00 0.15 49.09 0.17 273.23 2.02 2.30 52.03 54.89 0.65 3.03 12.78 15.54 323.83 710421.48 0.75 225.87 24.09 0.03 8876.02 1.23 44.90 17.22 7.03 26.99 2.38 0.37 40.87 446.56 671.42 0.06 8.31 4.46 3.54 87.78 57.13 2.53 2.06 13.23 708.16 159.89 5.72 11599.00 0.07 3.02 12.92 916210.15 2.52 52.98 543.05 1.49 3.24 38.17 45.36 1.77 0.10 0.22 67.13 5.02 2.04 1.09 0.63 10.76 10.15 77.51 185.78 17.17 16.75 499.75 3.32 117.77 11.90 21.28 1.40 0.04 13588.83 68.40 153.65 14.29 0.06 2.95 75.82 0.27 93.48 4.53 0.30 2.40 92.33 4.34 12.04 3.01 26.11 12341.22 18.90 4.81 1.13 0.41 1.39 60.18 14.30 375.92 21.99 3.41 49.84 117.69 0.07 185.11 0.33 1149.97 76.21 15.55 2.21 2.09 9.55 200.96 5.00 29.74 136.64 16.73 21.80 1.69 13.59 28.76 582.68 4.45 8992.74 22.80 0.35 0.51 10940.46 282.15 59.53 74.57 142.20 12104.32 6.00 2.63 0.06 0.61 54.54 39.50 15.51 9.71 20.61 17.49 41.23 0.82 70.14 13620.06 0.21 112.16 19.46 9.28 159.82 90.36 5.57 3.24 447.90 107.07 42.48 0.86 24.00 5.12 80.72 15.38 19.54 23.11 20.10 56.88 88.01 39.73 110.93 103.95 13828.39 18.88 11318.41 5.01 186.69 331.30 35.50 12.10 24.05 0.79 25.38 178.28 26.56 58.08 180.87 55.20 212.41 27.78 15236.68 25.30 59.94 20.72 49.47 27.87 477.29 13.75 41.97 13067.36 0.92 533.82 91.76 14154.58 0.24 135.32 52.03 71.76 0.94 20.91 13.91 19.26 52.17 11582.71 184.09 32.24 9013.59 44.33 5.43 33.11 25.77 0.54 192.56 14624.97 1773.10 26.86 0.83 38.19 52.04 53.19 SK11-01M_147 279.36 279.36 SK11-01M_147 28.52 SK11-01M_127 512.43 752.54 23.82 SK11-01M_149 747406.60 1212.36 2.30 739941.49 0.09 27.77 1.82 273.19 0.01 4.80 106807.68 5.73 0.01 0.03 0.40 0.52 0.56 1.66 0.24 0.51 8.30 16.11 3.29 6.75 54.54 97.38 22.41 117.12 37.59 34.70 188.64 379.58 50.08 53.84 540.02 13141.10 73.66 1.66 9555.34 87.57 1.25 721.79 104.50 708.33 Table E1.1 220 U U Th Th

Ta Ta

Hf Hf

Lu Lu

Yb Yb

Tm Tm

Er Er

Ho Ho

Dy Dy

Tb Tb

Gd Gd

Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

Zr Zr 01 Trace Element Element Concentrations con’t 01 Trace Y Y Ti Ti

SK11-

Concentrations (ppm) (ppm) Concentrations (ppm) Concentrations Mesoarhcean 1 Spot Spot P Element Concentrations Table Trace E1.2 SK11-02 Spot P SK11-02M_240 245.66 7.77 SK11S-02_57 493.16 311.27 7.68 576262.32 2138.92 0.50 904839.79 1.73 0.08 14.02 21.97 0.10 0.18 0.67 2.79 1.40 10.11 0.13 1.14 6.93 53.78 2.23 16.34 200.53 26.88 70.24 9.81 312.35 43.82 68.78 11.47 604.74 137.27 87.31 14.24 13308.26 8025.99 0.60 0.28 168.63 75.79 42.24 45.03 SK11-01M_236A 278.34 278.34 SK11-01M_236A 13.57 SK11-01L_201 338.32 472.89 11.35 SK11S-01_40 624265.61 207.90 653.36 SK11-01S_255 18.19 619.81 1.81 670860.72 625.76 27.37 SK11-01S_256 1.43 612.49 1816.64 928819.83 0.02 293.65 SK11-01M_236B 43.92 757322.41 2.61 33.17 2068.91 10.77 19.44 13.54 SK11S-01_47 433.26 261.32 752170.91 0.16 0.02 0.01 617180.42 SK11-01L_205 22.55 7.26 254.00 1.30 569.94 10.97 13.78 256.58 1.69 1.58 SK11-01M_133 1.22 8.09 879546.85 2.45 0.04 0.01 22.63 575.08 15.57 SK11-01L_198 193.74 2.49 374.93 1.27 668351.27 0.19 0.32 0.55 10.53 0.37 SK11-01M_234 549.86 713344.47 1.03 29.18 333.83 1.71 12.54 0.72 1.13 39.43 SK11S-01_45 1.61 1.29 13.62 720436.62 0.17 1354.15 238.13 4.08 16.61 0.03 0.19 0.15 SK11-01S_253 1.79 639970.30 4.73 0.40 260.84 10.29 1.71 46.33 0.01 614.18 17.03 30.86 11.73 129.70 9.70 SK11S-01_43A 11.30 3.55 58.62 0.47 2.29 15.72 502.69 970167.68 1.34 0.18 7.30 0.24 3.95 0.03 SK11S-01_43B 3.21 21.27 135.14 20.30 716778.93 68.91 0.15 13.77 194.73 1.85 127.70 2.52 11.51 2.56 99.32 1.17 SK11-01L_199 46.93 3.28 287.35 8.97 972572.36 1.10 16.56 11.49 0.09 55.50 175.58 0.09 26.51 0.35 14.42 18.82 3.98 2.39 139.13 0.10 175.42 0.54 304.90 909886.26 439.13 3.82 2.10 285.07 92.64 11.27 61.90 13.12 1.27 19.18 0.28 16.16 0.29 84.14 721828.39 0.53 38.55 35.28 4.16 314.37 24.23 9870.48 4.04 0.07 2.72 12.00 909.25 13.54 0.04 0.06 1.05 8096.08 13.35 72.64 259.68 0.30 3.58 0.40 145.19 51.07 1.45 0.15 3.56 0.47 4.29 0.32 2.01 68.99 3.62 663.54 42.12 17632.51 70.75 15.23 0.01 18.12 24.32 38.23 18.32 3.18 59.67 71.09 15489.82 51.27 100.82 14.88 2.04 32.24 0.00 77.76 3.57 10953.51 53.41 0.22 2.20 134.37 12.42 18.65 0.22 159.11 6.41 0.41 0.20 0.27 752.96 3.18 18.08 38.52 108.40 52.37 17.79 0.42 78.61 94.55 3.14 11.58 369.60 7.56 386.59 165.93 0.57 10021.24 11.65 12.14 19.02 39.67 409.78 0.18 4.65 4.08 22.22 0.41 3.47 44.08 0.21 120.76 185.66 207.85 14322.58 2.43 55.94 0.41 63.10 10.34 14.17 41.93 19.46 56.75 2.58 0.53 27.08 17.91 0.95 9924.13 13.77 9466.37 102.15 15.20 635.14 62.66 0.95 84.01 0.29 1.02 12.17 13.99 3.90 83.29 76.21 54.87 12.52 10081.53 19.29 10816.14 84.22 29.69 4.97 18.15 44.27 0.11 179.03 8.08 5.12 16.82 52.00 182.88 30.18 14.69 24.66 77.96 215.47 26.58 29.88 59.39 1998.18 8.00 14786.22 23.38 13383.86 7.53 0.74 15.05 91.11 0.75 83.11 146.49 67.22 16.72 138.02 14.91 16.90 78.36 13933.64 95.18 13069.89 10528.27 0.68 0.61 0.34 17.71 16.17 86.49 80.44 75.73 34.17 Table E1.1 221 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

0.09 3.59 1.63 24.89 10.32 57.27 14.18 146.91 25.43 0.07 15003.02 0.61 3.99 28.39 1.96 217.62 31.03 15.58 78.57 22.58 284.08 35.91 8508.33 0.94 42.31 494.07 Sm

Nd

.03 .03 0.36 3.93 1.53 30.50 11.52 151.29 60.29 276.75 67.62 644.92 95.55 14828.71 0.67 181.11 490.96 Pr

Ce

La

Nb

Zr 02 Trace Element Element Concentrations con’t 02 Trace Y Ti Concentrations (ppm) (ppm) Concentrations

SK11-02M_153 SK11-02M_153 215.60 12.44 SK11-02M_152 252.79 946.77 SK11-02M_154 10.15 764.39 743579.05 615.73 11.03 SK11-02S_260 141.73 3.03 784545.33 1816.93 453.76 0.06 15.19 SK11-02M_157 712279.86 1.25 338.48 19.39 SK11S-02_64 9.73 1.95 0.01 2160.23 810985.46 825.23 0.08 760059.40 SK11S-02_62 0.04 17.67 10.23 0.92 269.17 3605.00 17.85 2.51 SK11-02M_241 0.04 17.59 0.44 242.88 943228.74 932.87 0.06 0.18 SK11S-02_65 21.06 1.19 2.62 373.97 1.44 968964.03 465.88 2.35 13.00 3.12 SK11S-02_56 15.02 0.07 1.65 1.07 620724.42 1.46 169.16 1845.88 0.05 SK11S-02_52 7.62 23.91 247.97 0.06 20.40 991112.06 18.41 0.23 1.56 574.11 SK11-02L_213 322.45 16.67 1.00 0.01 0.66 18.53 2.64 6.17 0.80 9.26 1003088.76 699.36 10.12 781.40 SK11-02L_212A 0.01 45.99 12.90 3.11 0.10 87.68 908102.43 3.63 829.52 1.00 3.34 0.34 12.11 14.38 SK11S-02_54 20.41 9.91 740678.31 30.68 2938.72 284.84 1.68 0.91 48.56 2.26 0.24 185.42 808212.59 SK11S-02_56 2.44 140.64 15.65 0.01 1.83 0 213.33 3.49 18.16 27.42 1328.92 3.89 60.57 8.75 35.88 100.82 448.87 3.36 SK11-02M_155 19.66 18.69 90.72 893418.30 12.05 0.46 265.07 845.77 1.60 360.99 0.03 29.65 7.83 0.01 1020.35 SK11-02M_162 0.07 23.45 183.92 1.84 65.78 20.15 922460.13 999.31 19.33 45.05 351.42 22.49 35.16 9.19 618.24 SK11-02L_212B 0.54 239.89 69.19 620.31 1.00 11245.31 701057.32 2678.03 123.15 6.15 1.00 0.09 10.53 0.31 6.87 34.49 338.98 374.89 0.73 78.07 SK11-02M_156A 779222.05 0.81 530.28 1.92 1.44 2296.12 78.29 53.58 10646.48 2.21 15.23 85.06 8803.72 8.25 5.08 117.20 238.74 SK11-02M_158 3.26 350.13 708616.42 0.24 0.76 30.58 1036.65 0.27 14.76 530.83 1038.17 858.74 0.57 0.08 4.30 16.35 0.03 18.38 9.18 1.78 735269.77 133.47 127.78 153.96 7.95 157.12 113.22 1180.99 11.63 86.49 16.81 1.55 0.67 122.80 1.08 28.20 12509.67 0.04 10339.49 0.03 31.62 0.79 670022.07 25.90 46.58 2.80 4.49 0.75 0.04 0.70 20.92 4.67 82.63 15157.64 0.19 0.00 23.71 289.36 1.15 4.49 41.58 56.25 197.06 0.98 249.45 1.32 45.63 24.80 6.80 0.66 10.34 0.18 1.86 4.48 2.72 83.14 695.83 17.08 20.88 15580.55 309.58 20.69 82.51 3.94 11.49 0.06 30.75 10.04 4.42 102.19 0.71 95.43 180.90 0.91 99.15 28.63 0.14 0.56 9.11 0.51 1.20 11.70 25.26 271.26 24.39 16.95 412.01 126.26 260.46 120.93 244.49 20.85 57.64 1.27 271.91 1.20 5.53 95.10 5.66 30.64 43.31 38.19 49.58 19.75 7.12 865.83 65.25 1.79 0.81 70.17 308.51 14092.27 15521.49 195.96 263.42 101.61 18.67 96.44 36.90 0.61 26.17 0.69 25.74 6.10 11544.08 46.61 86.54 245.32 33.57 8552.56 127.56 284.64 1.50 15.24 7.38 434.53 85.56 369.68 81.11 184.28 150.24 0.57 31.07 355.13 417.50 65.34 104.07 5.98 88.63 331.42 36.94 181.14 75.21 304.62 13209.90 35.26 808.40 89.11 75.77 381.76 55.69 0.63 51.08 156.98 98.15 37.96 684.54 45.73 13649.14 224.83 42.63 10953.33 188.81 363.68 84.88 9183.77 1.83 1.25 419.39 9312.84 52.37 0.44 173.14 53.09 290.23 398.74 0.32 550.58 58.88 154.66 10337.76 73.21 154.10 38.14 0.51 63.95 10180.61 66.57 1.04 153.75 91.09 459.95 SK11S-02_50 SK11S-02_50 254.43 192.24 SK11-02M_163 20.87 1784.08 13.63 SK11S-02_58 188.85 884583.36 438.02 SK11-02M_151 12.48 762864.00 243.35 3.04 600.22 SK11-02S_264 0.73 18.34 193.94 934582.63 1253.27 12.71 772058.81 0.64 344.85 8.30 0.04 3.93 746342.05 10.03 0.03 0.01 10.99 0.97 0.03 0.35 8.96 0.05 0.94 2.22 0.01 0.75 1.66 1.93 1.28 0.43 2.06 0.23 27.52 2.03 0.38 7.52 9.93 11.54 0.98 2.86 147.24 3.63 18.38 55.86 38.15 48.89 6.84 270.79 13.72 18.36 105.57 66.29 64.96 39.86 88.48 642.24 17.74 192.80 91.50 22.50 171.41 13109.76 49.54 219.40 22.69 0.77 493.34 33.34 10207.17 129.15 13404.27 64.54 0.25 414.55 12214.55 0.38 66.83 1.51 76.19 67.82 291.95 87.24 809.18 Table E1.2 SK11- Spot Spot P

222 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

.42 .42 7.06 6.95 2.46 22.82 6.05 62.47 17.59 76.81 19.48 195.30 21.96 6407.72 0.24 89.70 170.64 Pr

Ce

La

Nb

Zr 02 Trace Element Element Concentrations con’t 02 Trace Y Ti

Concentrations (ppm) (ppm) Concentrations

SK11S-02_53 SK11S-02_53 265.52 SK11-02L_214 576.41 14.45 818.61 15.99 481.24 SK11-02M_160 873065.32 582.19 21.20 SK11-02S_261 573.80 1556.52 691527.37 1.45 47.42 767402.12 SK11-02S_263 451.62 0.08 0.90 2672.00 28.87 5.19 634.35 SK11-02M_156B 4.73 733728.33 11.67 1279.53 0.18 5.98 27.72 727706.37 7.53 0.04 Neoarchean 1889.82 7.87 0.21 13.46 1.18 682966.79 1.14 SK11S-02_61 206.61 0.20 0.01 6.06 7.77 1.51 1.15 SK11S-02_66 11.74 1.89 237.72 0.06 0.35 484.33 0.04 4.96 SK11-02M_239 233.17 0.25 12.33 0.06 954418.76 19.97 0.75 0.31 776.61 2.34 6.41 SK11S-02_55 9.60 291.20 0.85 0.30 0.18 594.61 918687.52 0.32 1.20 22.93 SK11S-02_63 9.18 268.94 4.52 636908.02 0.25 1.08 4.79 12.21 771.11 5.48 0.27 SK11S-02_51 13.03 61.97 181.13 1.33 0.04 928558.67 13.72 713.73 6.50 10.68 61.62 16.11 SK11-02M_161 283.04 11.94 23.96 13.04 944209.68 1.26 1.39 402.48 109.86 18.23 11.17 8.79 122.07 SK11-02L_216 224.36 4.81 1.73 0.04 885252.15 676.92 47.35 59.27 12.26 74.57 32.76 158.56 SK11S-02_60 8.50 0.04 769725.53 176.42 249.35 0.75 3.19 0.54 0.99 16.41 18.07 332.43 73.91 0.06 369.42 15.60 SK11-02M_159 281.70 13.99 69.85 15.07 1.30 203.63 67.60 181.21 53.54 697765.78 1.56 447.48 2.26 474.24 0.95 11.52 0.00 710.85 SK11S-02_59 0.06 13308.80 66.22 123.64 20.47 32.97 1029.07 187.56 936556.49 0.77 0.21 0.29 10.54 103.72 1.93 2.51 1424.79 0.71 275.32 8000.55 754558.47 188.92 0.81 8.36 15582.09 0.80 13.90 13.08 264.32 8.07 0.02 234.96 62.77 0.44 0.23 515.28 50.18 1.97 1.18 4.30 0.01 19880.11 1.64 396.44 0.03 4.21 596.20 2.82 963545.48 0.67 101.48 505.53 9.67 11.69 8.64 174.97 0.27 10.27 181.35 0.22 1087.84 73.95 61.39 0.79 85.46 0.89 165.58 38.13 1.28 0.03 3.22 11.84 0.03 4591.62 8744.69 34077.77 10.88 14.23 0.04 22.68 14.88 1.98 0.15 73.20 0.76 49.13 4.26 0.53 0.38 113.92 0.08 4.22 12.89 74.74 0.12 39.44 19.40 8.23 112.59 59.38 0.93 28.86 1.64 56.33 1.02 1320.39 18.05 0.09 53.92 11.55 90.45 22.97 281.49 2.32 0.15 22.06 175.17 0.13 2.33 0.67 3.93 24.40 115.01 41.12 32.37 101.43 28.07 5.67 8.85 13673.09 0.32 1.86 259.55 29.48 55.79 13901.97 26.34 12.77 0.54 2.23 30.13 287.55 2.73 0.36 18.73 20.83 0.23 251.22 60.19 102.32 9266.53 31.11 44.28 100.25 36.77 41.33 6.07 39.23 9.18 92.41 15.64 14268.36 0.33 11.72 46.82 15477.82 25.83 14.99 91.06 158.86 0.87 2.38 73.49 1.19 55.50 264.21 70.21 34.45 22.27 111.26 89.17 41.16 36.81 64.10 15.00 12581.68 111.17 16.95 164.77 112.96 10763.25 16.42 162.76 0.36 175.12 40.58 0.78 78.19 20.07 32.47 27.05 393.66 83.89 9317.48 21.35 47.37 13609.09 55.24 83.40 0.47 0.44 212.62 11993.01 35.43 0.63 53.99 27.91 14725.07 60.18 44.74 165.92 0.44 179.48 65.00 121.70 SK11-02L_215 SK11-02L_215 871.00 10.74 599.41 651983.98 0.62 5.56 28.22 1 Table E1.2 SK11- Spot Spot P 223 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

Zr Y Ti

Concentrations (ppm) (ppm) Concentrations

Mesoarchean 1 346.58 SK11-03M_121 10.54 SK11S-03_02 814.12 351.20 SK11-03S_246 399.62 804586.23 11.64 912.98 9.46 26431.49 SK11-03M_104 1.72 10.02 881026.03 900.72 0.01 SK11S-03_19 1382.59 372.73 708547.48 1.49 626217.57 12.23 SK11-03M_102 488.47 10.63 0.03 1.01 1061.74 1.31 10.71 0.02 SK11S-03_24 421.48 12.67 260.45 845159.38 1216.79 1.59 423.70 SK11-03M_115B 12.40 789321.90 521.21 2.36 0.05 1281.40 8.76 8.67 60.11 SK11S-03_06 1.98 3.78 393.87 873294.43 1111.49 1.47 298.05 0.01 SK11S-03_10 743801.57 11.08 0.82 2.33 420.83 3.22 1212.97 62.99 18.50 0.24 1.44 0.01 SK11S-03_23 18.37 12.42 883016.29 16.05 373.75 0.25 6.14 1098.35 0.09 0.01 20.24 SK11S-03_17 1.69 6.02 2.09 13.18 480.66 839101.41 0.15 20.84 79.65 1115.31 2.27 13.79 417.74 0.13 0.04 SK11-03M_100 11.92 73.66 0.48 2.43 878911.07 2.49 14.47 6.32 1929.66 0.25 4.86 14.82 17.28 26.00 SK11S-03_15 2.24 19.80 852725.83 1044.22 147.31 2.07 429.74 83.82 6.10 3.17 109.90 0.66 769105.66 0.07 SK11S-03_20 5.91 6.97 47.29 1.48 15.02 447.32 29.79 0.51 18.15 27.74 1260.81 27.34 6.72 2.70 190.95 0.04 SK11S-03_25 1.75 83.76 7.91 0.86 452.33 130.92 850516.88 264.28 30.18 0.07 1542.36 17.39 45.26 8.01 458.40 1.52 28.53 17.86 SK11-03M_103 10.94 30.64 5.48 34.91 34.18 2.55 853925.65 1380.55 9.82 464.32 2.08 0.09 15.91 126.75 98.66 275.46 27.30 0.18 378.09 10388.78 SK11-03M_95A 10.65 0.48 886648.48 1129.03 19.00 2.05 116.74 53.69 28.48 34.31 41.71 0.53 5.63 1.52 15.60 122.18 9.82 750972.95 SK11-03M_233 192.27 5.14 30.67 2.54 8178.83 0.10 40.59 988.30 12927.46 270.25 148.46 18.18 89.39 42.83 0.56 4.67 10.83 106.97 2.32 0.01 419.62 SK11-03M_95B 11.43 0.36 803291.16 171.48 0.67 9.22 38.52 2.16 33.48 294.37 56.55 176.96 36.57 0.10 18.20 0.03 14.39 27.44 0.37 398.44 41.25 21.57 10165.22 SK11-03M_122 1.07 89.07 112.75 2.11 94.71 620688.05 309.48 1018.73 5.12 39.11 157.03 0.20 19.68 0.32 58.13 2.72 17.41 402.94 8.53 59.49 27.97 39.39 0.16 SK11-03L_180 765220.39 55.00 42.88 334.95 1.02 1053.19 360.26 38.64 0.66 46.79 0.12 59.89 105.47 11506.05 172.08 4.10 4.49 8.39 16.95 14.67 0.14 2.39 743516.56 SK11-03L_181 458.43 2.80 51.57 370.05 10417.28 37.03 19.14 26.12 0.73 916.01 35.82 38.42 0.04 2.29 196.88 12432.56 103.73 8.72 10.44 0.57 2.48 SK11-03M_96 43.93 1.63 0.73 7.52 442.04 792794.87 1865.75 153.33 130.63 0.08 354.80 9.00 0.77 65.54 36.43 0.06 18.29 8945.36 6.12 34.45 0.97 132.82 71.49 755065.79 11.57 0.04 0.75 35.91 1.66 51.29 106.17 268.66 202.17 161.69 1.58 1097.81 76.97 0.58 18.97 0.06 10.18 44.91 0.59 12677.45 1.70 95.04 332.68 0.27 37.72 35.29 59.37 775589.69 35.98 5.00 98.11 119.96 0.76 0.13 0.20 2.10 12.92 43.55 32.08 146.41 11.30 533.57 333.63 2.42 0.37 52.66 42.04 11653.13 14.11 160.72 0.50 151.26 2.55 19.70 6.00 35.49 9.39 135.51 68.01 46.23 81.96 174.72 0.33 0.74 51.12 0.06 12035.95 24.69 12517.53 343.42 45.20 0.45 115.83 5.53 0.62 40.63 163.28 211.18 0.60 5.46 0.78 40.33 19.46 195.03 8.60 36.68 1.85 86.39 8.52 0.66 27.87 371.50 47.91 10389.86 211.65 144.81 42.26 1.71 156.64 0.16 99.06 3.61 49.61 15.64 91.49 29.07 76.26 8.73 0.74 424.15 381.41 36.31 27.00 11672.24 32.82 2.48 0.42 57.46 1.73 163.05 8.79 99.69 53.21 358.15 0.93 139.44 8.86 11652.69 96.54 5.95 12731.31 21.94 108.08 68.70 33.20 41.65 168.95 32.31 0.76 45.18 0.81 35.16 137.59 9720.59 18.53 84.56 6.88 0.68 324.70 186.42 13.18 225.76 149.26 32.48 0.74 208.77 82.49 88.79 30.12 36.87 100.04 154.00 35.51 320.86 62.93 177.37 10074.23 31.16 8.88 21.14 97.98 338.42 38.77 254.74 0.82 130.82 109.23 10869.00 10418.23 41.12 56.51 147.01 30.40 1.65 35.68 0.76 10151.85 91.44 522.33 291.34 152.91 0.71 17.13 154.94 61.95 39.18 152.87 87.23 36.31 171.82 9804.61 11104.86 90.64 356.79 0.69 0.68 40.68 253.34 112.83 10116.53 103.32 65.25 0.83 169.53 96.42 Table E1.3 SK11-03 Trace Element Element Concentrations Table Trace E1.3 SK11-03 Spot Spot P 224 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

0.34 0.11 6.90 2.73 44.62 19.29 104.22 30.53 380.34 70.85 15156.93 0.50 18.25 246.68 Nd

Pr

Ce

La

Nb

Zr 03 Trace Element Element Concentrations con’t 03 Trace Y Ti Concentrations (ppm) (ppm) Concentrations 338.58 11.96 1246.10 905942.23 1.17 0.06 14.66 0.10 3.90 7.46 1.08 35.36 9.79 122.56 41.17 173.03 38.78 352.55 50.27 11789.16 0.56 120.57 56.46

11S-03_16 11S-03_16 389.29 8.46 1024.18 846301.36 1.80 0.03 15.16 0.03 1.68 3.65 0.37 22.80 7.13 94.06 32.53 150.57 34.63 326.69 45.23 11986.51 0.75 115.95 75.00

SK11-03S_250 SK11-03S_250 256.07 8.60 700.30 712739.29 1.05 0.14 2.15 SK11S-03_03 SK11S-03_03 357.17 424.78 SK11-03M_118 7.58 1040.19 10.76 SK11-03M_97 476.86 1259.59 929245.05 771534.29 SK 7.29 1.00 1487.62 1.96 SK11-03L_189 354.39 809937.96 0.01 7.44 456.73 SK11-03M_115A 1.25 708.90 11.23 7.02 14.62 448.26 SK11-03M_107 1096.08 692730.32 0.07 0.09 7.12 805347.50 SK11S-03_13 289.17 1.25 1234.12 12.51 1.83 2.87 1.44 SK11-03L_186 518.83 0.02 5.74 760499.99 0.12 0.09 824.44 3.52 6.44 465.13 SK11-03M_109 9.16 1.80 11.73 905554.58 1071.40 2.70 12.93 6.64 0.35 0.24 0.76 SK11-03M_116 456.13 0.02 633838.13 1939.87 1.18 0.11 7.02 17.82 22.28 32.63 6.03 778146.11 1.18 2.25 1836.11 2.74 0.54 10.74 0.22 7.65 0.01 1.50 745899.62 2.97 120.94 41.34 11.31 6.01 0.05 89.75 3.16 14.95 1.50 0.28 41.54 12.17 33.47 0.03 20.10 1.28 0.04 7.28 0.12 16.76 178.42 148.56 151.76 0.16 1.62 27.54 19.76 1.06 2.38 41.48 5.43 49.72 35.34 8.26 4.82 0.18 2.99 408.78 37.72 7.15 208.25 325.72 71.79 46.73 108.20 13.09 10.93 4.09 49.81 0.48 49.07 23.67 0.41 10532.35 35.88 13311.89 128.82 473.54 1.40 12.16 17.82 99.35 27.48 0.73 158.58 0.39 41.75 56.08 66.84 1.49 25.95 5.76 135.12 9.20 37.31 11299.94 171.40 76.86 80.10 18.68 260.64 60.35 75.37 0.40 113.02 371.66 62.13 40.31 213.34 31.26 17.88 27.01 36.05 45.87 114.00 384.14 9096.27 67.56 61.89 196.79 9518.59 118.90 150.82 45.20 0.48 274.64 63.49 0.63 28.50 38.44 10135.92 60.75 74.74 255.60 0.67 270.15 365.48 83.14 57.37 559.45 58.39 52.36 36.87 41.45 171.69 65.29 87.22 12577.17 8856.31 555.36 10560.62 0.46 0.78 61.59 0.55 10314.31 69.58 173.13 247.43 0.62 107.61 44.21 103.97 234.11 107.97 SK11-03L_194 SK11-03L_194 392.72 15.65 SK11-03M_99 405.30 929.32 428.65 SK11-03M_106 9.74 701133.05 1030.87 8.24 SK11-03M_105 462.40 2.07 809649.45 1240.64 SK11S-03_01 9.29 753325.53 2.25 594.38 1421.51 418.59 SK11-03M_124 2.04 14.63 756864.94 15.97 1607.33 14.26 0.14 SK11-03M_94 473.43 1229.14 877697.26 1.86 14.73 0.08 16.94 774410.13 SK11-03M_113 13.11 445.48 0.05 1.60 1199.45 0.12 1.98 0.09 2.13 SK11-03L_188 6.09 0.02 16.94 453.16 771021.51 1972.10 1.76 4.67 2.52 SK11-03L_192 259.62 16.32 7.63 0.10 2.71 759197.16 1295.74 4.06 0.49 394.64 8.86 0.03 SK11-03M_120 6.46 0.11 4.30 1.57 17.14 651078.67 485.57 14.08 0.72 24.89 20.60 SK11S-03_27 0.82 3.16 8.30 0.13 381.65 953.68 1.76 694815.89 25.17 7.77 0.12 SK11S-03_21 35.48 14.23 0.02 768204.03 7.46 0.98 0.75 2.28 20.89 1162.36 8.03 93.25 10.51 3.00 1.99 17.03 0.62 891413.55 42.37 7.07 0.29 101.83 30.66 127.11 0.03 7.52 0.29 12.13 41.01 1.85 0.81 34.62 127.79 41.33 7.76 8.69 16.46 0.06 143.10 0.71 12.03 4.93 149.34 31.28 34.12 173.97 16.94 0.02 0.13 47.02 150.44 16.68 34.21 10.91 36.33 307.62 40.30 10.49 1.51 190.76 51.71 0.93 2.34 354.17 35.43 0.04 10.11 391.91 1.09 123.50 45.40 70.79 223.93 9025.75 44.35 119.87 1.57 45.97 4.97 39.87 1.64 45.43 446.60 50.26 11686.66 19.26 0.73 39.10 9908.34 167.89 0.30 13.09 0.52 4.52 50.70 0.73 450.96 214.29 134.35 161.81 0.80 38.57 140.63 10265.72 10.04 25.26 78.79 66.92 132.58 67.27 0.57 37.93 153.79 374.14 0.70 43.07 84.48 12350.64 3.41 263.36 8.14 84.28 368.19 28.36 46.29 176.46 168.37 0.67 58.82 44.54 97.20 42.99 9914.33 90.29 9.07 43.20 142.61 555.92 9976.23 16.86 32.70 0.58 72.48 107.77 404.53 63.69 0.87 140.99 73.74 147.67 37.18 43.80 9972.52 72.56 178.80 33.78 19.77 162.49 8191.59 0.56 97.15 334.36 207.42 36.90 0.55 250.63 39.86 25.66 331.67 170.59 106.28 10772.39 85.29 8616.96 48.24 0.86 12931.43 0.22 133.71 0.70 24.69 84.58 154.63 24.97 79.81 Table E1.3 SK11- Spot Spot P 225 U Th

.72 .72 99.68 70.57 Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

Zr 745638.89 1.61 0.05 16.38 0.12 2.42 7.89 0.92 45.80 14.60 182.12 58.39 246.04 57.10 526.45 62.44 10215.87 0.53 203.99 97.80 98 03 Trace Element Element Concentrations con’t 03 Trace Y Ti

Concentrations (ppm) (ppm) Concentrations

SK11-03M_123 503.75 503.75 SK11-03M_123 9.04 SK11S-03_14 358.01 1086.51 SK11-03L_182 11.60 786361.99 463.01 870.37 SK11-03M_117 1.73 526.04 5.97 869405.11 1895.09 0.01 SK11S-03_09 7.50 423.88 743896.29 1.33 1191.74 12.81 SK11S-03_22 10.35 415.26 0.36 767912.86 1.64 1062.94 0.05 SK11-03M_111 573.50 8.58 12.31 2.12 864474.73 989.85 2.42 5.76 SK11S-03_08 0.09 333.81 1.04 1590.21 845179.43 19.15 448.04 SK11-03M_112 5.72 10.81 773954.22 1.48 1.93 21.57 685.86 0.16 7.26 0.48 1.17 Neoarchean 0.01 3.19 842888.08 1412.32 0.05 12.12 5.33 0.08 25.16 824200.09 11.73 0.92 SK11S-03_26 0.39 0.05 2.30 482.54 13.13 15.10 7.92 2.34 0.02 398.23 SK11-03M_101A 18.39 7.40 1.82 5.93 1.47 0.01 0.06 101.56 6.45 1954.01 2.08 5.84 924.08 61.17 3.75 9.89 0.53 34.56 19.61 904504.55 2.54 78.16 3.32 810185.51 18.50 149.58 27.93 0.25 0.05 0.20 1.66 6.81 27.66 1.07 207.50 37.07 0.33 9.27 20.72 1.16 2.99 124.80 0.78 0.00 64.49 359.30 22.41 117.18 7.08 29.78 2.43 8.40 256.65 45.43 40.32 20.45 11.59 6.65 42.39 95.34 284.77 10533.33 57.00 12.39 0.27 0.88 0.27 0.09 179.92 89.24 0.62 40.85 34.43 530.74 153.03 13.77 42.89 45.56 5.74 1.52 12599.48 31.89 156.47 89.86 61.46 52.42 13.02 481.68 4.62 0.61 141.31 65.15 13.39 3.68 37.37 9849.21 222.99 146.76 56.82 58.00 33.83 80.15 359.22 0.45 2.11 51.69 0.11 10056.27 45.48 57.09 315.03 21.63 50.48 252.49 496.24 57.75 0.66 19.19 192.94 103.74 45.60 12395.95 101.32 61.09 15.81 91.61 41.84 12827.13 6.81 0.54 24.08 10326.78 62.22 189.39 420.81 0.89 82.76 247.40 83.67 0.50 65.16 50.28 98.95 54.85 35.07 30.24 163.18 10683.05 275.12 140.26 12360.29 80.03 130.39 0.73 60.48 0.36 33.95 174.66 527.45 33.17 352.28 86.88 78.78 28.82 43.57 11425.34 10875.05 0.69 0.47 214.12 81.25 83.47 57.83 SK11-03M_119B 392.86 392.86 SK11-03M_119B 7.42 SK11S-03_18 440.61 918.59 373.86 SK11-03M_110A 5.98 729458.32 7.98 1486.61 SK11S-03_07 366.67 1.68 996.17 861795.53 SK11-03M_108 0.09 466.67 9.15 805564.44 1.99 764.18 SK11S-03_04 7.56 13.18 1.42 374.64 886584.63 1415.00 0.05 379.21 SK11-03M_119A 10.83 0.13 771501.32 1.50 1057.17 18.01 9.87 15.19 SK11-03L_187 529.36 2.26 867792.30 1.81 1.23 1123.49 0.09 0.06 6.49 SK11-03M_114 498.67 0.01 785656.90 2.39 4.75 14.32 1577.42 3.31 13.25 2.95 0.30 1.28 15.41 635442.46 0.98 0.30 1152.00 0.31 8.27 12.91 6.31 0.13 755068.40 1.95 23.29 3.95 16.29 0.09 0.97 1.87 0.63 2.86 7.17 3.96 0.28 43.54 1.58 30.43 7.43 87.95 1.78 16.47 4.49 12.66 8.44 3.37 31.44 0.82 14.02 25.70 0.15 147.31 7.78 124.19 99.44 0.84 42.04 0.12 7.30 49.57 3.58 30.89 34.89 1.28 12.41 23.99 205.97 2.34 72.97 10.80 303.91 142.96 142.59 35.70 7.55 46.53 23.42 6.32 36.75 0.98 33.16 47.63 10.00 410.81 103.61 9006.16 95.06 334.33 0.78 50.15 198.94 120.65 55.59 34.50 0.43 22.03 39.97 14.82 46.07 28.53 11839.18 39.54 154.01 11103.14 213.91 77.37 174.28 450.88 0.66 165.90 9.06 34.98 0.72 42.42 33.10 54.56 52.13 196.51 39.67 322.71 111.71 12194.64 118.27 10789.72 84.76 211.99 395.36 48.32 73.34 37.75 0.81 0.66 50.24 45.02 13045.78 162.41 111.94 156.19 495.00 9894.57 0.75 260.90 39.79 85.67 51.68 0.61 110.48 399.33 90.14 8185.57 109.36 46.60 54.96 0.53 10294.50 187.82 0 97.39 Table E1.3 SK11- SK11-03S_249 SK11-03S_249 259.58 7.20 SK11-03L_185 455.91 477.20 SK11S-03_05 8.70 266.76 749205.41 872.73 SK11-03L_183 499.34 6.88 0.37 666950.09 755.83 6.31 0.18 1.30 900008.43 1768. 2.06 0.00 0.72 11.59 0.04 0.03 0.09 0.50 9.38 1.47 1.30 0.11 4.31 0.11 1.21 0.57 9.92 2.34 20.46 3.13 0.99 6.84 38.05 16.27 86.65 14.32 5.26 28.10 67.27 68.36 121.84 17.11 24.15 31.15 161.66 110.90 312.39 27.05 25.73 36.85 12833.13 229.68 9165.24 0.46 36.51 0.55 50.21 12763.89 52.01 74.53 0.33 58.54 50.71 32.60 Spot Spot P 226 U U Th Th

Ta Ta

Hf Hf

Lu Lu

Yb Yb

Tm Tm

Er Er

.68 .68 144.83 35.88 328.48 43.20 10618.13 0.74 109.77 79.80 Ho Ho

Dy Dy

Tb Tb

Gd Gd

Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

Zr Zr 03 Trace Element Element Concentrations con’t 03 Trace Y Y Ti Ti

Concentrations (ppm) (ppm) Concentrations Concentrations (ppm) (ppm) Concentrations 11-07M_27 11-07M_27 246.65 28.78 918.07 555024.72 5.64 3.20 0.15 0.50 0.15 7.19 4.35 69.49 30.54 153.11 46.86 576.34 70.95 13077.93 9.45 184.21 1507.67

Mesoarchean 1 SK11-03M_101B 302.90 302.90 SK11-03M_101B 3.64 SK11S-03_12 329.97 573.77 SK11-03L_191 11.92 297.55 741572.79 820.28 SK11-03M_98 11.13 245.69 0.91 855122.89 561.26 0.01 6.63 1.02 709879.24 445.97 8.20 0.01 0.88 797558.96 0.05 10.96 0.41 0.07 1.04 8.75 0.73 1.83 0.03 4.61 Element Concentrations Trace Table SK11-07 D1.4 2.45 0.20 0.98 0.03 0.31 9.81 1.66 0.61 16.98 3.61 0.24 1.56 5.25 50.27 11.94 0.13 SK 71.50 18.17 4.03 26.11 SK11-07S_53 7.37 79.82 347.08 51.31 118.53 21.67 SK11-07M_36 23.88 2.93 387.99 877.13 30.63 18.52 251.01 SK11-07S_54 32.75 38.31 227.63 612942.86 2833.53 301.50 84.27 33.65 SK11-07S_41 14.12 18.11 591705.02 1057.76 43.31 10742.34 4.14 21.86 624.45 66.38 SK11-07S_58 12647.25 10.96 0.44 30.96 0.16 223.38 132.81 567657.92 978.41 0.46 0.06 17.62 SK11-07M_35 48.36 435.68 28.89 4.69 17.32 554219.14 1.46 191.48 24.26 41.28 10.55 275.81 10191.45 14.50 SK11-07S_49 0.02 159.90 0.18 0.70 1128.77 33.87 25.81 0.31 536729.34 0.00 586858.01 6.65 11593.68 8.52 0.43 6.09 1.74 17.48 411.70 0.32 0.17 1.34 32.42 29.2 0.50 0.03 560466.23 2.74 6.63 1.63 0.19 0.51 0.91 22.47 2.03 1.42 14.63 2.07 7.95 1.03 32.47 9.73 4.20 0.22 16.36 11.30 4.43 64.86 0.20 250.92 7.08 0.03 37.37 0.19 101.66 29.33 0.23 3.64 0.48 10.65 487.29 0.70 146.29 50.53 0.13 118.88 132.94 1.38 47.07 0.61 1569.11 21.51 37.93 2.04 615.10 0.28 194.55 8.80 106.65 160.82 79.37 11559.77 1.37 7.92 30.55 38.81 5.06 12787.44 11.56 24.34 375.62 10.98 422.13 2.90 350.96 88.94 2603.60 10.25 44.24 120.57 49.25 35.12 40.91 971.77 10988.68 51.00 7160.90 13.69 210.16 2.10 0.24 15.71 62.34 63.48 106.25 211.97 141.55 802.58 692.63 17.56 261.43 25.88 104.76 202.98 10667.35 11304.00 24.04 2.43 1.62 8201.56 41.04 29.68 0.32 608.24 511.54 58.80 75.67 SK11-03L_193 SK11-03L_193 323.98 8.42 SK11S-03_11 274.21 656.17 SK11-03L_190 9.57 352.23 738700.48 550.16 SK11-03L_179 23.97 377.78 1.19 839558.61 749.72 6.72 0.06 705025.81 0.74 1000.45 10.40 730846.87 1.67 0.09 0.35 1.39 8.87 13.54 1.04 0.07 3.24 11.34 1.56 0.38 0.03 0.75 3.44 15.97 0.98 1.83 4.58 0.34 3.66 0.35 60.07 18.86 0.22 9.60 20.98 5.36 20.85 3.67 93.86 71.60 7.69 49.05 23.27 24.07 Spot 92.41 17.81 228.09 109.05 P 32 30.20 81.86 26.75 10321.51 19.87 261.42 0.41 199.06 31.45 64.32 9325.58 28.22 46.52 12346.46 0.67 0.32 99.74 21.04 66.69 27.91 Table E1.3 SK11- Spot Spot P 227 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

0.27 0.33 4.16 2.11 36.45 17.67 96.40 29.92 409.99 51.81 11826.55 4.82 33.61 1270.34 Nd ns con’t

Pr

Ce

La

Nb

Zr Y Ti

Concentrations (ppm) (ppm) Concentrations

SK11-07M_20 SK11-07M_20 205.68 SK11-07S_50 6.11 237.91 930.68 255.73 SK11-07L_94 130.51 565.28 566109.15 SK11-07M_24 6.74 584059.54 270.89 0.66 399.13 SK11-07S_56 17.38 2.28 453.25 1001.78 705042.04 0.02 SK11-07S_47 23.60 338.42 558308.70 2095.19 0.49 14.15 SK11-07S_46 25.51 6.96 570992.16 1.16 476.90 1020.10 0.05 SK11-07S_38 0.05 13.86 0.03 7.96 379.56 533855.29 1602.89 1.08 0.01 9.53 SK11-07M_31 15.00 4.11 256.06 2.21 0.43 561398.01 1138.19 3.99 0.17 SK11-07M_28 16.19 5.32 0.05 607678.47 410.17 3.56 1.02 611.24 1.33 10.54 SK11-07S_52 0.01 9.98 1.65 0.52 0.26 210.04 535678.67 0.30 916.85 24.56 0.04 0.05 SK11-07M_26 202.58 12.60 0.30 1.86 0.66 6.58 535954.32 5.10 420.05 1.18 8.33 13.45 SK11-07M_29 24.82 0.86 0.05 2.74 449.52 0.30 2.69 562530.42 2.10 465.45 0.02 0.73 98.50 0.04 3.08 16.67 7.72 Neoarchean 1.46 564088.19 8.02 43.44 1.09 1647.08 0.38 34.72 8.53 1.60 0.68 0.03 3.54 26.02 SK11-07L_93 493184.48 18.45 3.76 123.64 139.06 1.62 4.43 3.06 0.04 4.80 18.82 11.87 99.29 1.39 SK11-07L_86 7.16 34.01 67.93 7.52 198.91 0.41 1.09 36.90 178.38 0.17 7.95 277.56 2.24 1.82 33.39 SK11-07S_57 365.35 0.03 33.70 140.15 7.02 15.11 75.00 1.77 17.33 708916.17 412.96 10.56 98.96 28.00 41.89 0.01 170.93 504.00 0.46 8.38 0.19 373.49 69.67 60.58 0.41 7042.65 8.50 0.79 37.32 0.10 46.98 679489.09 9.88 408.21 0.23 112.43 12903.22 1.10 19.24 1.26 0.22 128.30 160.73 498.34 402435.41 13.85 116.57 0.64 0.77 1422.42 7.98 0.42 227.26 0.37 110.33 54.56 43.97 85.78 0.73 173.41 41.12 0.32 5.25 1.74 65.65 77.94 7.76 32.20 12381.72 0.43 9314.45 277.51 488.43 6.15 0.26 169.58 9.10 722.18 60.13 7159.63 1.83 0.81 3.45 82.55 53.62 0.04 15.33 5.03 41.74 10.05 2.74 21.54 4.46 0.24 102.91 1072.91 8802.64 16.02 90.91 447.07 0.07 0.86 2.91 663.95 0.13 37.80 137.32 94.04 72.36 896.73 51.50 1.43 51.00 6.79 11170.75 1.75 1.59 41.54 62.03 14.82 24.12 1.28 31.94 333.51 9903.64 4.72 116.19 1086.72 15.84 3.43 289.61 73.21 0.57 167.29 0.68 1.43 55.33 69.18 31.34 67.84 21.45 50.00 0.35 8.02 190.14 835.57 307.08 0.90 8862.70 459.78 17.00 261.44 681.42 15.67 86.26 2.75 10.26 0.80 191.35 36.18 85.52 996.93 4.65 31.65 11811.41 123.50 3.14 9084.13 21.80 190.89 458.95 57.50 2.78 10.45 14097.44 1.08 11374.61 40.58 5.52 19.23 44.48 58.10 1.86 56.14 15.25 446.72 330.15 44.75 78.19 11.81 73.36 68.75 1027.50 575.01 128.27 19.06 15.44 16.50 184.61 161.63 11115.85 24.78 26.98 0.19 12876.14 6792.97 0.19 49.15 0.12 44.81 131.49 24.92 43.66 31.89 Spot Spot SK11-07M_30 366.77 P SK11-07S_51 62.41 204.68 2315.91 SK11-07L_87 19.77 553001.88 194.26 539.81 SK11-07S_40 23.22 7.94 159.23 606254.08 0.06 540.40 SK11-07M_25 376.32 12.45 1.51 675720.41 445.47 10.71 25.17 SK11-07M_21 187.04 569045.91 962.12 0.80 0.01 SK11-07S_45 5.00 553972.63 65.96 0.95 911.85 3.15 0.32 SK11-07S_48 0.04 4.75 29.54 122.76 578694.85 72.58 11.43 0.01 2.18 0.03 23.24 8.22 0.50 521.01 608296.05 0.05 0.05 2.03 2.58 0.03 567487.88 1.37 0.93 28.85 0.61 0.00 3.43 0.92 0.05 14.27 13.32 2.16 0.15 0.01 2.84 1.23 0.04 201.71 0.43 5.27 1.29 82.06 1.07 1.89 0.41 12.76 2.69 409.33 13.21 3.97 0.13 4.46 117.53 41.66 0.14 4.00 1438.60 1.48 4.70 58.19 17.42 0.36 174.17 46.46 24.65 21.07 3.42 85.32 9239.18 0.22 16.20 92.35 8.84 6.93 25.00 66.80 67.94 2.59 22.29 103.69 304.00 209.55 31.24 17.30 1435.15 0.83 232.94 35.04 39.39 173.36 189.42 12223.31 31.03 146.82 58.83 8.08 20.53 2.57 11947.32 36.83 814.43 8739.04 2.20 0.29 80.99 381.27 96.49 0.47 619.65 6.45 158.95 42.97 12636.48 73.12 105.68 17.30 7413.45 1.31 302.41 80.06 0.23 11.07 1160.36 108.39 0.99 64.98 13798.72 3.10 28.29 1362.47 Table E1.4 SK11-07 Trace Element Element Concentratio Table Trace E1.4 SK11-07 228 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

’t Sm

Nd

Pr

Ce

La

Nb

Zr Y Ti Concentrations (ppm) (ppm) Concentrations

SK11-07M_33 SK11-07M_33 142.09 SK11-07S_44 9.75 154.94 270.28 SK11-07L_92 13.40 128.02 591119.89 333.66 SK11-07M_34 6.87 135.11 0.42 575168.38 425.01 SK11-07L_95 8.77 149.79 0.51 750777.29 284.87 SK11-07L_88 6.39 209.69 0.04 582982.54 0.54 381.07 7.50 SK11-07L_96 6.35 173.26 8.69 0.39 714069.32 1221.92 SK11-07L_90 9.65 136.77 725189.84 0.07 0.51 902.59 10.02 111.66 SK11-07M_18B 11.80 0.67 0.98 413.54 747389.44 0.46 5.39 0.02 7.51 SK11-07M_19 0.06 153.41 732758.19 215.29 0.50 1.93 1.07 0.50 SK11-07L_89 8.46 95.71 15.86 576911.50 0.43 200.71 541.68 0.58 0.46 SK11-07L_91 1.45 0.46 9.74 124.10 0.40 619876.14 0.74 8.72 1057.36 6.66 12.71 SK11-07S_37 0.40 6.95 8.49 124.93 1.15 747591.20 1.09 0.42 8.26 2.92 420.41 0.26 2.23 SK11-07S_43 0.16 7.98 7.41 9.35 139.26 0.74 723086.81 6.65 0.39 1.63 36.28 0.01 215.39 28.49 120.07 4.22 SK11-07M_18A 10.88 0.17 2.90 6.72 2.73 0.60 607007.24 13.37 10.02 7.40 0.42 6.31 0.56 217.26 SK11-07M_32 5.97 0.05 122.72 36.19 15.65 40.54 232.50 0.33 54.03 630082.99 45.04 2.22 7.96 1.52 SK11-07S_55 8.37 1.83 1.09 14.69 12.26 0.27 122.46 605931.55 0.06 0.15 14.26 12.62 1.61 278.61 28.33 SK11-07S_42 8.94 2.81 0.43 132.81 67.67 26.96 6.73 1.97 0.40 131.40 3.29 165.27 7.67 0.04 0.51 144.96 629794.28 10.69 237.66 45.37 35.33 SK11-07M_22 18.29 0.04 8.70 9.44 207.67 6.43 18.82 17.31 0.93 6.06 14.48 0.42 0.03 0.20 578333.31 46.24 187.71 258.45 185.74 13.52 8958.97 SK11-07S_39 8759.91 7.51 94.18 0.38 3.03 293.18 0.05 13.78 0.02 1.95 44.74 0.23 0.54 4.10 587285.25 12.35 7.28 28.41 665.66 0.25 64.48 0.24 SK11-07M_23 33.13 7.56 209.54 37.33 1.20 11.48 4.49 12160.93 460.11 31.87 147.41 0.15 608182.04 0.34 1.27 1.30 16.55 0.02 967.27 38.69 140.41 66.64 7.63 14.53 0.30 62.74 0.01 0.43 57.23 17.45 9.53 1.03 41.81 550422.93 170.95 54.71 2.02 19.09 32.33 546.37 0.29 0.16 8935.22 7.78 70.84 104.20 8261.68 19.68 0.64 9.09 107.18 26.32 0.90 585888.07 332.00 78.61 2.90 7.96 5.15 0.32 0.46 0.24 16.96 7.23 11401.92 0.02 85.30 40.50 47.65 1.07 3.10 0.98 12.42 34.15 367.81 172.00 13.32 0.23 1.68 61.75 0.18 10798.12 23.01 174.81 0.03 0.48 147.62 38.12 0.38 10.06 51.56 25.33 3.47 0.33 0.04 87.93 14.56 259.61 21.84 38.45 3.85 0.51 1.02 12149.57 13.87 117.92 60.73 6.14 35.12 172.10 30.64 392.38 17.25 0.09 7.98 0.62 0.14 1.74 0.98 16.12 71.25 0.29 75.97 7218.17 61.90 10.15 2.03 0.03 34.14 2.44 2.07 9209.82 81.45 19.58 18.66 12110.19 0.36 0.36 5.22 41.51 26.87 53.93 0.23 9.43 0.94 0.44 4.45 194.05 0.74 8.09 76.46 5.30 12.34 1.92 9.79 103.37 25.91 26.14 338.33 2.35 47.43 15.15 1.49 36.82 158.78 141.31 24.78 1.88 10927.48 28.38 45.38 12.71 10.33 5.22 0.64 18.23 27.42 0.29 10454.26 8.95 23.94 11.16 7411.33 127.54 65.61 12.70 0.18 8.24 91.18 132.42 39.03 9.48 0.73 15.11 24.12 66.55 120.53 4.09 95.48 17.38 10.09 39.10 9366.90 110.85 56.89 106.33 10689.15 34.29 53.49 118.79 125.01 0.29 10.07 27.49 0.23 146.60 20.62 14.18 116.38 26.37 311.89 123.24 35.82 8913.65 89.66 29.06 14.34 108.42 36.19 394.40 0.14 23.88 9015.22 8919.42 44.99 76.09 263.12 0.18 0.35 8461.38 79.68 29.26 83.26 67.81 0.36 9238.49 71.38 20.91 62.52 0.50 27.04 168.39 44.05 Table E1.4 SK11-07 Trace Element Element Concentrations con Table Trace E1.4 SK11-07 Spot Spot P 229 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

0.13 0.04 1.40 0.65 10.63 4.91 27.01 8.87 127.00 18.56 12417.39 1.02 13.92 353.91 Nd

Pr

Ce

La

Nb

Zr Y Ti

Concentrations (ppm) (ppm) Concentrations -08M_7A -08M_7A 128.47 7.27 343.47 568522.24 0.54 7.47 0.01 0.53 1.13 0.32 6.45 2.01 27.79 10.95 54.11 15.92 203.94 25.92 8198.38 0.44 68.70 68.35 1 SK11-08S_70 SK11-08S_70 165.47 SK11-08M_13 12.50 127.42 393.41 152.10 SK11-08S_61_a 10.79 569663.34 175.69 14.62 573365.01 912.15 0.49 539827.52 0.03 0.33 1.01 7.76 0.08 0.02 6.51 4.78 0.15 0.04 0.08 0.74 0.79 0.80 0.22 0.92 0.65 3.69 0.14 0.67 2.08 3.93 11.89 27.56 1.55 4.85 11.94 16.39 70.62 63.79 32.22 6.52 19.47 182.19 30.37 238.18 53.15 31.97 8.12 602.50 10894.17 100.28 120.55 0.98 11.91 12249.30 135.43 8181.61 1.35 410.47 0.24 76.59 523.59 53.62 116.84 SK11-08M_15A 163.67 163.67 SK11-08M_15A 14.05 SK11-08S_64 150.53 367.70 SK11-08M_16 160.93 12.96 612742.64 562.86 13.69 SK11-08S_63 0.63 254.81 595681.70 304.94 SK11-08S_66 16.94 398.40 584664.68 0.53 745.72 134.46 SK11-08S_61_B 30.32 0.52 544142.52 7.81 905.82 13.74 SK11-08S_84 748.30 0.82 583.08 541723.22 3.01 SK11-08S_62 423266.28 27.93 275.08 9.28 7.10 1758.42 155.24 SK11-08M_15B 41.86 0.63 0.11 0.24 568021.62 907.30 0.04 3.60 15.48 0.14 SK11-08S_68 192.13 2.41 1.04 386.67 7.84 533127.83 0.37 0.41 0.01 5.83 SK11-08S_79 15.51 0.71 573208.93 0.03 366.15 1.35 0.10 623.95 1.63 0.89 0.36 SK11-08S_80 0.04 0.63 27.14 29.74 0.11 180.28 605151.79 5.80 782.01 0.63 0.10 SK11-08S_67 1.53 12.03 0.57 0.16 470.07 8.52 1.01 563974.07 2.14 487.26 9.56 0.27 SK11-08S_85 23.51 4.47 0.94 1.10 1.96 585.79 0.05 542474.40 5.21 28.57 1163.30 7.78 4.32 SK1 25.30 13.14 0.11 1.79 0.18 0.42 522719.58 4.02 0.67 0.89 11.77 1930.16 0.06 10.07 51.97 5.05 23.70 0.08 3.85 7.27 590200.44 9.46 4.06 58.91 1.22 2.82 0.84 0.05 19.78 0.87 67.38 9.53 7.74 4.07 2.70 17.23 26.57 0.07 3.52 0.99 91.00 1.22 1.20 26.77 13.90 0.59 201.87 46.98 57.64 10.06 0.05 57.60 0.34 16.43 25.55 124.65 0.23 2.60 24.27 0.20 22.06 14.24 139.08 30.55 24.05 0.49 316.68 6.08 0.29 35.97 9424.89 174.58 5.21 0.59 55.85 185.23 0.17 1.16 131.57 35.88 1.90 453.18 81.07 0.57 0.17 20.28 280.40 64.97 11.91 37.53 10098.59 2.18 2.16 1.78 51.97 32.64 9813.72 85.68 0.65 80.85 944.13 5.52 0.21 425.76 4.22 28.14 10154.11 4.44 100.84 0.58 154.69 0.60 1013.92 114.85 9.31 84.88 36.45 0.29 3.34 12.83 54.66 11887.57 117.89 43.34 16.94 119.08 0.94 217.71 8737.30 16.36 4.09 9510.81 153.71 71.62 58.15 60.08 19.92 549.91 6.93 28.14 0.95 507.97 4.56 47.12 26.94 49.29 17.21 92.08 66.18 102.58 11.97 1003.48 50.97 12481.63 642.59 152.79 209.98 17.96 26.18 303.88 42.17 158.81 854.98 1.52 53.46 24.91 293.94 77.51 206.34 64.38 260.89 9628.55 824.85 32.31 20.59 1955.31 57.55 301.31 1.17 10170.34 97.75 257.57 702.06 82.66 12956.69 1.15 134.62 27.47 83.13 923.04 12.36 151.94 264.16 9479.79 10396.32 116.22 227.26 86.67 10568.87 0.29 5.53 869.00 4.04 388.75 52.84 676.70 191.13 572.16 737.97 Paleoarchean SK11-08S_69 128.49 SK11-08S-60 31.19 90.00 597.48 Mesoarchean 2 23.66 543453.68 206.00 SK11-08S_77 1.83 595018.00 116.80 0.04 SK11-08S_65 0.64 25.61 56.23 532.30 4.75 0.03 20.01 602544.53 163.62 2.43 1.34 615204.98 0.02 0.03 0.59 0.18 0.11 3.56 0.47 0.15 0.15 1.02 0.13 5.39 0.16 1.65 2.51 0.58 0.93 39.89 0.21 14.10 18.80 4.38 6.07 98.51 2.02 35.43 34.12 34.09 12.02 483.84 168.93 69.57 15.25 11782.99 24.79 86.09 4.59 11999.64 29.36 1.16 152.53 413.27 2695.77 51.90 56.70 407.56 11213.07 1.77 105.65 700.20 Table E1.5 SK11-08 Trace Element Element Concentrations Table Trace E1.5 SK11-08 Spot Spot P 230 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

Zr 08 Trace Element Element Concentrations con’t 08 Trace Y Ti

Concentrations (ppm) (ppm) Concentrations

SK11-08S_73 SK11-08S_73 147.02 SK11-08M_7B 15.50 140.80 248.18 SK11-08S_72 8.18 118.88 527958.22 414.20 SK11-08S_83 10.75 164.37 0.34 617992.13 245.21 SK11-08S_71 17.53 0.08 887.04 566307.13 0.68 573.75 23.24 Neoarchean 2.61 592265.95 0.40 2186.52 0.06 541556.93 0.47 SK11-08S_78 0.01 136.90 8.07 11.89 6.44 SK11-08S_74 0.19 9.05 368.78 1.82 0.04 339.69 SK11-08S_82 0.01 53.83 0.31 159.96 10.57 14.26 1219.57 662059.73 0.83 Sk11-08L_99 13.17 0.33 0.15 139.37 610530.26 0.15 0.41 0.51 277.98 1.45 SK11-08M_17 16.12 224.41 0.68 1.04 4.15 0.00 596485.59 1.98 1.82 354.36 0.47 12.98 SK11-08M_8 0.16 0.14 140.17 0.63 1.61 648271.11 8.04 4.33 560.79 3.38 9.47 SK11-08M_12 12.14 5.94 164.63 552975.71 2.90 19.51 0.71 0.03 0.57 247.68 0.82 Sk11-08L_98 2.45 12.00 0.06 0.05 0.70 208.83 8.07 1.36 584629.61 12.31 0.52 348.00 27.86 7.88 SK11-08M_9 33.87 0.18 16.37 131.60 8.36 0.59 42.84 17.37 0.50 573911.14 4.20 1088.33 13.83 0.69 0.01 13.91 SK11-08M_10 11.30 167.51 9.30 13.01 0.00 8.29 1.37 689781.09 0.71 212.19 52.84 0.21 252.11 63.76 0.52 SK11-08S_81 7.83 0.05 182.19 189.26 85.85 1.02 40.96 0.51 0.49 19.55 580205.57 352.40 20.42 3.62 6.98 23.22 SK11-08S_75 0.58 0.99 10.00 403.88 12.87 171.12 86.87 13.64 524510.18 0.92 0.47 243.49 688.14 9431.63 8.02 1.46 0.02 112.28 SK11-08M_14 0.15 173.43 2.05 205.39 7.48 24.23 0.86 31.16 6.81 572962.15 0.61 0.17 1299.14 13.28 445.73 21.43 0.03 20.67 0.23 SK11-08M_11 8.57 290.74 4.05 9348.02 0.30 128.59 167.04 100.16 0.83 77.34 607713.84 6.10 0.09 9531.83 750.62 10.70 13080.78 33.26 0.56 7.39 SK11-08M_6 0.59 0.73 518.52 40.70 7.36 1.68 10.33 192.85 361514.33 0.40 0.85 7.83 10335.61 2.06 53.56 1.82 318.40 7.86 SK11-08M_5 81.28 212.54 0.94 0.03 0.14 21.92 3.66 8.68 142.18 0.58 0.19 42.17 405.96 550482.94 15.47 74.22 28.54 10.13 4.28 68.80 479.14 0.04 1031.91 SK11-08S_76 0.20 139.41 0.08 4.06 8.80 43.99 7.03 0.03 509.36 164.35 183.28 0.56 11.78 905.83 594314.03 0.03 364.03 0.64 258.62 0.49 SK11-08L_97 9.56 17.82 40.66 5.68 0.31 10.44 1.46 7.81 27.57 125.45 121.39 56.34 0.94 584616.27 0.89 21.52 325.71 10222.10 15019.18 84.88 0.93 0.03 12.36 19.89 6.82 2.37 0.12 15.49 0.43 559581.14 0.71 1.33 7.06 346.68 2.77 156.14 24.22 8.34 0.13 0.84 8.01 27.67 185.25 3.10 0.02 0.47 324.30 695479.21 91.51 18.84 288.21 94.09 1.12 11.89 0.41 0.04 28.32 3636.67 11.04 5.60 2.02 38.67 112.65 1.36 0.21 10410.66 7.97 32.77 0.77 35.57 13982.82 1.95 12.10 0.03 56.15 0.33 11.40 0.82 2.26 0.18 9444.57 18.86 7.53 1.26 0.02 163.52 4.93 139.66 16.16 0.34 0.57 64.75 0.99 1.03 26.35 8.19 7.71 40.99 92.02 0.05 0.52 16.67 212.06 86.27 58.94 11.90 6.85 1.33 171.35 11.03 95.90 462.80 0.17 40.18 3.03 10680.06 166.88 24.74 0.40 0.64 23.05 4.35 55.62 65.26 0.02 0.23 0.80 12.23 10530.08 4.94 36.46 105.10 0.91 14117.05 0.10 15.62 56.74 1.21 151.13 0.21 85.74 7.82 14.07 1.87 1.42 29.53 0.20 201.46 3.83 23.97 97.59 18.22 71.59 68.46 0.85 2.88 341.67 25.99 245.91 10501.11 23.78 122.41 99.08 4.70 1.44 153.64 20.49 39.00 10.30 38.16 0.13 0.46 9860.40 30.15 10962.84 20.18 2.05 250.51 50.15 15.06 1.40 123.85 287.05 3.84 1.23 27.25 156.12 8.43 27.60 15.22 74.90 80.88 55.58 1.65 10994.40 184.56 110.63 11.01 42.93 189.17 7265.62 21.64 155.32 1.13 25.21 53.47 21.36 12.36 0.19 249.69 122.10 11.10 9700.89 163.86 15.96 123.76 29.31 253.39 164.18 59.02 1.09 10379.37 20.25 202.32 1.60 10944.96 17.29 24.58 65.09 0.72 10780.14 213.73 143.27 89.07 151.30 0.97 32.84 81.82 101.52 14491.46 94.38 1.09 121.46 75.92 158.91 Table E1.5 SK11- Spot Spot P 231 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb Y Ti Concentrations (ppm) (ppm) Concentrations

Mesoarchean 2 CRMO11-01_L_37 CRMO11-01_L_7 200.29 CRMO11-01_L_40 3.34 CRMO11-01_S_198 145.95 254.19 3.57 CRMO11-01_L_29 976.61 145.37 4.05 CRMO11-01_L_15 2.78 1194.67 124.49 12.15 CRMO11-01_L_39 1446.40 2.02 150.38 0.07 1184.34 CRMO11-01_L_31 6.44 1.88 19.40 149.85 CRMO11-01_L_41 780.50 20.62 5.14 3.05 189.89 CRMO11-01_L_12 1218.00 3.51 0.03 187.94 1.84 CRMO11-01_M_128 755.13 9.19 2.21 3.83 182.32 32.56 CRMO11-01_M_123 1.14 927.09 102.95 3.40 13.64 0.07 9.59 CRMO11-01_L_23 0.08 1349.99 2.30 142.28 3.02 12.82 CRMO11-01_M_124 10.94 0.05 982.96 1.44 2.34 1.87 0.02 6.78 13.48 687.52 168.07 CRMO11-01_L_28 0.06 112.42 0.04 1.22 4.06 3.17 14.19 CRMO11-01_L_24 19.20 893.89 6.20 17.56 0.11 2.11 17.88 2.11 177.67 1.59 CRMO11-01_L_25 3.75 0.12 1030.25 0.05 0.06 4.83 0.01 0.11 2.76 2.03 7.25 627.75 204.95 20.87 CRMO11-01_S_209 3.27 0.26 25.47 11.64 2.79 0.01 169.17 0.99 23.05 10.25 32.56 0.80 CRMO11-01_M_129 6.28 94.56 998.47 0.08 1.48 230.75 6.03 0.26 24.26 9.05 CRMO11-01_L_35 12.16 11.91 0.04 0.03 1942.00 3.00 34.00 216.29 2.57 3.35 0.03 0.48 16.09 2.30 CRMO11-01_S_200 18.68 125.83 8.62 902.50 4.09 155.76 0.08 151.23 1.31 1.10 21.76 0.02 2.61 121.62 0.00 35.19 2577.80 CRMO11-01_L_32 8.19 6.67 46.07 107.37 52.25 6.36 38.84 184.16 2.07 1641.18 9.02 1.41 CRMO11-01_L_10 16.85 0.08 11.32 3.64 2.62 13.56 0.07 194.17 6.45 4.33 41.24 213.55 1202.06 0.12 21.99 433.55 81.00 0.21 CRMO11-01_M_132 134.26 8.61 511.86 5.83 4.77 6.96 0.04 49.37 5.72 0.98 0.02 0.15 183.73 55.27 207.16 42.61 0.50 CRMO11-01_M_120 15.27 32.11 1177.07 28.54 0.06 306.33 15.64 0.02 45.29 4.79 528.74 12069.37 96.17 44.91 602.63 0.45 29.77 1839.03 75.47 CRMO11-01_S_207 3.80 18.82 15.74 2.72 5.82 119.54 11.16 0.24 718.24 2.37 12.61 184.56 1.28 0.07 10.09 28.21 54.73 CRMO11-01_M_134 449.90 57.16 143.23 0.03 33.89 26.52 24.16 1294.29 0.20 7.55 5.24 31.11 139.38 217.94 4.42 0.03 2630.15 45.34 10388.34 5.96 0.29 413.42 11143.70 CRMO11-01_S_205 3.63 0.10 62.34 1.17 147.29 2.19 2944.69 115.94 201.56 21.07 322.03 50.64 7.57 7.95 540.83 19.36 95.53 70.14 3.99 4.20 11.90 466.70 17.80 CRMO11-01_M_133 14347.34 12.13 15.85 8.76 4.25 38.09 32.52 0.03 234.29 21.94 3.09 2.53 0.04 35.07 58.32 209.30 2649.04 8.53 97.04 35.36 25.65 737.36 48.72 227.47 6.84 10.65 7.47 0.19 2.65 110.20 415.88 0.93 5.06 372.95 9329.45 881.09 739.12 1065.69 581.86 52.41 18.75 0.10 17.93 5.75 9189.86 7.46 152.88 110.09 34.11 223.81 2.57 5.13 0.52 100.58 21.66 41.44 1255.95 35.78 0.96 54.82 1045.71 65.52 556.21 485.56 1.42 12.20 0.62 7.39 40.22 28.15 137.50 0.04 34.96 1.26 0.07 0.17 166.59 12802.91 37.80 11091.22 64.23 502.09 0.45 54.40 18.37 23.52 95.09 15.62 446.36 310.40 146.98 2.42 34.91 11.48 99.94 739.17 18.06 2.38 8.82 10.22 164.13 0.77 3.91 40.58 143.95 21.41 9967.09 192.08 215.70 95.77 8.19 2.78 45.97 32.80 5.64 365.85 138.36 8.26 334.62 35.98 41.94 304.57 0.66 13.90 0.46 0.31 253.58 5.50 3.53 17.00 0.04 503.14 73.39 12021.25 9872.21 24.97 670.44 0.01 38.22 14.36 2.14 18.90 79.96 159.16 433.03 175.98 52.36 94.17 10.58 388.94 11.10 289.95 8.94 0.06 22.20 1.72 0.03 8597.64 274.74 42.60 171.60 29.85 6.17 1.49 48.53 0.73 656.88 62.60 400.52 466.42 17.16 68.80 4.16 1.34 28.87 105.80 14.94 8.20 19.82 0.97 14560.56 790.67 36.73 453.13 141.84 75.12 257.38 91.10 0.02 194.99 5.18 199.25 707.70 8911.90 9.73 120.76 52.98 114.53 2.05 48.49 357.08 38.27 8.25 3.58 62.04 825.08 24.43 68.75 170.30 77.80 0.10 0.94 4.79 13085.77 463.25 42.69 117.66 20.45 411.83 75.89 121.36 120.26 657.82 10542.37 301.63 284.53 0.03 494.11 14.61 437.46 71.34 186.35 0.85 14944.84 0.27 48.29 81.97 45.76 24.08 1.39 64.07 103.72 70.16 116.51 370.20 18.17 103.18 4.43 14442.85 45.45 21.54 204.93 415.48 26.30 9629.73 0.01 281.32 855.12 263.38 724.89 Craters of the Moon trace element concentrations element of trace the Moon Craters Element ConcentrationsTable Trace E2.1 CRMO11-01 Spot P 232 U Th

Ta

Hf

Lu

Yb

Tm

Er

.42 .42 131.99 35.50 378.08 43.85 13796.55 8.13 271.59 793.22 Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb 01 Trace Element Element Concentrations01 con’t Trace Y Ti .99 .99 5.16 1762.46 14.13 9.14 0.35 3.99 0.03 32.60 13.42 180.77 68.08 282.07 71.85 733.69 73.35 11896.94 9.83 480.36 1329.80 Concentrations (ppm) (ppm) Concentrations

CRMO11-01_S_203 CRMO11-01_S_203 CRMO11-01_S_208 230.07 CRMO11-01_M_141 4.31 188.24 CRMO11-01_L_36 351.61 4.89 CRMO11-01_M_119 1544.83 3.74 1382.24 244.55 CRMO11-01_L_22 459.27 9.57 1691.74 5.86 CRMO11-01_L_8 5.81 11.22 128.36 CRMO11-01_L_27 5.45 0.08 1018.55 1.88 2460.64 313.42 0.14 20.22 170.66 11.39 15.79 2.37 9.27 600.73 4.68 0.08 14.86 0.07 0.04 1329.89 0.01 1.74 10.27 0.06 814.47 1.33 0.62 21.59 11.94 0.16 0.10 1.83 0.10 5.62 3.80 3.92 0.16 10.50 0.62 0.08 6.07 11.14 0.04 0.12 3.20 0.02 16.15 1.82 0.04 0.28 25.38 28.07 8.98 0.80 0.06 38.86 0.98 10.68 9.20 0.22 1.93 14.77 0.80 142.91 3.06 119.09 51.95 12.93 0.13 183.38 55.21 46.91 2.55 0.05 20.00 6.04 65.57 12.30 247.05 215.67 0.00 20.66 244.81 272.79 90.97 59.99 51.04 4.70 92.30 14.62 8.90 68.70 583.05 36.28 468.46 54.92 387.99 5.27 128.14 708.02 79.83 172.09 71.71 21.53 96.48 17115.08 48.62 70.30 19451.25 74.41 48.65 1037.85 90.59 11.00 10088.01 9.94 221.49 532.79 27 108.20 3.89 396.30 23.32 60.65 515.85 11720.96 55.91 801.73 626.63 251.71 337.42 677.98 13100.93 9.41 681.43 28.69 14.61 70.83 807.62 11697.01 1438.07 10929.46 228.22 1467.46 1.33 12.34 102.95 89.48 373.93 152.02 CRMO11-01_S_199 CRMO11-01_S_199 CRMO11-01_S_196 1207.16 CRMO11-01_L_9 5.66 799.12 CRMO11-01_M_137 73.34 2258.53 298.54 357.73 61.09 2737.66 7.94 8.74 1255.16 22.04 26.59 1814.43 11.59 50.91 12.34 25.37 31.30 0.41 6.33 0.04 3.56 9.70 37.66 10.38 18.39 18.15 0.13 0.04 9.96 0.27 1.18 0.90 0.15 59.15 2.11 3.03 41.53 21.03 0.03 0.06 250.05 16.75 13.57 26.38 85.57 237.85 6.63 351.02 95.20 11.62 103.88 80.28 446.99 166.79 42.10 116.22 740.49 65.81 1192.84 203.76 91.58 304.56 159.07 15424.14 58.53 80.75 18589.78 6.33 688.17 894.16 32.06 610.72 74.04 94.03 514.87 892.07 2448.33 11419.61 12194.40 17.45 23.78 283.56 385.55 1722.84 1626.11 CRMO11-01_L_20 CRMO11-01_L_20 CRMO11-01_L_16 307.22 CRMO11-01_L_17 7.59 247.24 CRMO11-01_L_11 3.62 179.99 CRMO11-01_M_125 2214.36 4.47 159.79 CRMO11-01_M_136 1113.66 195.46 15.31 9.65 CRMO11-01_L_38 1205.16 2.31 996.26 13.97 0.38 CRMO11-01_M_138 677.85 3.75 0.04 16.95 311.62 907.49 CRMO11-01_L_18 36.38 172.61 7.51 2.92 15.04 834.85 CRMO11-01_M_135 2.31 0.23 2.70 159.80 CRMO11-01_M_121 1962.13 0.06 244.14 2.80 0.06 8.94 1.94 894.42 3.91 CRMO11-01_M_126 5.28 141.80 17.59 18.43 0.94 15.34 CRMO11-01_S_201 15.12 0.02 10.16 740.28 1.86 166.62 0.09 2.43 48.34 1155.58 CRMO11-01_M_130 2.97 0.07 5.94 0.11 354.31 0.08 0.40 0.34 16.45 CRMO11-01_L_19 1.96 768.88 5.43 19.38 156.17 6.92 0.03 0.92 1.29 857.29 CRMO11-01_M_142 14.21 51.48 1.76 5.52 0.02 0.12 31.43 2.32 17.80 3192.79 291.86 CRMO11-01_S_197 2.77 18.84 4.12 0.16 179.80 10.78 14.73 0.05 10.80 1.39 12.81 757.29 CRMO11-01_M_131 10.72 3.74 7.52 0.01 231.55 9.05 226.21 0.13 0.22 2.05 13.79 0.04 CRMO11-01_M_139 0.30 1554.22 5.30 287.33 10.16 2.66 106.17 81.37 0.05 17.31 12.50 911.90 14.75 25.24 5.48 6.89 248 3.71 0.09 0.59 31.75 22.41 0.12 40.83 332.08 1471.75 0.95 0.05 0.01 5.50 8.26 100.70 0.03 9.18 15.72 30.90 2348.31 0.27 178.94 9.54 82.16 2.51 41.39 4.45 2.88 0.71 0.00 40.16 0.92 70.18 99.52 48.02 831.01 8.27 0.01 0.22 22.19 98.56 8.92 15.49 0.06 190.10 11.84 25.39 0.33 2.80 34.04 525.38 92.15 4.12 0.04 206.68 32.71 0.01 8.28 0.60 4.07 16.10 55.96 11005.64 109.02 55.90 139.14 18.53 0.01 0.04 76.41 128.90 0.34 27.71 17.99 97.03 10.59 0.66 2.25 7.09 634.58 6.35 13351.61 27.91 34.76 6.28 316.14 32.85 0.03 13.29 20.55 0.16 0.05 16.26 33.32 70.97 0.23 106.23 728.20 295.17 2.03 0.06 372.15 77.87 335.97 75.89 993.12 14981.54 159.62 138.47 5.94 1.60 6.84 41.74 4.06 1.09 30.60 75.08 37.88 13.00 442.11 816.39 33.79 23.27 27.80 34.72 195.71 9309.48 78.45 9057.51 86.70 0.01 26.40 9.08 4.27 9215.59 78.39 5.20 214.33 112.52 377.45 57.34 1.97 1.42 1027.00 30.35 29.48 324.38 18.70 10565.42 12.16 1.68 0.95 0.23 69.36 28.23 37.85 649.96 11.02 176.22 135.58 120.03 142.32 120.33 9.11 144.09 5.49 245.22 8349.96 309.09 26.77 46.92 29.71 204.97 67.29 493.32 593.35 37.47 238.84 30.14 131.70 1735.94 81.73 1.49 33.53 118.80 12935.53 17.42 10.76 114.35 431.27 326.04 54.10 24.87 9639.55 1025.34 33.04 34.24 133.29 217.71 141.42 42.49 33.49 201.55 256.77 136.90 205.20 1.11 374.78 158.62 83.48 54.30 12041.74 8745.16 990.92 13851.55 72.49 12.55 37.85 44.73 93.98 379.02 236.46 1.47 6.42 779.48 12180.54 148.39 310.08 530.70 96.86 56.78 1043.54 132.91 861.74 10.85 88.68 1073.94 1003.64 55.33 178.76 550.86 16123.86 241.40 117.57 12237.75 73.88 750.96 36.66 10732.55 8.72 13238.63 265.77 9.89 3.01 1477.05 59.95 673.80 633.37 210.86 778.15 337.20 Table CRMO11- D2.1 Spot Spot P 233

U U

Th Th

Ta Ta

Hf Hf

Lu Lu

Yb Yb

Tm Tm

Er Er

Ho Ho

Dy Dy

Tb Tb

Gd Gd

Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

01 Trace Element Element Concentrations01 con’t Trace Y Y Ti Ti

Concentrations (ppm) (ppm) Concentrations Concentrations (ppm) (ppm) Concentrations

Mesoarchean 2 CRMO11-03_M_112 CRMO11-03_M_95 171.77 3.24 Paleogene 144.81 1.92 1142.11 647.86 6.12 6.24 17.62 11.00 0.07 0.02 1.66 0.75 4.39 2.61 0.13 0.16 25.07 12.06 9.28 113.78 4.81 42.63 62.97 177.79 24.04 47.98 103.40 551.19 26.92 55.34 306.59 10905.16 32.74 7.89 8564.46 245.34 3.16 747.12 75.93 190.42 Element ConcentrationsTable CRMO11-03 D2.2 Trace Spot P CRMO11-01_M_140 CRMO11-01_M_140 CRMO11-01_M_127 257.99 CRMO11-01_L_34 3.56 395.96 CRMO11-01_S_206 5.30 303.37 1178.68 Neoarchean 587.27 3.56 1929.37 7.85 5.65 1334.61 7.77 2850.25 11.39 1.19 14.25 0.06 10.52 14.56 2.34 13.08 0.00 0.11 16.06 0.04 0.84 2.80 0.89 1.50 2.86 6.39 4.98 3.70 0.09 0.07 5.72 20.36 0.05 40.08 22.34 8.18 15.71 112.57 41.77 9.41 199.67 43.34 17.37 126.69 73.44 193.94 247.16 48.41 306.24 52.14 101.48 219.10 75.89 460.65 562.84 59.74 781.80 113.01 59.69 664.17 79.81 1043.59 11031.17 10973.09 67.79 149.41 6.91 6.39 12182.45 18354.14 11.16 209.44 529.18 15.49 745.17 1042.63 124.09 735.06 510.85 2043.35 Table CRMO11- D2.1 CRMO11-01_L_14 CRMO11-01_L_14 CRMO11-01_L_21 319.61 CRMO11-01_L_13 2.59 283.41 CRMO11-01_L_30 2.78 299.24 CRMO11-01_L_26 1285.88 1.26 384.61 CRMO11-01_L_33 1440.21 12.12 2.66 288.53 CRMO11-01_S_204 1073.75 0.06 2.35 8.11 326.88 CRMO11-01_S_202 1807.93 425.99 2.70 0.01 2.38 11.28 CRMO11-01_M_122 1446.36 3.14 11.92 317.20 0.48 13.15 1378.72 278.35 2.66 0.06 9.78 2636.28 13.45 1.90 0.08 8.63 0.05 14.34 1823.26 25.55 1.20 0.19 1317.78 1.36 12.95 0.01 0.03 9.31 4.56 2.05 4.87 8.70 0.07 13.22 0.07 2.03 11.65 0.13 5.35 0.01 0.08 1.45 0.05 14.46 0.06 5.72 22.18 11.31 0.38 29.62 3.39 0.12 0.94 0.99 0.03 9.30 0.05 26.51 11.59 0.06 1.93 3.82 33.06 3.81 130.80 147.52 9.42 0.90 24.71 13.41 5.78 0.15 47.39 0.03 51.25 116.76 3.75 10.81 182.85 205.83 33.25 0.07 216.83 25.55 40.44 140.50 65.71 0.00 54.70 52.60 15.58 163.81 10.45 32.83 52.77 280.48 602.33 CRMO11-03_S_188A 24.48 523.65 232.55 41.69 144.56 14.27 223.06 71.49 CRMO11-03_M_92 58.82 501.47 10.11 55.91 96.94 438.27 52.66 183.35 CRMO11-03_M_103 10607.75 56.54 730.45 8.85 13369.00 135.72 452.69 96.13 44.01 221.09 67.69 CRMO11-03_M_108 9.20 586.94 73.02 619.21 3.85 114.65 49.90 0.59 1430.09 9456.12 56.49 288.28 3.45 12512.53 130.77 133.51 63.21 1133.83 128.84 213.37 1.83 592.60 160.22 65.91 1.21 8.29 6.40 850.88 13169.55 184.14 156.13 1200.46 55.08 58.28 179.70 23.68 16526.15 600.48 5.43 103.30 1084.11 315.40 9.08 566.46 11295.91 26.80 199.27 5.20 80.29 59.86 180.30 0.04 4.79 57.24 15.28 4.32 150.35 106.66 16623.15 4.01 382.33 11704.34 0.50 24.35 4.84 75.83 67.15 5.59 21.57 161.76 162.41 27.29 3.32 233.05 109.20 9.20 0.29 183.50 16.30 1.41 0.96 12.34 5.30 33.49 3.03 3.19 7.21 10.89 0.62 34.59 2.15 123.85 16.20 10.00 28.21 48.19 119.22 6.28 214.04 9.19 40.78 78.95 53.99 107.48 182.56 29.51 536.72 36.98 50.54 136.42 89.78 157.41 603.74 11870.88 38.13 45.60 69.98 4.00 449.91 521.60 7335.29 865.70 49.94 56.86 594.58 2.50 10280.67 9177.38 814.15 5.49 2.29 613.59 640.77 383.26 942.19 454.27 Spot Spot P

234

U

Th

Ta

Hf

1.48 1.48 9633.46 3.65 367.44 584.74 Lu

Yb

Tm

60.11 60.11 43.94 535.21 55.68 10475.88 3.91 375.23 665.71 Er

Ho

Dy

Tb

Gd

Eu

Sm

.39 .39 8.67 1.36 32.09 11.61 136.94 49.98 214.46 58.67 664.94 73.34 9378.51 3.49 575.95 637.29 Nd

Pr

Ce

La

Nb

03 Trace Element Concentrations con’t 03 Element Trace

5521.81 0.82 731.17 5.07 112.10 221.97 28.27 132.92 35.77 2.97 39.57 8.37 83.11 26.18 101.06 28.38 359.25 4 Concentrations (ppm) (ppm) Concentrations CRMO11-03_S_193 CRMO11-03_S_193 CRMO11-03_M_93 175.37 0.74 132.13 0.84 5371.89 1386.15 150.80 0.01 5.82 45.37 0.18 0.07 25.78 2.86 0.22 10.87 4 0.77 87.03 37.20 473.50 183.48 831.48 207.04 2001.05 281.71 17779.67 64.23 5264.24 6012.53

CRMO11-03_M_117 CRMO11-03_M_117 CRMO11-03_S_187 107.96 CRMO11-03_S_192 0.64 89.37 CRMO11-03_L_3 262.69 0.40 1418.02 CRMO11-03_L_6 1.49 CRMO11-03_M_107 77.76 20.62 1577.51 145.11 CRMO11-03_S_191 2.30 6949.31 0.08 99.39 0.45 14.31 CRMO11-03_S_189 204.28 0.40 19.85 916.55 93.30 CRMO11-03_S_186 2649.24 0.14 544.90 0.60 CRMO11-03_M_94 0.03 1261.72 4.27 0.73 1544.92 61.50 62.67 8 17.24 CRMO11-03_M_110 1951.13 2.76 8.94 0.80 17.24 87.51 CRMO11-03_S_195 0.24 2966.36 0.02 0.02 2.95 19.63 1.63 12556.47 5.89 4.11 3.55 6.13 0.62 1.18 31.05 87.17 21.97 0.01 265.90 0.64 0.53 841.46 16.44 14.80 0.34 13.96 0.03 3.49 0.01 694.28 21.48 4.12 24.83 57.20 80.92 8.90 1.44 1235.00 1.17 0.37 0.75 0.13 6.28 10.99 3.76 0.11 2.99 5.68 111.28 14.19 27.44 0.05 6.51 3.33 2.54 140.37 20.04 21.33 0.64 45.09 37.48 0.04 50.44 9.98 18.00 0.57 0.50 8.39 16.67 604.76 20.58 0.04 31.76 18.42 226.69 138.89 0.06 235.98 44.91 21.22 1.04 3.04 7.29 0.96 1.05 0.04 62.88 1069.11 54.66 19.51 0.91 8.59 41.43 70.86 88.92 197.93 272.34 710.89 2.60 248.13 0.46 252.63 2675.47 115.66 1.91 14.78 23.80 80.95 31.09 77.05 63.10 0.45 90.30 2.58 374.59 44.04 1064.64 11630.88 180.10 269.30 136.96 0.45 636.89 18199.93 420.48 14.14 424.99 11.81 0.32 196.91 66.85 97.97 40.45 88.16 97.98 12.26 113.73 1921.55 1291.06 6.08 56.08 297.84 435.12 17.80 3517.19 15662.35 2174.42 464.26 1282.52 481.89 7035.15 5.07 666.58 104.08 71.40 9.54 76.76 52.72 138.27 4718.59 7.52 998.66 11596.35 65.41 70.46 666.23 705.14 1112.49 9070.90 29.43 104.97 1442.20 29.51 16521.62 10344.07 154.34 106.65 23.87 3.11 129.40 42.70 107.47 13467.12 10.19 2845.82 14431.92 110.10 5208.76 391.46 37.30 7043.36 3.56 199.57 747.88 3.57 15994.20 590.65 32.54 1447.05 452.99 1259.05 53.68 851.29 853.53 402.68 49.09 737.43 558.12 43.75 9935.95 82.04 9641.99 5.11 14265.29 4.23 9.15 584.63 966.02 455.64 534.57 737.15 851.43 CRMO11-03_M_106 CRMO11-03_M_106 CRMO11-03_M_91 790.62 CRMO11-03_M_118 0.58 265.24 CRMO11-03_M_96 0.53 151.94 1366.25 CRMO11-03_M_97 0.76 348.97 CRMO11-03_S_185 3196.40 22.85 0.70 139.41 12.43 CRMO11-03_M_111 1463.91 40.23 0.67 125.10 CRMO11-03_M_109 5117.90 49.86 0.87 21.14 3662.35 0.60 CRMO11-03_M_115 2073.24 0.72 3.53 208.51 3.39 361.55 32.11 CRMO11-03_S_194 3258.89 0.22 40.39 1.58 131.80 33.58 3504.93 17.57 CRMO11-03_M_102 0.41 0.51 0.18 48.96 24.86 280.66 6983.16 0.80 72.23 7.38 1.64 4.05 128.87 27.63 2400.06 0.25 32.28 323.18 0.50 2.93 0.66 7775.86 8.99 0.08 0.99 106.27 46.70 3.08 28.98 4.97 988.43 26.81 0.02 14.86 320.03 0.64 43.34 1.12 8.65 0.01 0.54 10.12 0.80 77.41 27.48 5.93 52.49 0.71 5.19 0.29 1.26 125.57 25.15 1.84 30.41 26.28 0.01 20.56 6.17 0.58 47.31 73.18 0.23 5.80 10.53 20.62 1.67 293.27 1.02 16.76 209.93 33.60 35.09 139.08 109.04 2.25 0.64 0.48 67.50 60.46 5.63 0.50 14.79 482.10 477.18 51.49 51.73 24.62 9.11 3.86 699.28 181.40 194.42 122.86 132.36 0.61 230.23 328.48 21.34 71.33 812.26 1538.50 0.14 70.75 54.10 4.19 62.58 41.13 119.43 10497.90 284.66 172.01 225.97 320.29 694.25 91.09 755.95 0.64 17.40 532.71 12344.54 13.47 2550.43 109.17 249.39 91.31 41.73 18.72 79.63 151.03 1149.17 250.49 231.94 498.57 19.52 1074.72 2100.23 1054.89 11185.00 13189.27 1815.60 1618.95 601.93 127.63 84.40 289.60 3127.92 109.51 7.45 106.19 11.42 184.34 236.09 1277.20 3136.20 370.82 11580.45 2260.72 13651.96 1450.95 98.02 1149.98 184.24 9765.95 313.34 2005.07 24.06 104.54 40.13 16138.49 306.81 13689.39 35.71 1195.26 1917.21 1122.38 27.37 3165.49 3670.51 141.72 4910.81 123.66 1 469.54 5913.67 2744.31 11291.62 17603.83 3723.67 24504.46 25.50 253.76 2183.47 3218.94 4318.88 12859.34 Table D2.2 CRMO11- D2.2 Table Spot Spot P Ti Y CRMO11-03_M_114 CRMO11-03_M_98 179.97 CRMO11-03_M_99 0.44 97.23 CRMO11-03_M_104 1044.62 1.64 3368.98 CRMO11-03_L_4 3.25 138.92 CRMO11-03_M_101 142.16 1797.65 0.61 11282.87 99.47 CRMO11-03_M_116 271.29 14.24 324.40 0.62 CRMO11-03_M_113 1490.00 0.27 74.90 0.26 10.89 20.76 22.32 1460.76 0.67 83.35 6120.03 25.09 0.35 0.02 19.99 546.41 341.50 5.35 0.12 31.61 0.60 37.72 2.40 4.49 0.12 7.19 37.71 0.01 22.26 30.55 7.88 2.00 0.20 1.01 16.52 0.09 0.04 1.35 5.32 52.00 201.38 0.01 0.96 1.25 37.01 22.50 0.55 83.76 0.36 3.72 14.55 11.22 323.13 1117.02 26.94 186.01 397.85 1.66 118.64 0.56 0.24 11.32 1730.13 65.58 529.74 0.34 27.04 86.83 139.79 475.49 150.70 280.46 5147.85 10.52 42.90 50.11 11.60 1723.43 77.77 519.82 144.74 566.79 175.58 231.55 3.69 962.59 12234.45 14748.99 204.37 51.93 66.67 118.38 48.63 93.72 87.58 926.49 232.55 7832.18 781.53 23730.80 8864.45 1887.78 18.95 265.01 7667.87 63.25 76.43 6.72 3119.03 85.64 10036.41 745.15 304.29 955.53 13.21 24.60 78.09 1513.60 14854.96 1243.19 308.39 184.73 10293.66 1894.25 3111.26 10.67 33.51 15308.20 1175.01 10062.67 1922.88 3.05 280.83 477.52

235

U U

Th Th

Ta Ta

Hf Hf

Lu Lu

Yb Yb

Tm Tm

Er Er

Ho Ho

.86 .86 178.65 801.73 236.06 2684.06 269.40 11766.86 59.43 1920.48 7731.55

Dy Dy

Tb Tb

Gd Gd

Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

03 Trace Element Concentrations con’t 03 Element Trace Y Y Ti Ti

161.83 0.41 1699.68 19.66 119.07 0.40 18.29 173.71 5.59 0.03 1361.57 1078.80 1.19 21.80 5.53 4.62 2.81 0.67 14.76 30.42 29.19 0.02 0.83 11.63 0.49 7.74 155.47 2.28 58.84 9.02 0.31 261.85 2.10 73.76 17.52 31.20 866.47 8.55 9.93 95.66 117.30 11061.39 116.10 46.22 10.89 39.18 217.98 720.21 162.58 1626.43 60.09 43.18 721.75 509.00 88.83 57.90 11692.92 8128.77 13.01 2.22 503.31 1341.07 496.50 396.38 Concentrations (ppm) (ppm) Concentrations Concentrations (ppm) (ppm) Concentrations

CRMO11-04_S_75 CRMO11-04_S_75 CRMO11-04_S_81 745.10 CRMO11-04_S_70 1.10 600.39 CRMO11-04_M_171 4.46 179.86 CRMO11-04_S_62 7703.80 1879.02 0.80 CRMO11-04_S_78 1.90 6615.35 224.60 244.79 2173.86 1.05 243.15 0.72 375.77 4613.22 20.10 2.75 58.90 26.91 3200.35 95.98 80.34 0.21 65.62 6436.13 0.51 78.06 10.00 20.26 146.46 276.90 0.02 4.29 62.41 11.01 18.37 0.06 25.15 10.65 45.22 61.59 93.17 1.14 0.01 0.37 1.20 3.84 25.19 4.19 92.67 1.10 143.34 25.84 1.57 0.37 44.16 49.69 6.39 23.73 79.74 648.02 31.99 623.16 0.51 0.86 28.84 250.00 232.24 14.17 382.47 46.20 116.64 1149.50 1018.53 187.83 321.48 157.12 278.81 50.63 20.54 74.16 3761.82 3120.42 736.24 673.09 291.95 337.05 404.34 339.78 188.88 235.23 104.54 13389.39 13533.82 98.60 1851.15 1031.61 106.87 498.22 149.08 279.48 1150.83 281.89 19456.80 2454.49 139.42 19470.59 19049.25 13822.23 119.22 3238.64 1629.55 57.04 12305.07 321.40 167.64 36.46 2196.34 12614.77 11971.40 5058.94 105.57 988.16 42.88 3202.71 6407.18 16419.79 1384.52 5024.95

Paleogene CRMO11-04 Concentrations D2.3 Element Table Trace CRMO11-03_S_190 CRMO11-03_S_190 CRMO11-03_L_5 70.88 CRMO11-03_M_100 0.78 132.68 CRMO11-03_S_188B 247.97 1.06 1.02 1253.11 892.20 1.18 765.51 1427.26 5.03 2806.91 5.81 7.90 1.27 16.00 0.99 84.19 21.11 26.83 28.39 164.18 0.07 0.37 0.72 Spot 13.42 0.98 2.07 65.18 7.04 2.38 20.37 2.45 8.62 P 2.16 0.68 0.66 1.33 61.25 15.59 15.74 33.51 20.07 5.90 5.39 11.41 259.41 141.28 76.19 69.56 93.46 49.12 29.74 25.27 423.61 213.49 143.14 114.05 104.04 64.58 36.24 33.24 1060.25 701.15 376.52 405.39 160.33 14701.38 71.84 58.75 45.27 7.22 8609.12 13972.39 9190.17 3.72 1559.33 4.80 3.51 1116.99 413.43 618.53 378.63 442.07 979.55 520.02 Table D2.2 CRMO11- D2.2 Table Spot Spot P CRMO11-04_S_68 CRMO11-04_S_65 128.94 CRMO11-04_S_66 0.59 462.11 CRMO11-04_S_82 1.54 CRMO11-04_S_85 1829.13 CRMO11-04_S_56 95.23 2672.74 14.73 4.05 CRMO11-04_S_59 101.46 0.24 61.66 11.09 470.09 CRMO11-04_S_69 1030.79 1.37 2.28 515.23 17.07 CRMO11-04_S_57 1038.09 0.55 195.86 152.83 10.56 CRMO11-04_S_87 5099.97 0.14 0.42 4.23 0.04 CRMO11-04_S_77 4677.74 0.79 160.43 2.21 2.41 CRMO11-04_S_88 2918.72 12.07 2.58 157.73 10.27 171.80 CRMO11-04_S_84 24.77 5.75 0.93 107.59 0.06 17.52 31.14 0.58 338.08 0.09 0.51 21.76 1.12 1.04 652.82 3.41 1.72 0.82 1289.81 21.85 1.00 0.35 4.38 35.31 4448.49 75.45 11.22 2.82 9.79 0.03 5164.33 13.91 3.24 5.65 136.00 24.62 12.43 0.12 0.39 0.62 177.04 1.06 136.23 280.86 7.91 1.74 0.39 15.31 18.12 3.14 65.84 27.48 95.86 4.98 23.88 0.29 72.88 0.06 283.43 7.04 27.34 0.37 390.79 0.33 8.22 33.42 62.34 74.43 1.36 99.60 102.75 0.89 3.76 466.29 40.97 28.44 99.56 831.48 1113.99 35.77 2.87 4.58 170.15 113.02 9.05 101.25 18.36 408.34 35.28 161.51 749.85 10068.25 9211.06 0.49 7.41 157.16 240.82 154.87 0.39 46.29 214.57 8.56 22.56 725.04 94.09 20.50 42.74 0.38 593.10 2392.34 67.42 3270.86 725.77 202.40 2384.48 430.58 497.89 262.04 8.31 1439.97 61.01 67.63 29.09 2363.02 124.56 13622.37 60.47 11055.42 109.19 252.27 30.90 409.62 67.72 1443.61 6548.38 5.95 14941.52 42.04 151.63 465 150.46 2430.85 92.96 2.44 8869.81 478.82 12827.40 198.33 684.39 1116.45 1761.88 65.19 539.12 189.01 9621.36 55.59 511.79 1583.91 2021.72 635.96 6197.45 213.89 68.44 13361.07 9761.40 55.83 5.05 2259.54 8037.71 566.27 1096.27

236 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb 04 Trace Element Element Concentrations04 con’t Trace Y Ti Concentrations (ppm) (ppm) Concentrations

CRMO11-04_S_67 CRMO11-04_S_67 CRMO11-04_M_181 105.73 CRMO11-04_S_71 142.19 0.89 CRMO11-04_L_1 1.05 334.10 CRMO11-04_M_172 1924.27 0.55 3374.25 CRMO11-04_S_61 1499.06 0.52 125.93 6.39 CRMO11-04_S_80 6672.24 0.86 8.53 323.87 0.03 CRMO11-04_S_73 3553.11 369.27 1.07 2.00 2289.26 CRMO11-04_M_174 2615.63 23.55 0.05 117.62 0.73 366.79 CRMO11-04_S_60 39.11 75.24 5679.58 223.92 67.86 0.19 32.24 3.36 CRMO11-04_S_79 1348.64 0.54 185.67 0.35 0.19 205.39 577.91 CRMO11-04_S_55 0.07 3.49 2860.21 4.04 24.61 7.27 1.36 1681.29 2066.20 20.88 3.70 CRMO11-04_S_86 0.85 132.88 1.58 9.56 41.78 44.74 79.64 417.35 CRMO11-04_S_64 25.50 0.07 1827.34 5.95 2.39 38.60 7.08 103.27 296.13 11.27 9616.50 CRMO11-04_S_83 1.36 2.22 0.11 12.49 0.87 0.84 1.18 11.51 104.22 CRMO11-04_S_63 35.84 1.77 0.37 290.80 572.66 41.29 15.06 14.06 3.44 0.46 87.70 CRMO11-04_M_180 18.01 3.16 59.71 32.98 1752.72 76.27 3.06 96.26 16.56 19.73 0.02 0.53 936.33 4.42 71.08 CRMO11-04_S_89 99.71 1278.22 17.15 10.90 0.45 136.97 26.68 36.40 1.05 20.14 196.71 42.74 CRMO11-04_M_170 3.27 0.79 0.65 1.32 1006.23 0.86 10.45 133.43 4.89 20.70 2.11 110.76 337.26 31.05 71.20 CRMO11-04_S_76 12.80 602.10 9774.40 104.82 25.64 131.82 0.53 10.73 51.06 0.02 2.24 67.23 14.92 124.92 CRMO11-04_S_90 1630.91 34.24 221.01 300.93 39.89 13.99 0.84 43.16 1.72 351.68 0.97 106.78 230.04 560.72 CRMO11-04_M_177 49.03 9.75 19.50 966.56 1696.75 77.49 0.32 197.73 11.09 1.23 5.43 3.43 559.97 1.22 47.37 774.24 154.88 59.66 CRMO11-04_M_178 2934.72 287.47 5.33 861.83 1.05 0.04 13764.19 85.02 136.38 2.16 24.28 26.97 203.55 1.12 1.18 69.42 1701.49 8.00 22.42 23.66 CRMO11-04_M_179 16.96 3307.35 611.97 880.96 98.36 4.73 0.10 413.95 49.95 112.70 198.00 883.39 3.19 182.28 11.14 45.15 0.79 338.69 CRMO11-04_S_72 27.07 230.02 1181.91 2.81 95.91 0.01 6.09 2674.36 0.47 9567.77 14349.39 262.22 112.39 0.65 239.61 210.22 75.42 14504.03 22.25 7.51 CRMO11-04_S_74 157.45 15.75 0.58 13690.80 94.54 3.28 0.56 70.71 1.34 18.87 1157.56 191.80 2603.62 3.89 7.64 0.80 21.99 0.68 217.82 58.77 955.89 CRMO11-04_L_2 42.23 0.01 2731.65 68.46 4.25 183.22 0.04 476.32 181.96 12.80 1801.32 3047.68 277.58 236.30 18.29 0.59 167.97 25.95 0.34 6.28 15190.41 842.46 332.24 CRMO11-04_M_182 1918.30 6445.47 692.67 36.19 2.98 333.11 16844.04 13270.26 0.83 38.11 64.94 36.57 146.16 841.64 1079.27 619.65 0.35 0.82 3.98 1441.84 50.16 145.14 CRMO11-04_M_176 0.70 21.15 76.49 589.25 31.43 91.94 1657.16 9.86 1746.58 91.16 0.20 13.65 396.82 266.09 3.31 106.17 0.48 13.71 0.14 391.33 2.46 CRMO11-04_M_173 1362.30 53.66 9693.89 4.16 4.64 199.78 6842.86 776.37 1.36 175.88 8.69 932.16 166.45 456.75 4.19 622.93 73.85 12150.04 4269.17 2.10 30.27 9.89 17.49 CRMO11-04_S_58 2043.45 18.17 11532.35 2.35 4.17 3228.42 19.46 578.31 0.80 73.70 140.61 11.66 423.81 18.69 174.36 0.65 60.50 118.34 896.07 1.60 8210.72 CRMO11-04_M_175 39.19 43.06 42.60 0.15 1.09 6.42 16774.16 7.31 11245.18 0.02 651.75 4.25 981.06 84.62 10.79 269.66 44.63 98.34 CRMO11-04_M_169 330.66 7.95 1038.17 30.95 4984.42 4.57 243.75 28.36 110.22 15.81 839.05 1.50 13.53 177.04 8897.00 1.97 83.11 2044.35 338.25 96.90 9.44 13.19 199.40 24.33 CRMO11-04_M_168 75.20 8102.90 200.37 0.86 1.16 0.68 7086.95 12.33 1.31 135.17 759.76 1.24 146.37 5.68 19918.41 0.42 1429.35 15.19 25.52 35.38 5.52 36.52 1746.52 14.18 286.41 4.77 848.74 57.72 0.40 0.02 1879.90 6108.59 31.26 161.36 21.21 10.48 14.83 384.89 54.22 25.19 2069.04 17.89 98.17 25.65 4.55 279.25 160.47 305.70 33.84 89.54 1132.31 691.98 4303.14 1.21 60.86 0.97 44.90 1213.69 0.49 1939.62 240.59 7.51 0.27 7.17 194.25 10550.53 8.78 99.13 9727.77 44.54 4.70 93.35 424.12 4.86 6359.13 72.89 7.53 265.63 40.50 60.22 2.96 13.07 2.38 91.76 15.24 3.31 12302.36 29.84 4.62 434.11 1.70 10442.95 2.91 541.63 112.73 372.24 1.26 63.07 238.95 74.98 1.11 131.90 630.52 16.57 1706.30 0.93 Table CRMO11- D2.3 Spot Spot P 237

U

Th

Ta

Hf 3056.60 3056.60 31.45 61.66 4177.39

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

0.62 0.25 11.73 1.31 4.99 1.68 0.30 92.60 0.32 41.51 11.73 14.21 235.62 6.70 68.76 6.36 96.29 762.90 115.88 34.05 130.51 51.18 153.52 15118.54 300.01 38.12 2.53 85.70 378.68 16.88 919.38 481.08 59.40 161.22 14360.08 15391.78 6.17 11.26 19.89 43.05 908.76 895.17

Nd

Pr

Ce

La

Nb

Y Ti

1070.39 10.76 2286.24 3.30 0.16 2.93 0.04 0.83 1.81 0.46 19.63 10.23 177.24 74.45 417.61 121.56 1398.29 230.10 14349.47 2.82 4.99 312.78 Concentrations (ppm) (ppm) Concentrations

Paleoarchean Table D2.4 CRMO11-05 Trace Element Element ConcentrationsTable CRMO11-05 Trace D2.4 Spot Spot CRMO11-05M_172 P CRMO11-05S_276 247.96 Mesoarchean 2 29.61 371.76 21.76 CRMO11S-05_90 596.92 CRMO11-05S_267 3039.75 7.53 CRMO11-05S_270 871.05 3.83 34.98 674.64 CRMO11-05L_228 27.83 0.11 944.07 CRMO11-05M_176 2561.05 23.17 1891.13 CRMO11-05S_265 3.62 16.02 1360.81 65.13 596.40 9.16 CRMO11-05S_269 2382.13 22.17 0.29 0.03 1.80 413.88 3695.11 0.05 CRMO11-05L_224A 22.24 6.95 0.02 674.97 1469.61 6.39 0.15 CRMO11S-05_80 17.12 5.49 1284.21 41.10 0.13 1090.09 CRMO11-05S_271 44.92 2.29 13.99 3.32 0.46 0.02 1024.31 1758.86 CRMO11-05L_224B 5.11 3.96 0.03 2629.73 12.36 1.75 0.11 617.64 CRMO11-05L_221 0.22 6.48 0.03 1132.61 6.14 25.08 2.88 75.58 2666.36 CRMO11S-05_82 5.92 31.35 5.72 843.96 1.04 2.54 CRMO11-05M_178 1754.39 0.08 23.17 0.01 10.13 3.25 1945.49 1402.16 2.48 0.39 CRMO11-05S_266 0.28 285.32 26.22 1140.34 0.10 6.99 7.71 5.70 1695.85 0.38 CRMO11S-05_89 13.85 0.72 4.60 42.20 1.18 102.62 16.43 0.06 3908.28 CRMO11-05M_243 2.52 0.03 0.13 1.59 2.49 442.14 17.78 2145.16 3.65 0.16 9.32 CRMO11S-05_83 683.82 6.73 6.19 0.04 1.04 91.59 6.01 95.66 767.33 24.35 0.24 CRMO11-05L_219 0.68 1.45 180.07 18.31 0.07 28.21 0.17 794.11 1177.38 28.37 CRMO11S-05_88 0.62 3.10 0.01 0.06 14.93 1836.06 80.39 30.17 18.81 8.98 2.55 109.81 632.59 1338.76 5.43 CRMO11-05M_242 321.73 1.35 420.41 2.47 0.48 7.89 0.33 2.93 17.85 20.16 9380.85 6.42 163.51 3301.93 981.46 0.02 44.09 Neoarchean 0.02 110.21 9.73 2.41 1763.24 306.18 122.57 1.30 22.82 13.48 73.57 0.32 1.29 1302.95 10781.77 66.37 1041.68 3.79 0.11 0.49 119.68 0.64 44.33 0.35 294.68 422.93 10.33 7.88 26.27 155.99 2615.00 0.54 8.65 4140.88 211.46 670.01 13.42 7.71 206.19 2.56 114.51 18018.10 185.58 0.47 3.23 16.52 48.43 13.72 0.04 3.19 238.13 12.58 21.28 1240.08 10.13 54.34 0.01 81.01 621.49 0.07 0.19 216.15 5.61 1.75 6.84 3249.79 0.39 0.10 217.40 11.70 0.19 7.87 30.22 553.93 471.52 410.85 0.52 14947.02 85.43 19.68 0.54 1279.62 112.35 0.08 27.95 0.38 3.23 0.03 12.00 72.74 133.40 1 156.44 7.22 428.15 50.43 10.04 0.90 12885.44 15.08 0.78 1958.50 15.37 59.44 0.91 0.12 0.06 0.23 115.46 41.25 283.21 148.02 259.48 3.96 267.41 0.28 348.63 0.12 1144.09 9.49 542.82 3.67 12090.03 1.83 0.73 0.61 76.02 55.39 122.93 21.19 115.34 176.03 13.29 7.33 169.47 10.09 0.39 821.21 246.87 584.12 708.10 16922.36 1467.16 5.23 2.28 0.28 70.98 81.81 157.08 4.93 5.09 193.95 209.07 2.93 69.60 28.00 2202.80 0.89 0.24 7.97 15442.63 11004.60 402.79 2351.32 763.02 103.64 78.91 10.57 14.92 10.10 8.18 135.19 385.67 49.51 24.31 4.55 503.51 86.75 52.50 39.72 16983.09 243.38 1740.48 58.20 91.05 21.23 11.84 9777.19 81.08 336.74 244.90 6.79 103.55 1639.79 238.15 628.71 347.44 204.73 12621.91 2.62 112.15 37.84 560.83 78.00 45.76 127.42 1409.34 82.75 1.12 155.10 228.15 1004.42 19.68 789.83 231.00 607.35 434.62 1593.82 512.88 123.56 78.69 9.05 14708.34 151.26 249.26 118.74 9332.05 482.60 968.40 10.67 1608.76 16392.22 1220.66 10.54 117.29 182.60 46.86 4.25 177.73 10165.32 50.47 13266.96 1290.03 16007.71 59.81 768.16 9.68 21.61 3.46 707.95 181.45 47.79 25.64 4906.99 976.48 602.80 CRMO11-05S_273 CRMO11-05M_168 923.32 11.28 783.99 28.73 2544.86 1388.99 1.71 7.19 0.07 1.63 3.48 16.52 0.08 0.63 0.64 4.04 2.21 2.41 0.24 0.21 27.72 10.13 13.55 5.21 201.92 78.15 88.46 366.94 40.81 81.12 243.06 732.15 81.56 109.08 938.09 13898.06 123.43 1.58 11104.04 8.84 31.64 269.94 64.34 951.65 238

U

Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

.25 .25 0.33 16.50 8.06 137.55 53.05 285.80 86.07 931.84 118.59 11005.67 3.85 66.38 216.96 Sm

Nd

Pr

Ce

La

Nb

05 Trace Element Concentrations con’t 05 Element Trace Y Ti

889.89 7.56 1766.34 3.35 8.00 0.66 3.05 0.48 26.35 10.06 144.44 57.25 273.61 70.99 772.74 92.45 12082.40 2.12 124.27 181.77 1254.26 10.52 3402.15 5.20 0.06 6.87 0.03 0.93 936.29 15.03 3.57 2830.40 0.36 3.76 32.09 14.66 244.85 13.45 108.05 0.11 607.66 1.62 169.70 1741.39 5.46 273.65 16378.70 0.34 3.41 42.05 95.51 16.34 137.05 234.63 92.01 452.29 110.91 1041.53 160.85 17211.76 1.99 172.23 187.81

Concentrations (ppm) (ppm) Concentrations

CRMO11-05L_217 CRMO11-05L_217 CRMO11-05M_245B 739.64 CRMO11-05M_177 14.20 CRMO11-05M_244 793.83 1635.67 CRMO11S-05_81 11.61 843.69 CRMO11S-05_92 3.69 10.57 1820.94 CRMO11-05L_226 0.07 1868.25 CRMO11-05M_245A 772.01 2.63 10.96 843.81 15.14 CRMO11S-05_84 818.46 2.21 11.78 0.07 CRMO11-05M_171 2160.54 7.32 0.07 0.00 1800.95 CRMO11-05M_174 823.48 6.67 1174.36 2.46 1703.25 1.11 15.76 12.64 CRMO11-05L_220 13.03 2.65 0.05 877.71 0.04 CRMO11S-05_86 2256.95 3.05 3.88 12.04 0.10 2758.03 1.24 920.48 CRMO11S-05_85 11.56 0.00 0.47 2067.03 2.22 11.57 1098.97 11.53 CRMO11-05L_218 3.02 3.49 1.84 0.05 9.81 0.09 7.64 CRMO11-05L_229 22.50 2375.09 0.02 2.68 0.05 835.87 0.34 4.86 CRMO11S-05_87 1.60 3144.28 12.83 0.10 0.04 9.91 11.69 1073.74 8.89 3.67 1.77 CRMO11-05L_223 23.28 9.21 0.53 4.52 0.09 3.23 139.75 10.76 1.24 1659.72 CRMO11-05M_169 745.76 0.03 4.22 10.94 0.17 10.80 822.88 52.36 27.93 0.41 2190.77 CRMO11-05L_227 1.64 0.07 2.75 2.97 1798.29 7.06 1.62 159.11 0.32 21.54 241.69 CRMO11-05L_222 11.82 8.21 14.11 1950.66 32.27 4.98 4.17 1.24 0.05 0.42 911.15 58.67 CRMO11-05M_170 25.38 64.93 5.10 1579.22 168.17 0.08 12.53 0.07 4202.30 9.44 0.09 2.32 833.47 11.93 0.34 282.85 5.28 CRMO11-05M_175 25.03 692.14 10.93 60.74 0.45 12.22 1082.13 179.76 2.37 2.46 10.43 9.27 75.21 1.60 1894.00 0.15 18.61 33.67 77.97 9.32 164.29 0.39 282.31 805.18 0.15 71.07 36.42 0.01 1574.07 5.54 749.66 9881.44 0.09 12.69 13.30 5.12 58.41 71.95 142.34 2.42 2482.64 1.65 28.85 13.36 335.20 15.60 6.36 12.96 91.06 1.99 2.00 0.69 186.89 274.89 755.53 53.99 1845.19 1.43 0.41 11.96 78.78 5.18 4.33 0.09 11698.77 237.15 0.02 0.11 0.04 105.50 72.63 73.54 83.50 266.76 40.50 182.07 755.34 0.05 1.38 37.59 3.95 89.86 1.98 170.55 0.51 1.91 10607.98 11.10 352.16 770.02 10.33 70.59 0.92 1.73 15.89 111.40 65.66 0.09 434.53 17.22 84.68 10.78 1.00 0.43 31.02 15572.64 83.29 86.80 4.93 781.16 0.10 0.07 219.48 311.30 104.33 116.43 4.09 5.40 253.75 10.58 0.06 10287.96 105.10 1.08 785.45 27.64 10.96 83.74 78.44 1170.79 82.74 0.46 1.61 102.27 113.54 1.41 1.15 0.44 0.58 0.08 118.46 10813.13 117.73 154.51 143.10 1.92 12.05 355.20 836.89 491.09 33.01 15448.94 4.20 95.96 11906.15 4.66 2.17 107.13 21.63 45.58 54.27 184.19 1.83 104.37 91.08 123.54 5.87 0.87 94.87 11.63 1.70 123.32 11892.68 0.30 253.44 21.13 0.45 70.78 1161.18 9.33 906.61 4.54 187.92 137.26 169.22 0.52 104.16 1.23 174.45 64.73 333.72 362.50 28.75 100.78 141.11 26.98 74.54 211.91 16139.72 64.23 0.33 37.96 134.78 9913.36 107.16 679.21 99.34 50.90 11.68 10.12 1.47 306.66 138.95 1162.94 679.90 32.35 14.45 1.12 74.19 239.57 170.48 145.94 134.70 131.09 75.92 190.27 9328.30 218.82 11.79 219.51 63.82 61.65 189.30 10818.96 51.66 1953.52 732.66 202.15 1.13 81.04 168.15 683.83 2.19 290.41 245.29 238.13 107.93 385.53 60.09 107.83 11764.65 76.41 76.88 15167.39 100.40 65.25 104.85 99.84 258.60 6.34 284.38 9449.61 0.78 795.63 691.96 984.90 72.45 175.92 1.20 92.40 173.86 76.04 329.97 122.55 68.58 731.85 10554.76 113.26 9776.08 11347.37 95.81 0.88 92.85 0.98 1.09 12152.92 112.94 83.53 126.78 118.87 0.63 74.13 43.69 95.94 115.50 CRMO11-05M_173 CRMO11-05M_173 CRMO11-05S_274 826.16 CRMO11S-05_93 9.07 794.45 CRMO11-05S_275 7.25 CRMO11-05S_268 834.23 1792.16 29.41 851.76 CRMO11S-05_91 1941.76 2.01 9.05 687.90 CRMO11-05M_167 2493.35 13.33 1.91 990.25 2034.89 8.75 779.82 13.64 1505.92 12.75 0.07 2.46 7.04 2997.41 3.21 1708.62 4.76 10.94 0.03 0.36 4.97 6.50 0.02 0.07 0.69 8.57 5.86 0.65 0.86 2.31 0.00 0.07 9.99 2.92 2.33 8.17 0.36 1.05 0.90 0.04 0.38 0.18 19.22 0.06 2.07 2.37 0.91 27.32 19.64 8.94 0.61 0.23 0.35 2.81 12.14 9.55 141.82 2 17.02 25.81 191.14 0.37 56.97 147.38 10.71 7.64 77.77 301.80 60.56 30.99 161.26 113.03 394.41 83.48 310.24 14.32 65.36 101.76 45.63 862.63 79.15 232.68 981.87 322.42 250.34 109.35 760.65 96.54 147.48 76.40 11455.75 67.41 119.73 18450.67 490.04 0.61 744.70 13996.34 700.12 13.05 125.37 117.87 1.34 107.76 36.18 1172.59 140.21 14384.53 13145.00 96.21 753.25 59.43 188.36 2.12 1.38 140.74 16238.47 109.37 118.96 3.35 223.30 217.26 110.92 227.37 Table D2.4 CRMO11- D2.4 Table Spot Spot P

239

U

Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

Y Ti

51.12 0.24 4202.45 13.69 51.55 0.52 6.85 27.05 3.16 167.80 61.32 655.89 253.64 962.26 249.06 2628.68 285.24 113657.09 16.20 1039.12 1364.58 Concentrations (ppm) (ppm) Concentrations

oarchean

Mesoarchean 2 Table D2.5 CRMO11-07 Trace Element Element ConcentrationsTable CRMO11-07 Trace D2.5 Spot Spot CRMO11-07_M_127 P CRMO11-07_S_211 45.20 CRMO11-07_S_206 0.20 44.59 CRMO11-07_M_131 0.22 68.47 CRMO11-07_S_207 7711.18 47.91 0.23 CRMO11-07_M_140 6515.37 12.25 0.13 45.99 CRMO11-07_M_133 9991.66 11.18 26.69 0.20 CRMO11-07_M_130 3446.18 0.33 15.46 0.29 65.79 5040.23 Ne 82.26 10.43 1.62 0.15 65.22 44.89 1952.72 0.52 0.10 10.81 77.04 0.22 7438.12 0.18 7.68 46.17 6877.11 1.76 11.17 12.05 11.21 0.56 43.29 53.41 22.34 47.73 34.46 5.85 2.88 25.13 70.17 3.88 0.76 4.77 43.85 34.56 31.43 291.13 6.22 253.18 5.66 0.19 1.80 111.79 3.22 411.20 95.33 24.39 1220.67 1.44 8.95 12.69 162.52 1024.10 140.89 462.55 2.74 1665.10 410.57 20.85 47.11 56.18 5.36 1721.84 633.92 165.03 1527.61 445.05 532.31 0.69 9.20 2235.26 0.83 418.88 63.50 4788.19 216.18 590.39 158.72 4376.72 312.16 37.42 743.27 473.93 798.88 6122.80 506.05 122.06 73.26 94003.17 300.37 110578.63 21.91 235.29 622.48 1243.97 904.61 9.23 1125.66 12.11 99277.32 2666.21 241.46 449.53 327.78 392.37 1437.12 13.64 1191.68 257.44 112.25 1648.50 2032.74 2454.60 3519.23 1572.80 98384.40 2228.02 426.21 483.46 3209.77 377.53 497.43 9.95 4606.07 101090.30 151.77 5815.93 12.17 668.38 467.93 1893.16 615.04 1543.12 86827.76 115416.65 232.59 857.00 10.14 1769.97 122110.53 63.03 13.34 1250.90 2912.38 1732.59 12942.44 534.27 2962.63 CRMO11-07_M_128 CRMO11-07_M_129 61.55 CRMO11-07_M_141 69.43 0.25 CRMO11-07_M_134 0.22 184.82 CRMO11-07_S_218 5333.40 0.92 39.94 CRMO11-07_S_216 6463.65 12.84 0.19 67.96 15702.00 CRMO11-07_S_212 13.71 0.20 48.65 CRMO11-07_M_138 59.40 2939.22 0.21 59.99 21.84 CRMO11-07_M_139 5061.47 125.17 11.50 0.23 56.33 CRMO11-07_M_135 3300.33 76.84 0.56 0.24 50.68 12.65 39.69 CRMO11-07_S_217 0.16 5141.99 13.25 10.19 9.49 0.16 48.30 11525.70 46.38 0.41 CRMO11-07_S_220 6.63 0.35 13.16 0.25 64.84 59.63 52.19 CRMO11-07_S_209 66.29 3177.26 0.23 7.10 47.61 1.21 0.19 38.45 43.43 CRMO11-07_S_21 1.82 5.47 3765.86 56.30 0.17 11.09 5.80 29.88 56.67 CRMO11-07_M_136 3747.75 3.30 0.16 46.27 29.92 0.64 10.50 3.16 3 44.79 3301.27 16.79 1.94 1.12 200.10 27.56 10.44 40.22 2.38 0.24 4.36 384.50 50.02 213.62 1.63 12.63 0.22 4.31 76.08 8.40 177.50 4.89 15.60 21.80 0.31 4364.00 91.67 41.66 105.62 832.01 2149.05 65.59 1524.36 24.62 208.00 39.04 1.80 914.00 14.13 959.65 5.46 324.97 42.51 0.44 1.79 83.72 3.51 8.17 44.85 3798.47 389.79 2.58 1227.33 111.65 444.04 18.96 1071.17 6.97 796.37 1501.25 326.67 0.49 15.44 180.24 41.51 280.84 0.46 180.35 11342.90 2.92 391.25 3484.73 316.22 49.16 27.75 1214.25 67.85 24.78 136.33 17.83 508.56 670.92 8.29 4050.83 127216.50 372.69 1110.43 103.22 1675.92 760.86 202.39 190.96 0.39 101143.51 2.56 70.45 2.63 457.50 297.69 13.94 694.79 43.48 13.59 2072.18 308.57 100182.84 781.41 7235.59 3264.76 139.41 129.53 6.48 22589.01 2609.67 13.04 219.26 1177.47 449.35 1219.39 216.71 2.08 341.43 2423.68 55.82 4.81 683.00 51.90 97542.37 324.85 1362.19 23.62 174.66 105661.00 2371.65 121.95 2537.95 7181.72 11.47 602.83 557.25 3361.86 11.01 277.75 11.59 739.08 1.64 752.58 44.67 108734.92 396.93 230.14 613.49 230.64 736.47 201.51 123148.89 2.41 1191.15 106408.79 11.79 1318.72 139.44 488.70 848.12 885.32 2251.32 69.79 12.90 731.69 36.63 197.26 55.04 225.97 240.63 254.58 4476.21 1681.87 1005.83 17922.74 104278.20 765.33 2366.48 1836.43 2610.24 644.68 18.05 10.18 241.67 285.55 220.59 260.35 202.98 112020.89 95910.32 701.71 2420.75 990.65 1371.20 81.74 11.94 8.61 270.82 279.22 1238.77 107842.64 397.01 390.30 2334.17 2972.90 14.48 133.29 893.26 360.68 508.82 1752.33 119625.19 1367.35 202.99 15.28 111594.39 706.36 17.12 2280.85 338.22 4716.24 240

U

Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

7.56 2.58 90.55 49.59 705.48 357.47 1596.68 529.29 7222.31 1006.39 172782.05 193.25 1947.96 10278.25

Nd

Pr

Ce

La

Nb

Y Ti

499.80 16.36 4036.97 16.59 0.06 63.26 1055.95 0.05 11.38 1.26 4467.90 6.72 5.87 232.82 15.80 1.71 11.80 29.47 66.62 1188.63 3.30 28.39 7.35 23.65 364.80 1.08 141.11 11.41 7.11 639.05 0.72 158.56 0.16 48.50 1594.01 1.53 206.26 26.57 17285.83 1.37 480.50 13.01 187.25 0.14 2984.45 3148.27 810.53 8.99 219.69 2810.41 4.88 386.88 80.58 16081.57 4.45 37.87 212.30 552.44 2972.07 72.87 908.49 127.32 18660.16 40.82 139.75 1260.91 Concentrations (ppm) (ppm) Concentrations archean archean MO11-12_L_17 MO11-12_L_17 116.24 5.07 946.17 2.31 0.07 28.66 0.05 1.01 3.28 0.84 15.50 5.68 93.80 40.81 153.58 37.08 477.59 82.47 15548.14 2.00 393.26 550.95

Paleoarchean Table D2.6 CRMO11-12 Trace Element Element ConcentrationsTable CRMO11-12 Trace D2.6 Spot Spot CRMO11-12_S_184 P CR 45.46 Mesoarchean 1 0.72 CRMO11-12_L_14 7259.84 CRMO11-12_S_179 37.75 106.49 CRMO11-12_L_13 4.93 0.28 129.12 CRMO11-12_L_7 0.51 117.17 CRMO11-12_S_190 985.99 145.54 CRMO11-12_L_36 10956.18 0.29 77.32 5.35 3.84 Neo 57.79 4.67 0.82 267.36 0.09 0.07 928.99 7.40 CRMO11-12_L_31 23.68 6131.82 22.04 34.35 CRMO11-12_L_16 4.20 1770.01 10.28 0.05 83.63 187.34 CRMO11-12_S_181 0.01 159.36 10.39 0.18 9.47 CRMO11-12_S_201 0.29 2.57 71.48 233.60 0.03 CRMO11-12_L_26 52.44 1114.48 19.22 1.39 2.01 56.14 924.30 24.57 CRMO11-12_L_22 18.60 10.11 0.99 0.00 405.61 171.78 20987.77 CRMO11-12_S_178 0.56 6.69 0.01 0.07 1756.84 5.53 CRMO11-12_L_29 0.26 3193.50 84.86 16.06 264.25 552.15 55.82 5.90 0.33 CRMO11-12_L_12B 0.73 887.56 6711.68 124.48 35.57 1.97 0.74 6.35 248.63 CRMO11-12_S_185 827.72 2.00 1525.37 160.98 2.49 340.24 7.79 4.81 0.40 104982.31 2851.92 85.96 Paleoproterozoic 677.20 6.46 1.37 77.85 0.46 21.02 42.95 0.03 2690.86 1375.98 32.04 13.08 0.37 8.40 1.46 2090.13 2692.54 15.22 742.43 21.40 0.26 10.39 6802.33 157.81 0.94 5.59 4.70 1.86 8350.68 74.73 6578.95 4.79 9.56 42.67 4.99 0.02 0.12 836.20 30.63 76.96 0.07 0.56 10.66 44.95 443.47 162.93 78751.38 16.28 0.96 31.81 8.16 0.73 606.12 0.68 39.44 10.72 18.72 61.75 67.57 1.61 147.77 3.01 277.66 1728.63 0.05 15506.15 8.76 28.68 306.00 6.09 0.05 2875.45 3270.59 44.19 64.78 3.03 0.20 82.78 18.04 0.73 0.35 1278.84 88.47 1.37 533.43 31.68 386.86 4882.54 1050.91 19.74 3.53 1.98 37.06 588.42 2.94 72.09 1271.63 403.65 4.17 163.48 13168.13 14281.38 6.96 124.06 185.06 16380.36 171.15 12.56 0.12 1334.64 1.06 6.43 12.09 49.31 121704.67 56.36 772.93 78.81 16.55 1.11 52.04 31.88 693.98 236.57 455.46 670.58 257.10 29.77 1481.40 133.14 528.97 7466.81 7.52 3496.76 171.52 13.71 20648.03 92.18 134.95 68.34 385.09 592.61 118.19 20173.87 180.39 34.49 122458.06 861.28 28.08 170.43 49.97 155.52 73.91 358.21 1898.92 370.90 138.82 1068.69 234.91 348.57 8285.87 1349.38 49.14 206.66 1542.43 63.01 93.32 120768.70 17158.37 455.05 4.12 671.51 13.55 5108.54 993.37 570.73 77.34 957.24 139.47 152.05 153386.98 3498.16 361.75 16890.71 17275.86 93.87 11.79 7.42 1084.27 19679.49 614.75 139.84 1264.54 1128.28 CRMO11-12_L_12A CRMO11-12_S_189 251.04 CRMO11-12_S_196 4.80 140.59 CRMO11-12_L_25 2.11 89.62 1268.33 CRMO11-12_S_203 1.34 13503.73 281.37 CRMO11-12_S_200 2.18 76.82 9.62 CRMO11-12_S_197 113.77 6780.58 0.48 1.02 73.69 0.36 1985.88 98.70 96.42 0.57 12.44 5307.50 29.89 1.23 1.26 8.38 0.05 5301.71 48.58 0.15 0.08 24.91 8779.97 0.74 1.10 16.72 0.98 17.54 0.22 57.66 34.64 2.42 24.78 0.13 0.15 3.07 0.25 0.51 1.63 41.53 53.46 2.09 17.78 5.46 17.47 201.38 0.56 0.51 1.64 6.66 17.91 129.14 7.87 8.01 3.58 135.65 1694.54 0.23 1.32 112.39 759.17 64.13 42.09 22.07 39.82 112.43 46.35 3104.74 845.59 2.68 2.86 17.29 874.14 59.53 210.14 356.88 215.27 221.80 8713.04 211.97 681.26 53.03 1499.79 929.59 108.92 83.46 70.18 443.38 289.64 559.39 168855.75 1253.26 4966.35 1179.13 871.98 202.51 273.11 86.28 515.54 604.73 404.52 2024.44 306.14 57.65 15598.12 29844.38 1978.18 159355.56 5628.11 1113.62 688.64 4.61 502.69 523.31 684.03 281.07 1291.71 5292.80 162265.05 57.82 404.43 17589.91 2868.05 257.49 592.34 937.00 19238.15 311.05 149074.94 1721.31 123148.30 13230.30 5.62 84.79 10.38 588.58 1824.92 15375.10 2293.40 2248.65 7127.04 241

3926.92 U 96

Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

12 Trace Element Element Concentrations12 con’t Trace Y Ti

80.34 157.31 0.60 3.92 4720.88 668.56 14.89 2.47 1.21 0.15 28.05 5.41 1.53 17.71 0.09 54.28 2.10 3.14 3.53 244.32 0.19 92.85 20.79 864.50 290.55 6.52 955.44 72.89 215.52 23.65 2087.37 91.67 238.14 147237.67 21.62 9.80 202.23 4281.54 2377.31 27.23 17528.44 0.94 176.24 249.41 100.73 1.37 8012.05 50.33 1.17 57.93 1.19 7.64 38.91 2.17 222.74 119.92 1281.51 467.10 1576.04 369.08 3191.68 276.42 142096.25 54.98 2152.61 30276.13

Concentrations (ppm) (ppm) Concentrations CRMO11-12_S_204 CRMO11-12_S_204 CRMO11-12_L_35 85.52 CRMO11-12_S_182 1.22 143.28 CRMO11-12_S_194 2.80 57.84 CRMO11-12_L_10 7134.87 56.80 0.73 CRMO11-12_S_180 720.85 37.46 0.38 197.17 CRMO11-12_L_24 2462.87 0.11 6.16 64.78 1.45 CRMO11-12_S_192 3630.14 9.01 0.54 190.55 50.70 CRMO11-12_L_33 741.25 11.29 7.69 CRMO11-12_L_30 0.35 2760.39 0.72 2.01 CRMO11-12_L_11 13.17 846.39 7.45 130.71 45.91 7.70 17.41 0.81 CRMO11-12_S_183 0.08 4.07 202.79 0.06 2.27 CRMO11-12_L_15 30.60 0.61 0.46 7.68 5.29 131.95 1.60 0.50 CRMO11-12_L_28 480.61 19.25 1.92 1.43 8.24 8.92 125.88 0.38 916.45 4.01 6.88 0.48 5.84 211.84 180.44 0.93 10147.99 27.09 30.47 3.27 103.30 5.21 0.17 2.05 0.20 0.24 10.16 640.69 42.21 1.58 1.88 1148.85 5.45 1.10 11.12 20.71 26.87 691.25 2.34 4.26 412.25 167.49 133.27 1.97 0.18 8.38 55.32 1346.05 6.04 1.92 62.10 43.62 4.27 0.09 0.00 2.15 314.82 25.91 2.82 0.50 155.91 74.86 584.27 441.26 0.10 2792.48 0.10 1.49 5.96 218.86 50.73 143.24 7.93 15.31 29.04 259.45 4.35 6.28 21.87 2.77 148882.57 0.04 768.15 505.99 469.14 106.14 31.60 85.60 26.67 7.22 193.86 0.10 7.60 132.24 170.15 0.31 22.25 0.93 27.90 1.98 1840.56 2030.75 1326.70 15582.14 562.89 0.19 92.91 1.24 228.95 13.59 226.44 3.23 99.17 150.27 221.09 142.05 115047.12 31.94 135283.80 29.52 36.88 3.91 118.85 4.53 1582.98 20.68 0.11 8.03 4.10 17033.53 121.70 10.54 1387.19 165.15 194.75 54.51 0.13 1067.83 0.84 17.96 1463.59 124111.51 573.24 27.09 110.61 1224.24 2003.46 23.65 18.34 4.77 2171.27 26.01 132.57 6.32 268.02 33.78 18684.16 549.09 73.38 65.33 615.19 7.57 35.47 122.85 1.00 73.48 1154.40 5460.98 16.08 18169.65 25.94 81.64 605.91 608.31 22.21 2.34 164560.27 153.90 318.73 240.68 25.94 88.63 98.16 20.03 524.61 29.21 93.94 2017.46 19.96 576.36 15534.66 26998.32 18819.22 20.70 174.75 0.36 0.87 182.62 22.25 115.85 512.00 18322.87 184.57 22.37 201.99 1.04 19001.78 1.14 326.48 542.19 585.51 366.83

CRMO11-12_L_18 CRMO11-12_L_18 CRMO11-12_L_34 131.48 CRMO11-12_L_32 191.41 3.81 CRMO11-12_L_8 6.88 205.23 CRMO11-12_L_21 712.16 6.54 92.21 CRMO11-12_L_9 1491.73 223.61 2.66 CRMO11-12_L_19 1.37 1221.11 3.62 7.40 190.33 CRMO11-12_S_191 406.42 0.11 5.83 6.10 136.21 CRMO11-12_S_199 1396.63 77.92 2.39 0.04 CRMO11-12_L_37A 12.43 0.93 1121.81 9.49 1.02 77.60 5.38 CRMO11-12_S_202 14.26 0.01 642.44 0.07 1.17 205.67 0.04 3.16 CRMO11-12_S_187 6746.61 6.94 0.08 8.08 1.66 CRMO11-12_L_23 0.04 1.32 5843.08 1.35 22.93 48.45 CRMO11-12_L_20 14.39 1370.65 1.26 0.04 4.75 8.76 0.08 19.85 0.38 2.15 270.69 CRMO11-12_S_188 0.05 4.41 1.05 2.62 10.08 279.21 0.85 0.16 46.75 0.07 3152.92 0.28 9.17 3.37 72.04 0.05 1.36 35.97 0.22 1699.68 3.10 32.77 0.43 0.95 11.69 0.66 19.03 0.05 11.34 1763.96 0.68 6.06 34.83 13.31 9.19 0.28 8.83 3.49 6.28 5591.29 1.00 0.09 1.76 13.64 136.04 8.26 0.26 11.47 44.46 0.10 64.53 14.09 37.62 3.59 146.56 48.61 2.00 36.38 28.77 3.63 2.52 0.51 24.95 23.63 14.71 44.16 207.55 0.07 0.31 5.36 12.14 1.62 242.75 44.88 19.34 102.26 48.43 141.17 9.62 48.06 0.09 8.23 150.16 17.99 185.23 102.03 0.27 23.55 15.89 0.21 26.35 407.26 0.54 114.60 1.17 49.65 1050.22 86.56 25.56 6.08 225.71 29.01 60.94 200.47 50.30 42.32 5.69 399.05 7.58 194.35 895.98 3.89 32.55 1.09 21687.17 66.73 11.82 21.17 14.48 1391.47 159.04 41.83 16.29 332.97 35.74 16368.03 2.92 20225.48 348.17 124.06 22.12 0.10 130.57 154.87 36.95 1208.16 375.93 0.85 1.02 3662.28 3.06 3.50 477.80 46.82 46.50 19.64 94.92 329.72 301.83 28.55 2044.73 42.23 364.93 120.72 327.13 76.79 13322.58 229.36 502.96 2907.74 190.44 146709.60 38.75 22.87 12.96 17853.77 66.10 1140.02 328.28 0.55 22.02 185.63 91.85 21.54 17524.12 41.80 221.75 3.67 163.90 152596.60 696.10 3259.72 2.83 891.47 217.10 82.76 366.00 17953.52 23.98 29.54 60.97 399.79 174.72 321.64 46.65 1718.51 68.76 395.20 13930.27 47.66 3491.26 254.58 23882.93 1760.42 1133.94 1163.42 20058.54 0.73 243.27 58.04 207.94 276.81 2.22 124809.14 52.75 103.01 2704.37 532.48 9.28 51.63 408.69 482.32 310.33 58.31 914.83 124651.97 1248.84 57.77 18342.32 2557.11 8.40 13532.42 6.13 1711. 0.69 273.93 2284.84 379.42 123.96 Table CRMO11- D2.6 Spot Spot P

242 2851.65 U 98

Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

53.70 53.70 148.80 1788.82 750.44 3151.41 882.84 9618.65 1087.56 118263.93 84.77 6040.60 13525.11 Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

Y Ti

44.39 0.26 2772.73 12.64 0.24 60.23 0.42 3.04 11.27 3.09 87.82 33.69 396.64 162.55 648.19 188.18 2150.07 226.53 93047.96 10.60 493.21 766.80

Concentrations (ppm) (ppm) Concentrations oarchean MO11-13_S_172 MO11-13_S_172 108.45 0.33 7295.75 29.35 24.87 172.11 8.68 34.62 53.03 9.12 273.45 107.78 1146.56 434.99 1685.90 463.16 5073.43 547.90 91553.34 21.74 2193.35 2041.18 CRMO11-13_S_168 CRMO11-13_S_168 CRMO11-13_S_162 43.50 CRMO11-13_S_173 486.58 0.29 CRMO11-13_L_2 0.79 CRMO11-13_S_174 2815.18 12625.43 220.78 14.43 58.14 2.35 89.06 0.28 238.73 693.58 339.40 4472.70 80.75 1.53 62.72 20.72 0.29 1.53 224.70 0.51 101.56 14.46 0.11 80.58 11.21 0.41 21.69 0.24 3 3.71 2.51 4.73 65.45 2.53 26.39 38.11 0.59 4.87 394.25 12.72 153.43 163.66 58.47 5.78 672.00 659.59 205.06 65.60 2496.67 270.24 24.92 254.09 1039.50 106973.48 110.99 291.18 10.77 3412.78 27.73 856.32 374.49 296.12 1202.07 91203.97 39.19 15.75 12649.51 1308.24 2220.36 1.14 91.85 127.76

Mesoarchean 2 Table D2.7 CRMO11-13 Trace Element Element ConcentrationsTable CRMO11-13 Trace D2.7 Spot Spot CRMO11-13_S_177 P CRMO11-13_S_175 69.40 CRMO11-13_L_5 57.89 0.42 CRMO11-13_S_164 0.41 84.71 CRMO11-13_S_166 7808.71 50.09 2.15 CRMO11-13_S_160 9985.43 0.38 86.02 20.27 CRMO11-13_S_144 17.45 42.64 41.90 595.43 0.91 CRMO11-13_S_157 5761.11 0.30 38.75 14667.17 CRMO11-13_L_3B 95.16 1.88 19.32 0.31 100.25 CRMO11-13_S_152 3594.04 67.99 2.16 140.17 0.35 0.28 333.28 CRMO11-13_S_161 1.25 2589.92 2.91 21.96 66.14 1.96 30.78 85.24 CRMO11-13_S_150 7822.33 150.39 20.58 16.70 0.32 30.59 CR 83.16 891.00 35.27 1.11 28.36 2.69 0.28 72.88 0.04 CRMO11-13_S_176 9856.37 101.63 18.41 36.58 94.80 0.33 14.21 2.21 CRMO11-13_S_151 36.80 2232.06 0.75 15.00 340.87 183.66 17.87 53.47 10.69 81.54 40.27 0.30 108.42 6965.33 Ne 121.32 424.29 0.20 0.38 9.57 9.20 1.73 34.69 37.18 0.03 16.38 7.98 1268.16 4.23 168.53 15.48 0.38 0.05 139.56 45.74 5059.98 0.25 473.25 2.40 559.96 1594.28 220.94 2.83 20.17 1.12 44.50 1761.86 2804.69 66.07 607.99 216.09 11.51 19.11 82.71 16.21 12.96 484.69 2.91 2199.57 2233.73 15.94 0.04 1.45 13.36 89.06 16.47 881.17 4.37 7.40 5219.78 581.43 2.73 862.24 108.36 0.32 73.13 291.74 103.46 342.92 3.55 585.87 1.43 6231.98 3379.11 55.45 0.86 43.75 86.78 1353.45 114.29 82324.91 13.21 72.22 0.65 641.36 905.52 20.63 9.23 21.30 531.13 391.87 11.74 1300.36 22.32 32.27 83107.40 9174.92 409.55 9.48 4243.36 489.50 62.99 213.77 1180.33 95.91 12.88 1087.89 4.59 373.49 154.55 8.01 1008.40 107476.60 502.27 1851.61 856.19 2479.63 29.45 14.66 153.32 1539.38 25.65 72.10 34.36 95079.91 1866.55 491.04 92.49 5.44 238.00 594.88 298.44 610.29 262.21 7.63 14.08 5776.57 5390.88 28.66 2750.14 31.24 5374.68 2214.44 10.53 107.72 182.12 1341.39 551.81 34.92 174.57 308.23 345.54 577.84 1209.33 135.39 1128.69 2096.93 93909.64 13920.95 104261.18 2.87 70.01 131.38 5961.05 417.18 228.69 18.95 34.21 13.74 1.28 655.93 79.69 526.98 91824.62 723.09 1565.89 2243.77 1109.48 342.41 95350.05 106.21 1987.79 12.55 1407.67 157.35 408.83 287.77 36.93 86.01 13.96 42.53 1786.07 4230.82 1121.78 816.35 384.95 12558.03 2437.22 1132.81 197.70 494.68 315.52 1861.99 160.58 1.24 97327.38 88773.84 3778.76 670.10 5.50 7.95 399.41 128.75 188.04 88140.37 86.38 1287.75 251.48 2144.14 905.15 13.18 435.76 247.91 1408.09 104241.22 1901.63 12.88 626.28 882.09 CRMO11-13_S_159 CRMO11-13_L_6 43.08 CRMO11-13_S_142 0.30 CRMO11-13_S_165 155.67 112.30 CRMO11-13_S_147 0.35 4277.47 2.68 33.86 CRMO11-13_L_3A 10315.68 83.59 0.34 22.20 CRMO11-13_S_154 879.59 0.38 191.37 0.02 24.69 CRMO11-13_S_146 2853.32 2.23 40.04 3.52 56.56 84.06 7968.57 17.24 61.77 0.31 184.54 560.67 0.16 32.44 0.15 0.33 11.12 5184.84 0.57 1.19 5.51 26.76 88.39 5349.71 57.31 26.04 100.05 1.25 22.48 0.07 0.32 84.71 25.89 0.97 13.03 2.11 3.61 15.86 1.02 3.60 9.95 0.38 110.94 416.98 122.91 75.32 14.94 2.90 50.15 151.53 0.09 3.33 55.17 0.91 2.99 0.35 1554.03 617.23 8.84 6.40 2.46 625.71 8.99 77.89 17.20 249.87 258.75 2248.52 30.46 0.58 1004.49 33.76 24.49 6.33 110.92 625.46 275.69 4.52 399.12 14.62 1248.25 6.21 6904.66 86.57 2997.06 158.40 471.08 181.22 706.89 4.39 194.28 350.61 31.82 1758.37 81733.43 678.89 69.28 101987.75 78.55 54.66 519.47 14.37 141.18 194.61 16.49 786.07 846.33 5754.43 3794.04 19.75 2265.06 34.99 1135.11 2270.05 306.36 1428.10 578.40 316.24 261.43 342.39 86.41 1167.39 94253.41 111462.72 1226.95 322.99 46.17 13.13 23.10 22.27 343.59 3521.84 13397.05 2638.77 3808.92 830.42 224.94 4296.13 382.91 1032.36 1.72 391.89 31.40 98443.21 96130.45 195.90 11724.96 16.21 24.20 149.89 0.67 1755.67 1805. 1642.81 54.53 43.64

243 U U 256 1411

Th Th

Ta Ta

Hf Hf

Lu Lu

43.9 11933 0.49 32.0 95 11956 3.56 456 112 997

Yb Yb

Tm Tm

40.1 487 64.2 11389 51.47 294 97.3 964 1207 28.9 125.4 346 15939 36.9 7.95 9287 563 1.24 2327 67 165

Er Er

Ho Ho

Dy Dy

Tb Tb

Gd Gd

Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

13 Trace Element Element Concentrations13 con’t Trace Y Y Ti Ti

Concentrations (ppm) (ppm) Concentrations Concentrations (ppm) (ppm) Concentrations CRMO11-14S_83 CRMO11-14S_83 CRMO11-14S_86 CRMO11-14M_44 220 CRMO11-14S_89 296 12.09 CRMO11-14S_92 294 32.04 CRMO11-14M_41 634 54.74 362 1085 CRMO11-14M_40 428 35.43 954 185 0.70 52.41 0.81 CRMO11-14M_46 28.35 987 271 33.01 1695 CRMO11-14M_45B 18.86 0.136 493 5.38 158 3.27 1.32 10.18 13.51 792 0.025 195 12.56 0.0272 0.048 2.54 0.0461 0.1467 33.52 5.77 0.851 0.035 1.31 26.80 546 0.554 3.565 0.0441 664 0.3884 2.51 3.25 1.59 8.58 0.784 1.33 7.016 0.0214 0.44 2.09 0.09 2.84 2.34 5.28 15.26 0.296 14.1 0.0130 11.6 36.8 0.37 5.01 0.74 7.44 5.02 0.563 11.02 5.33 15.7 5.29 70.1 0.19 0.0321 3.07 64.0 120.4 78.2 6.21 20.00 0.757 6.0 0.94 23.0 39.2 33.1 201.3 89.9 1.94 3.04 0.414 16.7 157 95 62.5 150 35.1 0.53 42.7 2.17 6.56 39.1 23.6 239 163 12.1 18.3 0.18 80.6 439 249 57.6 4.17 46.7 10.5 85 29.3 47.8 27.3 644 53.4 595 4.98 28.1 124 10339 8718 64.3 19.3 62.2 66.9 0.21 387 34.5 0.63 9209 11439 87 24.3 579 40.4 443 14.82 0.43 38 22.9 1062 13930 97 106 1223 42 257 4.56 1856 23.6 817 27.7 41 273 9020 582 0.88 73 133

Paleoarchean CRMO11-14L_17B 283 CRMO11-14M_42 15.11 CRMO11-14L_31B 909 CRMO11-14M_45A 750 213 66.04 Mesoarchean 2 1.38 39.55 201 2077 13.24 880 8.33 676 10.46 3.815 5.15 0.0220 0.014 1.93 23.15 0.677 17.74 1.0850 2.09 0.0789 5.382 8.17 0.44 1.494 7.74 0.0145 4.42 16.9 1.82 0.261 1.42 6.02 38.4 2.60 26.1 80.6 14.52 0.51 8.21 32.1 195.5 13.0 72.4 97.1 147 5.28 33.5 340 36.5 65.5 135 398 25.3 30.7 57.7 101 13814 322 0.85 39.0 215 13732 1.74 670 889 Element ConcentrationsTable CRMO11-14 D2.8 Trace CRMO11-13_S_148 CRMO11-13_S_148 CRMO11-13_L_1 72.84 CRMO11-13_S_143 0.30 CRMO11-13_S_153 68.27 27.40 CRMO11-13_S_169 1.92 6227.64 0.24 51.87 CRMO11-13_S_149 80.44 30.29 0.40 383.15 CRMO11-13_S_171 1547.24 0.28 34.97 3770.66 0.80 0.41 37.22 4.56 7006.77 0.00 133.07 27.96 0.27 2530.89 18.87 0.91 0.25 5.42 2247.61 0.84 5.79 24.10 37.46 6.72 0.05 123.77 7.70 0.25 0.63 37.56 Spot 0.71 0.09 3.84 3.76 25.03 6.43 0.97 9.46 23.94 11.63 7.58 218.63 0.37 0.32 58.56 0.40 85.85 3.45 P 2.73 4.17 8.20 7.95 957.23 106.07 5.51 52.96 13.79 267.67 362.91 2.68 42.59 15.50 19.62 108.14 4.85 1418.65 489.25 34.16 1143.43 397.64 236.39 4.12 81.64 213.88 426.80 13.28 4372.42 92.88 59.57 34.22 870.03 1594.79 460.41 59.26 345.76 32.13 94967.98 239.81 438.76 351.44 108.57 16.62 23.50 2709.94 4798.97 344.54 141.31 1249.78 317.53 171.44 486.74 2748.06 134.16 545.10 2917.13 137.76 105010.59 99640.22 23.47 517.38 158.08 92477.94 32.60 12.94 11510.94 1822.71 158.26 5.12 1221.20 1905.67 3549.04 0.57 204.39 1910.14 1733.38 88.18 95041.61 203.65 15.69 713.94 89681.51 5.80 15.95 5.78 94.32 185.53 103.74 211.55 Table CRMO11- D2.7 CRMO11-14S_98 CRMO11-14S_98 343 15.22 962 1.78 0.356 14.98 0.0772 1.332 4.10 1.08 21.5 CRMO11-14M_34 7.51 761 98.9 31.62 35.1 2732 149 12.88 39.5 0.061 469 18.30 0.0907 50.8 1.828 10904 6.25 0.73 0.77 177 43.2 297 19.03 271.9 103.4 458 122.2 1455 149.9 9028 7.10 500 Spot Spot P

244 U 851 573 1016 467 632 881 828 460

Th

Ta

Hf

Lu

12 93.1 9196 4.03 434 892 Yb

Tm

90.8 1078 99.6 81.7 8961 950 3.58 112.7 10280 396 2.64 861 40.1 288 467 589 52.0 9675 2.10 74.7 140 859 366 91.1 9110 2.07 240 578 95.6 1006 57.8 117.7 691 11227 66.8 4.64 9607 576 2.79 863 241 606 0

Er

446 110.7 1162 132.0 10617 5.20 603

Ho

81.1 338 84.6 971 99.7 8285 3.96 494

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

14 Trace Element Element Concentrations14 con’t Trace Y Ti 19.59 2550 32.07 3.49 3729 0.061 13.56 8.26 21.13 0.080 20.94 0.0824 30.22 1896 19.03 1.237 0.1050 1480 3.13 5.04 2123 2.954 0.022 4.77 20.63 0.64 8.72 0.005 6.67 8.17 21.35 0.019 37.1 1.16 2110 11.22 0.0365 2720 14.45 0.0587 16.35 69.8 0.871 8.75 0.0599 0.860 222.5 27.96 0.068 5.36 3.91 1.506 3.20 0.415 91.7 378.2 21.23 0.49 4.58 13.76 0.56 0.1015 142.2 418 27.8 0.59 0.1821 1.752 24.0 600 102.9 12.13 2.055 36.8 4.83 1075 9.99 145.1 178.7 5.93 15.12 0.85 148.4 1478 138.8 67.8 0.80 207.7 13444 37.6 187.7 55.2 310 79.2 41.1 2.03 12024 16.61 247 78.7 18.96 347 6.44 212.1 295 62.3 253.0 824 1222 84.1 642 99.7 1327 111.6 893 83.4 12183 436 115.9 12719 1.83 107.1 12844 2.83 241 1114 3.70 283 151.4 404 494 12833 2.72 529 745 20.38 2081 23.37 2.97 0.053 2349 16.39 20.85 9.33 0.0889 3176 2.263 17.05 5.63 3.80 21.25 0.337 1501 0.58 0.0530 10.41 1.634 36.5 5.49 0.1452 19.95 6.64 0.005 14.71 2.298 2025 15.08 0.72 196.5 6.57 0.0873 72.7 42.7 8.30 0.85 1.386 0.032 17.55 334 50.8 5.26 18.82 231.9 81.2 20.79 0.55 0.0533 86.7 836 282.7 1.945 25.8 38 113.1 114.4 4.65 11.31 12768 513 0.73 157.0 1.53 125.0 56.5 37.5 324 1275 16.05 245 182.0 209.7 63.2 13699 77.1 711 2.37 332 76.4 382 84.3 9645 658 945 2.70 100.3 298 9019 592 4.19 438 24.62 3159 4.23 0.377 11.37 0.1044 2.059 6.82 0.89 48.8 20.69 295.0 116.1 523 126.0 1368 178.3 11765 2.33 432 769

Concentrations (ppm) (ppm) Concentrations CRMO11-14XL_24 CRMO11-14XL_24 CRMO11-14S_91 CRMO11-14L_23 371 CRMO11-14M_51 13.90 527 CRMO11-14L_29 708 1378 579 23.98 745 4.38 2822 CRMO11-14L_7 11.31 10.47 0.038 CRMO11-14XL_23 0.0469 335 23.01 CRMO11-14M_64 1.307 0.0722 535 3.58 CRMO11-14L_12 2.145 21.23 589 0.56 25.09 6.70 2033 670 24.7 0.85 1652 6.95 10.50 51.0 0.187 4.89 137.7 21.19 0.004 14.62 53.0 0.0443 272.7 10.53 231 1.424 0.0511 101.9 0.892 59.7 4.92 4.09 0.45 673 0.70 34.3 74.7 28.8 14.64 9744 12.03 202.4 2.96 166.5 77.2 288 63.7 329 615 277 84.5 934 101.9 10021 4.15 443 862 CRMO11-14XL_21 CRMO11-14XL_21 257 12.28 906 CRMO11-14L_16 2.87 458 7.40 0.489 2.25 0.35 14.8 6.48 88.5 33.9 153 CRMO11-14L_6 CRMO11-14L_6 CRMO11-14M_38 1040 CRMO11-14XL_20 630 33.05 CRMO11-14M_67 25.93 547 4091 2077 20.54 456 5.04 20.42 7.47 2283 0.155 0.031 1930 14.95 9.17 16.53 0.1396 0.003 4.54 0.0818 3.315 0.032 18.62 1.728 8.97 0.0948 11.25 5.41 1.489 0.0413 1.31 0.69 1.131 5.84 68.5 38.2 5.62 0.77 29.31 15.69 0.74 396.4 40.1 217.8 150.7 34.9 16.85 79.1 14.19 664 223.3 338 198.8 83.7 166.0 72.8 1700 365 226.4 310 92.8 11549 1022 2.78 107.2 676 9087 1001 4.07 491 846 CRMO11-14S_97 CRMO11-14S_97 401 CRMO11-14XL_37 CRMO11-14XL_19 CRMO11-14L_14 350 694 16.58 29.25 574 1496 2420 5.03 CRMO11-14S_90 0.147 8.57 12.55 575 0.0901 17.56 0.916 0.0729 4.00 1.869 0.65 4.99 27.0 0.95 10.68 43.0 145.2 17.19 55.8 227.6 244 89.4 62.7 390 697 101.3 80.7 1114 10319 121.8 2.73 9732 287 4.07 522 565 978 CRMO11-14XL_33 CRMO11-14XL_33 CRMO11-14M_65 757 11.70 539 19.80 1971 1920 3.32 0.085 8.03 8.59 0.0834 18.59 1.383 0.0767 4.02 1.616 0.74 5.39 33.6 0.71 13.37 36.8 187.2 14.48 71.9 195.9 328 72.5 86.2 312 984 80.6 110.7 9 9195 1.84 248 580 CRMO11-14XL_25 CRMO11-14XL_25 CRMO11-14L_13 463 23.29 933 1311 3.13 0.155 6.55 0.0164 0.740 3.08 1.04 18.2 8.00 114.8 47.0 220 61.3 721 82.3 9523 2.33 154 511 Table CRMO11- D2.8 CRMO11-14L_17A CRMO11-14L_17A CRMO11-14M_56 CRMO11-14L_24 231 CRMO11-14XL_31 11.54 1026 CRMO11-14XL_36 16.06 562 1016 CRMO11-14L_1 523 2902 CRMO11-14XL_27 741 21.20 1.79 CRMO11-14M_39 20.57 0.020 3.60 459 2226 143 0.707 2695 8.82 14.35 425 8.96 12.01 0.0244 22.95 0.080 9.46 379 0.2599 1.135 0.002 18.22 1298 2.396 2.74 19.11 1.53 0.1150 6.50 4.75 0.1342 1.476 0.35 0.032 0.91 2.099 5.46 19.6 11.48 3.58 46.0 6.57 0.62 7.03 0.0427 19.26 0.95 1.089 38.9 95.6 277.7 46.8 2.95 0.222 16.63 37.1 110.2 19.98 223.2 0.65 1.16 169 489 276.2 83.6 0.09 23.3 117.9 41.8 105.0 362 9.39 5.7 1344 442 466 92.2 130.4 161.2 2.27 117.1 65.0 49.7 10063 991 32.5 1254 14538 2.03 217 109.0 13.3 139.1 1.09 9452 388 10005 66 84 4.03 3.78 118 18.0 457 551 220 803 904 26.5 10414 1.03 42 159 Spot Spot P CRMO11-14L_22 CRMO11-14L_22 826

245 U 298 983 118 131 70 212

Th

Ta

Hf

Lu

34.9 14023 1.17 62 148 55.9 10046 1.91 102 323

Yb

Tm

87.7 1092 126.0 66.7 14557 781 10.59 84.5 310 9956 2270 27.0 1.72 266 208 31.9 508 14275 1.95 607 809 69.0 789 97.6 85.1 1085 9640 48.0 120.1 2.02 549 9213 206 59.9 4.29 526 10657 697 2.30 1168 224 511

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

14 Trace Element Element Concentrations14 con’t Trace Y Ti 19.70 1559 13.93 13.95 2.83 1189 1408 33.95 4.13 14.11 0.015 4.53 810 8.73 38.79 0.019 1173 37.28 0.0190 1656 36.12 3.73 0.1361 11.30 1.009 3.88 0.025 0.1123 2.438 6.13 3.60 975 37.65 2.399 6.79 0.062 0.49 0.1088 6.13 51.36 1.85 7.31 0.27 1.970 25.9 0.023 0.34 0.4444 0.0216 34.8 4.73 11.78 29.23 7.987 0.532 38.2 12.38 0.19 0.1219 154.6 15.80 2.69 14.28 143.2 2.262 58.9 23.7 0.56 162.8 0.37 46.7 5.29 7.89 257 59.1 54.6 17.8 177 0.22 17.27 87.0 204 8.18 36.9 30.5 184.4 29.4 41.2 109.5 328 10.45 57.8 115 42.5 350 117.1 36.2 222 190 43.2 39.1 12403 48.0 13836 51.0 1.16 145 475 1.28 595 176 29.1 53.6 163 66.3 253 15826 9357 29.4 3.33 2.87 11452 1060 149 0.49 921 392 150 55 36.03 2856 43.51 7.73 4911 0.036 21.25 19.12 0.071 0.0739 47.55 2.210 0.2318 6.79 4.610 1.05 11.61 50.4 1.53 21.33 89.5 287.2 37.42 107.8 492.1 459 182.4 118.2 777 1355 181.7 141.7 1803 9490 224.9 3.48 11990 8.77 718 1231 2088 1924 49.17 5713 29.94 11.92 8.57 2918 0.021 491 9.39 24.00 0.051 1.34 0.3764 19.72 8.180 0.1358 19.84 2.399 4.06 1.98 0.0069 7.20 118.6 0.155 0.75 43.57 0.66 47.2 563.9 0.13 19.98 208.0 6.3 279.1 895 108.0 2.78 212.5 475 2128 40.7 115.1 269.4 17.7 1177 11728 84 158.1 4.71 22.0 12931 1217 4.98 1515 234 814 1027

Concentrations (ppm) (ppm) Concentrations CRMO11-14S_96 CRMO11-14S_96 CRMO11-14XL_32 CRMO11-14M_54 1008 CRMO11-14S_82B 1003 35.53 29.81 CRMO11-14L_5 576 CRMO11-14M_58 3683 292 23.65 2702 23.99 1043 6.34 2731 513 4.16 24.96 0.058 CRMO11-14S_94 741 63.49 1.303 11.70 19.78 3400 0.045 12.99 2.30 1719 0.2147 546 0.3288 22.37 0.043 CRMO11-14L_21 3.25 5.330 8.44 1.867 2.346 CRMO11-14L_25 0.1010 10.06 12.81 0.037 CRMO11-14L_32 2.183 12.60 0.0253 6.55 337 1.86 9.76 26423 0.4458 1.534 6.61 0.97 27.31 78.0 0.0368 227 3.196 3.66 0.84 46.3 0.643 30.01 3892 7.40 CRMO11-14L_27 0.11 46.3 19.45 2.58 384.5 0.90 7.90 15.1 19.88 271.5 139.8 468.294 0.18 243 53.5 268.4 1118.86 101.9 7.08 590 179.7527 20.5 23.36 101.3 925.006 453 87.9 151.6 10.04 319.7 233.00 444 118.5 31.2 1693 152.8 126.4 9.69 113.7 1336 120 175.8 63.0 257.1 552 1213 143.4 8847 30.1 48.84 289 136.8 129.7 8922 2.87 451.1 303 1453 9908 2.32 142.9 800 191.6 33.2 4.56 363 1303 577 11760 10635 617 785 2.15 132.0 1.92 1318 455 121 183.2 766 476 12105 3.87 846 1052 CRMO11-14L_33 CRMO11-14L_33 CRMO11-14L_18A 356 239 9.52 776 1.65 24.62 0.0677 1.624 5.56 0.29 23.3 7.71 87.6 28.2 112 22.8 204 26.3 12661 0.60 122 CRMO11-14M_62 CRMO11-14M_62 CRMO11-14L_31A 392 CRMO11-14XL_29 17.23 176 245 21.78 939 13.77 520 3.04 721 1.95 0.003 2.58 5.94 21.39 0.0128 0.0468 0.457 7.26 1.017 1.95 0.0156 3.37 0.334 0.27 0.15 1.69 14.6 14.1 0.25 6.29 4.61 11.2 88.1 54.9 4.91 35.4 17.9 69.1 162 74 28.0 43.7 18.1 123 516 186 32.4 21.0 378 14012 41.9 1.06 10064 210 1.65 210 120 CRMO11-14XL_22 CRMO11-14XL_22 CRMO11-14XL_35 794 CRMO11-14XL_30 142 24.34 CRMO11-14L_3 16.77 3136 179 374 9.86 349 6.37 1.91 CRMO11-14S_88 423 0.083 16.77 1.12 3.79 386 0.1332 0.0110 2.960 0.123 19.24 8.30 0.44 0.0403 1.05 0.17 0.732 62.2 2.28 4.9 24.61 0.12 1.94 320.6 15.1 31.6 119.0 4.56 12.9 501 51.6 125.1 65 16.8 1378 18.8 144.8 62 233 9564 14.2 29.1 3.88 139 13610 523 2.05 13.8 934 9311 41 0.43 68 58 CRMO11-14M_61 CRMO11-14M_61 CRMO11-14L_11 600 19.34 126 1547 3.40 0.164 8.29 0.0849 1.069 3.12 0.51 25.8 10.95 147.7 57.5 258 CRMO11-14M_35 CRMO11-14M_35 CRMO11-14L_4 227 11.48 740 672 3.05 5.21 0.0133 0.128 1.33 0.23 9.8 4.47 62.3 25.4 112 30.3 370 39.4 11455 2.02 86 248 Table CRMO11- D2.8 Spot Spot P CRMO11-14L_8 CRMO11-14L_8 CRMO11-14M_55 564 CRMO11-14M_47 CRMO11-14S_100 595 CRMO11-14L_10 310 28.95 CRMO11-14M_66 333 27.65 CRMO11-14S_95 2335 19.57 1244 996 30.16 375 9.72 CRMO11-14L_30 1077 19.12 981 0.034 5661 2.89 3.67 0.046 19.27 825 847 10.29 0.0758 9.47 0.048 2.56 2.162 0.0416 22.51 2.219 9.60 6.27 1.147 0.1524 0.0236 9.44 3.350 3.67 0.80 0.911 0.5568 11.54 0.33 40.1 3.191 2.29 1.41 17.76 19.8 1.95 0.43 89.5 244.5 8.04 0.18 19.2 37.75 90.3 101.2 12.2 8.30 518.4 378 37.6 5.46 105.2 198.4 167 42.0 75.5 855 41.8 183 30.8 213.3 489 143 2118 56.1 301.3 39.4 12137 10167 455 5.35 2.51 51.5 1183 220 10212 1430 546 2.11 90 333

246

U 1276 76 969 1723

Th

Ta

Hf

Lu

14.3 14.5 9489 9894 0.48 0.38 134 116 55 48

Yb

Tm

25.0 94.5 240 1073 34.1 115.6 25.0 13064 9867 276 0.57 2.31 29.4 131 320 10745 63 700 1.36 92 238 61.4 727 80.9 9469 111.5 2.83 1268 188 150.3 471 9486 2.53 442 825 20.6 225 26.2 10687 0.27 376 616

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr ncentrations con’t

Ce

La

Nb

Y Ti 17.44 6.37 1389 21.09 687 3.44 2223 0.010 1.22 11.00 3.36 7.66 0.001 664 0.0176 27.34 0.429 0.1214 11.10 2.25 11.77 2.007 2.75 0.017 0.0025 589 4.14 16.64 1.041 0.36 0.0158 0.22 5.75 20.8 1.59 0.940 21.2 0.79 8.87 3.19 7.03 41.1 128.6 30.78 0.19 16.08 76.5 49.1 0.0713 14.8 214.4 25.2 2.040 227 6.04 82.1 4.08 106 61.7 73.2 364 0.19 716 25.4 21.1 76.4 103 6.36 10978 3.66 69.2 22.7 178 533 86 17.8 169 21.3 12032 0.55 221 78 23.33 414 17.81 0.89 9.61 0.083 1654 18.71 515 4.55 3.04 11.97 0.0131 0.054 534 1.30 0.086 609 9.96 0.92 1.05 0.0107 0.019 2.01 25.61 1.031 0.07 15.77 0.1164 3.53 5.7 0.0724 1.970 30.10 0.61 1.381 2.35 4.69 0.0834 28.0 3.53 31.9 2.138 0.17 11.58 1.05 14.3 4.77 15.9 157.4 17.8 71 0.28 5.80 60.6 5.30 22.1 20.5 61.5 271 60.8 7.08 20.1 228 67.3 19.9 75.9 35.5 78 730 80 24.1 17652 18.6 88.0 1.96 91 11550 202 113 19.9 2.35 21.6 757 197 259 10406 492 0.52 20.4 10557 108 0.68 65 153 102 8.51 1140 1.55 0.002 29.29 0.0991 2.645 5.91 0.42 36.6 12.28 139.9 44.5 172 33.5 290 33.6 11554 0.36 174 54

Concentrations (ppm) (ppm) Concentrations oarchean MO11-14M_36 MO11-14M_36 803 27.53 2038 4.01 0.342 10.06 0.1159 1.034 4.03 0.42 29.1 13.85 197.7 75.9 336 93.6 1179 113.2 9434 3.16 163 891 Table D2.8 CRMO11-14 Trace Element Element Co Trace Table CRMO11-14 D2.8 CRMO11-14S_99 CRMO11-14S_99 237 CRMO11-14L_20 CRMO11-14L_20 Ne 199 CRMO11-14M_43A CRMO11-14XL_34 CRMO11-14L_28 227 161 9.53 12.32 177 569 342 2.17 0.97 0.079 0.095 26.09 25.86 0.1253 0.0996 1.753 1.706 5.10 4.14 0.41 0.21 18.5 15.6 6.08 4.47 68.9 46.2 21.7 13.5 90 50 21.6 11.4 248 121 22.4 13.5 10056 9461 0.92 0.35 155 121 128 35 CRMO11-14M_60 CRMO11-14M_60 196 13.86 417 1.40 30.65 0.0932 2.203 4.78 0.17 19.0 5.28 54.9 16.5 60 13.5 143 CR CRMO11-14L_15A CRMO11-14L_2 CRMO11-14S_81 904 CRMO11-14L_15B 26.40 473 CRMO11-14S_93 229 2991 852 CRMO11-14S_87 20.44 228 2.92 1.759 2664 551 12.60 2.51 0.5989 1.227 2.779 11.33 6.29 0.4078 0.69 2.688 44.3 4.74 19.16 0.70 284.2 40.8 111.6 17.41 506 253.4 122.7 100.8 1319 447 175.4 110.2 12949 1159 2.02 158.9 362 12053 686 1.95 343 638 CRMO11-14S_84 CRMO11-14S_84 818 CRMO11-14M_43B 221 8.07 CRMO11-14M_50 517 1.86 175 0.042 13.94 22.05 380 0.0974 1.473 1.30 4.01 0.22 25.88 15.7 0.0600 5.40 1.338 56.6 3.72 18.4 0.20 79 16.4 4.89 19.0 53.5 211 16.2 22.8 11587 57 1.03 12.2 121 128 104 Spot Spot CRMO11-14M_52 808 P 28.31 3159 13.01 0.008 27.06 0.0900 2.306 9.81 0.97 59.0 25.47 326.8 119.4 503 125.0 1383 156.3 10128 5.69 921

CRMO11-14M_59 CRMO11-14M_59 449 CRMO11-14M_37 15.34 CRMO11-14L_26 CRMO11-14M_49 1319 1066 CRMO11-14S_82A 22.45 248 5.16 CRMO11-14M_57 932 0.034 2274 CRMO11-14M_53 377 27.28 CRMO11-14XL_28 10.71 11.60 652 2.97 CRMO11-14M_63 2753 0.0451 203 38.52 15.387 1134 CRMO11-14L_19 767 11.88 0.645 26.36 3.92 1758 24.60 469 2.51 3.22 2.7747 0.144 475 15.79 135 13.251 2606 6.80 14.80 0.46 23.344 1482 7.46 1.79 0.0596 22.6 4.51 36.84 15.50 0.024 2.150 0.45 0.143 3.63 3.0038 0.0585 9.62 22.50 7.66 14.80 38.2 12.955 2.779 0.0815 137.3 0.1051 0.82 4.15 17.25 6.03 1.595 51.8 1.611 8.83 232.1 50.0 0.29 3.52 0.27 225 0.0250 7.10 86.0 19.42 21.5 0.13 32.8 0.777 1.15 270.4 376 10.32 12.10 16.1 3.82 CRMO11-14S_85 42.9 103.2 149.6 102.1 136.4 4.95 0.52 18.13 446 64.7 1192 45.0 275 60.9 26.7 246.3 116.2 337 167 11.21 20.1 95.3 10129 102.6 151.7 37.7 71 427 2.15 1263 58.2 357 112.3 17.1 244 157.0 246 33.6 1273 10762 170 64.9 9423 144.7 8.81 17.6 9560 0.59 764 307 10690 3.01 151 83.7 0.66 108 502 9936 90 987 2.76 74 209 482 CRMO11-14M_48 CRMO11-14M_48 CRMO11-14L_18B 219 229 12.93 12.04 499 858 1.32 1.64 0.001 27.76 0.1356 27.52 2.152 0.1066 4.36 2.198 0.24 5.23 18.6 0.31 5.47 25.2 59.7 8.80 19.9 97.0 74 32.7 16.7 127 181 25.7 19.3 228 10322 29.1 0.47 14926 153 0.53 73 137

247 U 515 536 518 443 845

Th

Ta

Hf

Lu

47.0 11743 1.95 58 428

Yb

Tm

44.1 479 25.8 51.6 9567 290 1.35 32.5 149 7524 51.8 505 0.36 560 106 60.2 187 10818 50.2 4.94 574 306 27.8 59.0 1491 12550 322 1.66 33.1 115 9078 695 0.75 138 353 42.5 606 74.6 14316 4.81 62 1498 20.4 233 25.4 8576 0.28 102 165

Er

2.8 2.8 204 48.0 504 52.7 7805 0.86 278 Ho

49.5 200 50.6 583 60.9 7543 0.57 243

Dy

Tb

5.47 70.0 26.5 127 37.1 460 52.3 9297 9.62 129 566

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

Y Ti

Concentrations (ppm) (ppm) Concentrations

CRMO11-15S_122 CRMO11-15S_122 478 7.58 1209 1.62 2.92 0.0606 0.376 1.91 0.06 16.8 7.78 112.2 42.7 188 CRMO11-15XL_55 CRMO11-15XL_55 CRMO11-15S_103 476 CRMO11-15XL_54 318 33.93 CRMO11-15S_101 7.42 2634 2153 CRMO11-15XL_45 1159 7.91 246 8.15 CRMO11-15S_115 8.05 3.37 CRMO11-15S_118 593 516 CRMO11-15S_104 12.85 220 682 18.40 0.89 269 8.67 14.503 1381 CRMO11-15XL_40 0.0511 6.38 0.71 305 13.09 39.93 CRMO11-15S_120 2.252 0.006 18.17 950 0.0202 1.71 CRMO11-15S_125 1266 5.1159 232 0.884 8.28 5.68 3.986 1281 26.672 95.76 1.30 807 1.41 0.1087 4.05 19.49 2.43 11.81 201 12.57 0.038 7.31 2.128 680 1.1862 1.26 6.96 55.7 2.36 1758 12.971 8.25 4.35 5.85 25.4 21.35 2.53 29.2 18.15 544 0.2275 1.78 3.24 0.0521 0.073 281.1 6.14 9.26 3.903 7.78 6.27 2.380 1.371 9.41 0.69 23.5 101.9 0.0031 122.3 8.74 75.6 17.29 66.9 0.037 2.65 0.0016 0.634 7.20 429 41.4 0.7547 2.63 18.07 23.1 6.21 1.183 1.19 2.64 107.9 76.8 4.554 174 177.5 0.0858 38.0 3.40 83 17.4 0.71 1203 7.88 26.1 2.149 54.0 12.30 1.19 7.13 20.6 116.4 23.6 1.84 103 4.19 145.8 198 18.9 8139 93.4 233 9.95 39.3 1.56 48.1 6.54 2.35 130.3 36.4 22.5 14.73 17.9 510 78.3 49.4 605 160 7025 183.9 5.23 52.3 1666 24.6 202 66.0 0.53 44.0 63.1 7473 100 275 116 534 20.1 0.67 25.5 189 68.3 55.7 85 375 275 770 7062 526 28.0 0.68 84.0 8642 9102 112 1.12 402 1.15 310 369 594

CRMO11-15S_109 CRMO11-15S_109 873 CRMO11-15XL_39 8.77 269 862 11.26 1.90 1167 CRMO11-15S_102 7.884 20.38 2.38 299 1.5853 0.175 9.49 9.687 7.03 CRMO11-15XL_44 7.13 1386 CRMO11-15XL_39A 1.49 CRMO11-15S_114 2.23 425 1.051 285 0.032 CRMO11-15S_124 23.4 12.71 9.05 4.42 CRMO11-15S_113 11.16 188 8.01 1052 1022 0.1666 9.72 1.23 885 93.5 13.52 250 2.769 2.46 24.6 696 8.95 33.5 0.093 1508 2.25 5.78 9.30 0.410 134 4.50 1.88 760 2.59 2.84 121.2 2.89 0.022 0.1236 24.194 32.8 40.8 44.9 1.04 0.841 9.63 40.91 363 13.62 198 4.3460 3.07 0.0832 154.0 39.0 0.595 19.326 1.429 50.2 0.36 7.97 5 7387 6.21 1.42 3.01 558 19.6 0.0505 0.60 0.43 0.39 1.15 1.645 7.93 60.5 197 25.6 8.1 16.9 5.11 105.4 7659 424 10.45 4.72 5.79 1.66 37.3 0.97 140.0 75.9 71.2 22.3 155 196 51.6 31.3 25.1 7.57 42.4 239 160 86.0 107 476 66.0 29.4 45.2 49.4 771 116 561 10916 79.2 3.13 30.3 59.6 11911 12719 201 342 4.15 3.73 820 36.7 177 65 7912 1148 786 0.50 197 395 Paleoarchean Table D2.9 CRMO11-15 Trace Element Element ConcentrationsTable CRMO11-15 Trace D2.9 Spot Spot CRMO11-15S_116 CRMO11-15S_117 P 214 193 15.01 8.36 847 547 2.18 0.086 1.98 0.016 11.92 CRMO11-15XL_46 0.1845 CRMO11-15S_110 3.11 CRMO11-15XL_48 5.308 525 41.34 227 5.94 344 10.37 0.216 1.68 878 45.75 0.70 629 17.2 1.62 972 0.15 6.53 3.354 1.01 1.96 6.3 10.46 78.6 0.7045 3.05 29.8 7.04 5.616 49.0 7.65 137 0.0678 6.02 0.1226 20.0 1.437 39.4 1.63 1.953 3.30 98 532 24.3 4.38 1.44 58.4 30.0 8.41 1.81 16.1 10593 407 96.1 24.0 1.07 5.18 33.0 8.53 67.5 371 136 102.4 445 23.5 35.5 33.9 96 153 395 25.7 39.2 41.0 287 8704 452 30.8 0.84 48.2 7134 165 7251 0.39 536 1.17 114 231 228 CRMO11-15S_108 CRMO11-15S_108 CRMO11-15XL_41 CRMO11-15S_107 2649 395.80 289 14.62 262 1739 17.56 765 40.06 21.552 722 9.41 41.74 0.129 5.31 5.4161 0.114 6.18 27.346 1.75 11.28 0.0421 0.0455 1.715 0.38 0.240 3.05 26.3 0.64 1.20 9.07 0.10 15.7 127.5 6.2 56.5 3.34 323 56.4 114.2 24.8 1661 221.4 133 21495 54.13 203 2543 CRMO11-15XL_42 CRMO11-15XL_42 CRMO11-15XL_50 CRMO11-15XL_51 516 460 28.07 262 32.34 1931 9.90 2140 7.56 633 0.687 6.79 0.094 17.08 0.58 17.35 0.2117 0.0997 2.621 1.673 8.70 7.61 8.16 0.2036 1.67 3.743 1.93 46.8 4.82 54.4 17.07 2.46 21.03 213.7 249.7 27.8 73.7 82.4 7.66 304 308 82.4 75.4 73.0 23.3 822 761 89 79.8 68.6 21.0 10357 11250 3.79 223 3.15 581 22.9 624 1875 7234 1877 0.26 102 118 Mesoarchean 1

248 U U 1002 756 497 2137

Th Th

Ta Ta

Hf Hf

Lu Lu

2.5 12014 2.12 68 849

Yb Yb

579 63.8 13555 13.94 71 1519

Tm Tm

56.1 555 87.3 13669 2.20 1101 906 50.0 768 45.0 82.9 13212 14.96 114 1083

Er Er

Ho Ho

Dy Dy

Tb Tb

Gd Gd

Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

15 Trace Element Element Concentrations15 con’t Trace Y Y Ti Ti 22.79 1700 23.96 5.11 19.61 3.167 2773 5.17 1619 38.41 17.55 4.31 0.9606 1688 13.35 0.113 4.13 1706 7.635 149.96 1776 1.75 5.60 2.58 0.8414 0.021 4.27 15.003 62.05 0.94 0.235 22.43 19.64 0.1664 9.50 27.1 66.84 0.0546 2.171 6.57 0.0202 9.74 0.2693 1.381 5.76 0.847 76.1 3.759 129.2 5.45 4.31 1.87 21.29 7.78 50.1 1.60 237.1 0.27 36.2 2.53 246 33.7 81.0 11.09 26.8 39.7 63.4 11.86 131.5 10.01 369 11.95 144.2 618 46.9 141.4 93.3 149.9 54.8 99.1 52.5 227 892 55.3 252 16721 250 141.0 253 6.48 61.5 58.5 10875 61.8 400 573 1.91 556 608 873 86.0 1698 83.4 91.2 14633 865 17287 12643 1.43 0.91 2.28 619 121 732 123

Concentrations (ppm) (ppm) Concentrations Concentrations (ppm) (ppm) Concentrations

CRMO11S-16_72 CRMO11S-16_72 CRMO11S-16_67 580 373 Mesoarchean 1 CRMO11S-16_70 CRMO11S-16_77 282 339 Paleoarchean CRMO11-15S_112 CRMO11-15S_112 CRMO11-15S_106 254 303 3.41 7.14 796 716 4.01 Element ConcentrationsTable CRMO11-16 D2.10 Trace 1.98 Spot 7.27 6.28 0.0236 0.0682 0.528 P 1.560 3.02 5.28 0.23 0.13 22.2 31.6 9.73 9.60 105.6 100.4 30.6 27.1 98 85 18.6 18.6 157 188 13.2 18.6 12448 10176 7.22 0.47 88 155 3273 119 CRMO11-15XL_49 CRMO11-15XL_49 358 174.95 856 2.48 3.38 0.0165 1.131 2.86 0.53 18.1 7.21 86.7 30.7 132 34.6 391 39.7 9991 1.78 128 Table CRMO11- D2.9 CRMO11-15S_121 CRMO11-15S_121 371 CRMO11-15S_123 12.79 CRMO11-15XL_52 CRMO11-15XL_43 872 976 CRMO11-15XL_53 389 25.97 3.95 746 9.35 Paleogene 0.032 968 740 58.92 CRMO11-15S_111 63.16 811 4.09 3984 20.71 0.0141 6.881 3350 1.50 137 7.57 0.416 13.20 0.243 3.02 18.00 0.103 1.62 1.5919 0.133 1.78 31.04 7.147 195 0.29 28.86 0.0305 0.2667 4.95 0.1501 0.381 9.2 5.592 1.39 2.501 0.27 1.09 19.64 4.61 12.20 12.5 4.12 73.0 4.45 2.02 4.42 117.1 31.0 0.0187 9.6 77.8 41.94 69.7 0.770 156 29.72 4.64 488.6 32.7 CRMO11S-16_71 2.55 371.3 155.2 64.3 CRMO11S-16_73 199 0.27 129.2 571 4629 27.7 74.8 12.9 36.67 512 674 127.6 133 CRMO11S-16_69 1159 4.14 123.6 4481 1282 43.3 162.2 1332 32.1 113.3 23.52 499 12422 548 121.2 23.571 10389 7.1 38.30 10913 67.85 59.7 3.11 17 8.6623 92 7.32 11293 1637 45.734 3.2 4.99 2017 4080 14.08 6000 74 25 0.97 877 49.3 22.43 320.5 135.6 679 174.9 1685 251.6 20122 22.05 629 2028 Spot Spot P CRMO11-15S_119 CRMO11-15S_119 CRMO11-15S_105 435 406 12.26 14.94 972 961 2.58 0.024 3.97 0.103 3.36 1.89 0.0407 0.535 0.611 1.08 2.14 0.05 0.23 9.4 13.9 6.75 5.40 90.7 81.6 35.1 31.7 162 152 43.8 534 54.4 11413 4.21 179 1336

249

U U 728 1071 865 1650 1463

Th Th

Ta Ta

Hf Hf

Lu Lu

Yb Yb

Tm Tm

51.6 559 56.0 7448 1.77 150 216 77.8 848 111.2 11837 5.00 791 1627

Er Er

Ho Ho

Dy Dy

Tb Tb

Gd Gd

Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

16 Trace Element Element Concentrations con’t 16 Trace Y Y Ti Ti 21.70 6.52 1504 1099 4.71 0.028 1.38 33.32 0.1006 14.23 1.295 0.0916 4.11 1.779 1.07 4.11 25.8 0.63 8.86 26.2 116.1 7.82 44.2 103.4 220 35.1 56.6 156 579 37.0 90.0 344 17158 49.9 10.06 12346 636 0.58 92 53 16.18 30.00 2066 2465 3.63 0.831 4.66 11.79 0.255 39.94 114.52 1148 0.3308 0.4928 4.664 2.97 7.439 7.14 1.805 15.96 48.40 2.74 5.75 0.6337 43.2 79.6 6.357 12.82 21.14 5.38 166.7 229.8 1.08 61.9 75.6 25.1 281 324 7.54 69.1 79.5 91.9 668 747 34.8 105.7 111.9 162 14442 11555 2.33 42.0 2.03 490 414 2425 1385 64.3 13833 2.93 523 666

Concentrations (ppm) (ppm) Concentrations Concentrations (ppm) (ppm) Concentrations CRMO11-17M_72 CRMO11-17M_72 CRMO11-17M_76 CRMO11-17S_134 72 839 Mesoarchean 1 11.45 265 15.14 27.95 356 653 687 2.59 2.96 26.68 6.308 0.030 20.59 1.99 5.32 2.0236 0.0406 11.506 0.377 4.74 0.268 1.28 0.79 0.44 0.25 17.5 0.14 7.8 5.30 3.7 3.21 63.7 1.66 52.1 23.3 25.9 22.4 103 12.0 123 26.4 63 45.0 317 21.4 736 37.6 299 10831 98.5 37.6 3.95 17009 7735 111.35 218 189 3.89 683 69 633

CRMO11-16M_166 CRMO11-16M_166 CRMO11-16M_165 230 10.77 79 12.98 552 317 1.29 1.01 3.30 6.70 0.0231 Paleoarchean 0.256 0.70 0.278 0.25 0.52 5.8 0.23 2.56 3.9 40.6 1.37 15.7 22.1 86 9.0 27.0 49 325 15.3 43.0 204 12217 2.54 37.3 18353 53 0.61 641 124 931 Element ConcentrationsTable CRMO11-17 D2.11 Trace Spot P CRMO11-17S_149 CRMO11-17S_142 CRMO11-17S_130 944 312.51 284 421 39.17 2175 16.21 2501 27.69 1220 1.134 8.32 18.31 16.784 8.72 0.4188 1.604 28.72 3.896 3.0667 18.55 18.266 0.6035 3.95 15.25 2.824 0.44 1.43 4.81 20.6 71.7 0.39 8.79 24.45 21.9 147.0 295.6 8.80 65.3 98.4 117.0 376 385 44.8 123.0 90.3 194 1667 987 52.7 195.4 98.0 9884 637 6590 19.79 65.2 4.35 508 10578 1511 274 5.34 423 307 CRMO11S-16_74a CRMO11S-16_74a CRMO11-16M_164 270 563 25.07 29.58 1498 1883 4.58 9.36 2.677 24.20 18.76 0.8046 0.1036 6.682 0.559 4.29 2.62 0.87 0.80 25.7 25.6 9.92 7.80 146.9 115.9 57.0 44.3 284 219 56.6 563 93.7 21004 2.46 711 1887 CRMO11S-16_76 CRMO11S-16_76 652 Table CRMO11- D2.10 CRMO11S-16_78 CRMO11S-16_78 325 CRMO11S-16_68 CRMO11S-16_75 CRMO11S-16_79 485 269 396 CRMO11-17M_75 CRMO11-17M_73 201 192 14.84 10.59 822 1317 8.31 3.81 0.058 0.005 3.59 CRMO11-17S_138 7.98 0.0383 CRMO11-17S_148 0.0318 0.740 255 1.450 2.29 265 17.33 4.60 11.50 0.50 1307 0.95 796 15.3 3.37 27.3 5.90 2.32 10.28 0.038 77.9 131.7 32.99 8.18 29.9 50.1 0.1634 0.0580 128 2.582 211 0.479 33.0 6.22 1.87 363 2.06 0.59 35.4 38.1 13.5 11013 11.02 5.50 11.22 131.2 73.4 46.6 56 27.5 405 196 124 52.7 34.0 623 399 58.7 41.8 9531 10485 2.10 2.76 531 153 1124 778 Spot Spot P CRMO11S-16_74b CRMO11S-16_74b 269 24.52 1396 2.98 0.092 16.81 0.0284 0.819 1.90 0.67 22.7 7.55 104.1 40.1 215 53.4 536 87.9 19308 2.27 571

250 U U 2732 906 1239

Th Th

Ta Ta

Hf Hf

Lu Lu

21.0 10366 1.11 53 568 18.1 9706 0.33 23 220

Yb Yb

Tm Tm

51.1 723 84.4 8155 2.79 286 1016 23.8 267 27.3 10137 0.73 48 265 21.1 248 26.7 9941 1.39 183 769

Er Er

Ho Ho

Dy Dy

Tb Tb

Gd Gd

Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

Y Y Ti Ti 7.17 294 0.81 0.061 4.66 0.092 0.72 0.25 4.5 1.87 26.6 9.7 49 13.8 166 19.1 10049 1.25 71 365 7.05 306 0.43 1.01 0.0110 0.156 1.13 0.20 5.6 2.17 28.1 10.7 47 13.2 159

Concentrations (ppm) (ppm) Concentrations Concentrations (ppm) (ppm) Concentrations oarchean CRMO11-17S_129 CRMO11-17S_129 341 15.19 981 2.83 0.448 19.53 0.1978 1.755 4.07 0.91 20.4 7.85 96.8 33.9 146 39.2 445 45.4 9163 1.44 360 944 CRMO11-17S_127 CRMO11-17S_127 159 8.83 477 1.51 0.016 2.38 0.022 0.98 0.23 8.0 3.79 46.1 16.6 70 18.3 205 Paleoarchean Element ConcentrationsTable CRMO11-18 D2.12 Trace CRMO11-17S_135 CRMO11-17S_135 637 371.27 1628 CRMO11-17S_133 12.22 288 1.760 Ne 5.68 49.94 0.5025 545 5.457 6.34 0.67 0.061 1.71 2.85 26.5 0.0315 9.76 0.300 126.8 1.69 53.0 0.12 Spot 259 8.9 72.2 3.94 P 893 53.5 91.7 20.3 7435 86 4.95 677 CRMO11-17S_146 CRMO11-17S_146 170 10.73 508 1.34 0.225 9.13 0.0641 0.586 1.55 0.31 10.5 3.76 46.0 17.0 79 CRMO11-17S_128 CRMO11-17S_128 CRMO11-17S_147 CRMO11-17S_145 10308 13.66 1781 12.54 372 826 22.73 819 1.95 529 128.430 2.81 285.92 21.969 1.10 40.1162 56.52 3.765 204.070 6.6071 51.80 21.52 32.679 2.66 1.1409 10.68 6.713 61.5 0.95 6.66 11.19 23.5 0.70 99.0 7.39 19.7 30.5 83.1 5.45 120 29.5 61.3 30.2 121 18.8 332 33.2 74 36.4 375 10524 18.7 39.6 1.41 211 9715 289 21.9 1.74 848 10844 283 0.80 848 277 355 Table D2.11 CRMO11-17 Trace Element Element ConcentrationsTable CRMO11-17 D2.11 Trace Spot Spot P CRMO11-17S_132 CRMO11-17S_126 229 17.45 95 940 CRMO11-17M_74 2.95 0.052 CRMO11-17S_139 CRMO11-17S_137 17.39 236 CRMO11-17S_140 742 20.10 0.0750 491 13.18 1.614 702 330 22.84 3.37 672 16.08 1648 1.78 0.97 2.28 0.658 809 3.84 21.1 CRMO11-17S_136 5.350 14.86 0.123 CRMO11-17S_150 5.96 34.06 7.27 0.3217 14.40 345 2.1718 2.173 92.3 0.0725 261 6.09 10.705 2.57 11.42 35.0 2.172 4.64 6.23 844 0.0462 0.55 6.43 148 1.10 524 0.846 14.4 0.66 2.38 42.0 19.4 2.71 0.006 1.40 5.36 37.6 506 5.87 0.55 12.61 67.1 14.23 46.4 70.5 0.0203 10.2 176.7 24.7 7.90 0.809 8922 24.5 3.83 62.9 0.0523 107 2.96 CRMO11-18S_156 1.96 107 56.6 0.432 264 28.9 0.26 294 28.8 26.7 1.82 382 70.0 1060 326 20.2 335 3.86 151 0.14 844 35.2 6.89 34.7 10.8 828 82.0 11201 86.6 10085 4.09 10956 1.68 2.70 31.0 1.50 51.1 2.20 310 125 569 18.3 527 883 33.1 7.35 80 0.0195 371 19.4 0.470 35.5 223 1.47 9057 0.27 23.3 1.61 8252 12.2 81 0.88 5.42 48 78.3 39 31.8 43 139 39.1 468 48.0 9443 1.53 56 137 CRMO11-17S_144 CRMO11-17S_144 CRMO11-17S_131 CRMO11-17S_143 107 13563 8.19 14.61 95 368 875 1.03 1.98 171.738 378.99 51.7096 5.62 275.551 0.0269 70.56 0.099 2.90 0.74 74.6 0.24 13.37 6.4 111.0 30.3 2.14 127 32.5 31.1 12.8 349 59 37.1 16.6 9713 212 1.25 23.3 164 10024 517 1.04 116 432

251

U 1969 434 640 2081 967 86

Th

Ta

Hf

Lu

44.5 7448 0.45 176 182

Yb

Tm

67.9 54.1 830 741 87.2 77.5 14651 12421 9.94 8.40 106.9 190 1051 71 2482 100.8 1075 13299 3.24 525 2236

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce lement Concentrations con’t lement La

Nb

Y Ti

Concentrations (ppm) (ppm) Concentrations CRMO11-18XS_64 CRMO11-18XS_64 CRMO11-18XS_68 1166 27.54 374 CRMO11-18XS_59 32.33 1128 CRMO11-18XS_65 1444 CRMO11-18S_158 334 5.98 CRMO11-18XS_58 364 14.17 902.168 8.08 CRMO11-18M_78 1080.53 465 7.35 137.6873 1169 502 6.31 477.384 884 9.50 643 84.07 1.86 6.35 941 33.21 0.022 2.51 1274 1.45 12.38 2983 1.69 68.6 2.17 0.4110 0.016 0.219 9.70 8.62 0.168 5.606 11.60 9.41 0.048 1.87 5.40 96.9 10.83 0.0635 0.0303 17.79 0.42 0.1489 36.4 0.712 3.73 1.205 0.0723 2.075 14.6 3.04 3.18 202 41.4 2.312 5.40 7.78 0.18 12.19 0.16 6.80 72.8 0.96 129.4 138.8 20.6 19.6 1108 1.71 27.1 49.9 45.0 131.3 7.51 7.38 57.7 9.96 233 18594 178 97.1 24.48 92.5 125.2 26.56 323.6 43.8 35.4 32.5 45.9 688 114.2 483 151 136 1480 190 455 50.0 38.6 36.5 49.2 9583 462 422 570 1.96 45.0 44.9 55.8 228 8284 12190 10824 490 4.50 0.63 1.77 69 88 144 313 114 421

CRMO11-18S_154 CRMO11-18S_154 CRMO11-18S_157 469 611 17.03 55.65 1042 1219 3.81 CRMO11-18XS_57 8.18 CRMO11-18XS_67 0.173 CRMO11-18XS_74 553 5.64 3.63 534 9.74 454 16.85 0.0010 0.1023 1321 19.93 0.376 1.093 1476 1.73 2.82 1206 3.21 2.79 0.205 0.18 0.08 0.438 3.20 8.40 0.091 11.8 14.3 10.82 0.0175 2.76 0.0869 5.70 7.98 0.786 2.621 109.4 85.2 2.91 6.36 38.8 34.8 0.09 0.498 0.97 190 175 18.4 1.62 28.2 62.9 8.83 0.14 11.68 919 124.9 12.4 151.3 91.1 47.7 6.45 53.6 17704 225 101.0 241 23.14 40.1 63.5 63.7 89 194 758 727 55.0 80.7 74.1 10522 651 11255 3.84 2.56 69.4 80 14584 290 7.57 492 796 88 Spot Spot CRMO11-18S_155 962 P 7.84 2089 4.87 0.142 14.10 0.0682 1.547 4.89 1.10 34.9 14.65 201.3 79.7 350 94.6 1143 117.6 8372 2.39 201 Table D2.12 CRMO11-18 Trace E Table CRMO11-18 D2.12 Trace Mesoarchean 1 CRMO11-18S_153 CRMO11-18S_152 CRMO11-18M_77 356 658 15.44 CRMO11-18XS_56 38.41 340 CRMO11-18XS_72 1013 14.01 CRMO11-18XS_69 1635 359 1.50 CRMO11-18XS_73 440 964 11.56 12.83 0.029 CRMO11-18S_151 1413 40.40 0.053 1398 CRMO11-18XS_70 10.77 13.17 1467 1.21 2627 6.15 CRMO11-18M_79 16.28 0.1030 520 1072 3.26 CRMO11-18XS_71 277 0.0444 10.28 2.610 12.81 0.030 1349 CRMO11-18XS_62 12.09 14.23 0.639 487 0.053 2.16 6.48 18.57 CRMO11-18XS_60 623 385 12.307 40.05 0.1768 3.12 27.96 1.96 984 0.1460 2.14 516 25.27 13.803 39.12 2.808 0.0983 0.85 2789 0.37 468 2.900 8.12 43.41 31.2 4.7423 2.446 1889 1.70 5.83 2.180 35.28 7.15 18.6 4.2396 31.023 10.44 0.040 10.07 1342 13.97 18.96 2.53 0.133 23.254 7.83 25.43 1257 2.49 8.71 21.28 113.8 0.7356 4.00 0.091 20.78 20.37 28.3 1.94 6.24 0.6732 133.9 38.7 5.897 37.9 5.19 0.103 10.91 80.5 0.0689 4.69 12.493 9.12 71.2 53.7 13.17 8.10 0.0767 149 12.20 1.371 28.06 19.85 66.9 105.0 18.30 162.5 0.974 0.0328 275 2.94 6.53 311.2 35.8 6.33 18.76 6.75 36.0 157.7 1.616 54.3 5.78 29.1 92.7 96.7 1.75 412 184.4 0.0130 65.5 150 39.9 4.42 219 2.01 1372 7.80 0.699 53.7 354 49.7 16.89 39.7 125 37.6 0.17 42.4 53.2 149.1 78.9 2.56 23.58 151.1 80.3 7921 163 407 25.8 26.7 17965 18.02 576 302.2 22.1 0.41 36.1 803 0.67 33.8 30.33 209.4 242 9.93 106.0 55.9 20.9 114 82 81.9 304 306 221 67.9 137.4 21.5 413 8206 8.74 23.5 12003 18.7 2217 30.3 50.4 272 9089 98.6 0.86 119.4 4.30 215 197 9488 220 69.2 0.64 1018 46.2 319 1249 18.6 1.03 18.8 56.8 756 327 93.9 2378 454 199 9042 6742 359 329 13566 664 78.9 55.4 0.66 459 0.47 3.77 14441 69.8 629 330 165 8.72 644 9921 292 63.3 195 1981 448 1.08 13714 1380 102 6.55 129 428 CRMO11-18XS_61 CRMO11-18XS_61 226 8.32 406 0.70 0.023 10.12 0.2285 2.931 5.99 2.26 20.4 5.84 56.1 15.2 50 11.3 107 9.9 6796 0.19 70

252

U

Th

Ta

Hf

Lu

94.9 7253 1.99 625 505

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

Y Ti

Concentrations (ppm) (ppm) Concentrations

Paleogene Table D2.13 CRMO11-19 Trace Element Element ConcentrationsTable CRMO11-19 D2.13 Trace Spot Spot CRMO11-19XS_79 P CRMO11-19XS_83 140 4927 6.66 9.87 578 2060 3.41 7.01 110.187 276.07 28.3849 14.39 134.744 0.0146 45.81 0.570 10.78 2.84 88.5 0.90 23.52 12.5 243.4 4.91 79.7 54.7 321 21.0 80.9 94 879 26.8 336 34.6 7736 1.58 113 256 CRMO11-19XS_82 CRMO11-19XS_82 CRMO11-19XS_78 1085 CRMO11-19XS_75 12.01 467 CRMO11-19XS_81 256 CRMO11-19XS_80 2.86 1346 489 3.36 CRMO11-19XS_85 2669 1511 12.07 CRMO11-19XS_76 4.90 4.84 1682 197 CRMO11-19XS_84 14.314 18.31 3425 163 10.47 44.99 4.843 1070 6.71 214 3.67 20.38 2.9116 0.133 1544 47.13 2.32 1.631 15.02 16.108 1.5263 1595 26.07 38.509 20.31 119.91 10.75 1015 8.333 0.1958 0.216 95.30 1.0078 21.28 2.93 4.779 7.19 105.79 6.3308 14.737 0.035 15.82 0.1974 28.066 0.182 39.1 9.57 24.73 28.09 1.28 4.364 6.94 29.13 0.1004 12.29 8.45 1.52 29.2 0.0688 9.46 1.745 139.7 1.72 95.9 44.5 10.92 1.233 5.26 3.40 49.7 20.1 31.97 14.71 136.0 1.94 0.68 41.6 365.3 213 7.20 176.1 52.7 0.51 13.03 127.5 28.5 63.0 58.0 89.7 247 11.6 158.4 11.63 535 271 35.9 697 70.3 5.61 55.0 154.9 136.3 73.0 172 75.4 880 76.6 57.8 237 1540 7733 854 52.1 95.0 33.1 162.9 263 66.2 1.99 86.2 679 9656 8644 168 74.7 795 278 9323 81.5 7.53 5.96 52.3 905 88.7 381 3.89 9962 667 1406 716 8283 98.5 1421 1102 629 5.46 10192 5.46 92.6 1233 718 9.52 11150 1690 1180 868 7.52 953 2345 768 2076

253 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

0.06 1.82 0.57 15.57 6.11 54.06 25.60 426.24 69.18 12178.81 33.44 36.86 602.67 Sm

Nd

Pr

Ce

La

Nb

Zr Y Ti

Concentrations (ppm) (ppm) Concentrations

SM10A3S_39 SM10A3S_39 311.51 SM10A3S_32B 285.82 56.23 SM10A3S_34 26.80 229.95 918.93 765.96 SM10A3S_23A 180.78 1154.05 541540.98 568.32 107.30 SM10A3S_23B 515193.50 281.35 6.11 588.51 554911.04 SM10A3S_25 13.85 535.91 15.20 25.97 603798.16 319.51 SM10A3S_42A 177.56 8.96 2.51 78.45 32.30 1597.36 533572.96 SM10A3S_41A 1062.88 9.56 90.00 6.54 5.36 225.54 480.17 25.04 SM10A3S_33A 565988.67 0.59 4.28 4.78 11.05 1090.62 215.16 117.18 SM10A3S_42B 577810.27 0.45 0.07 8.43 652449.42 762.03 24.68 2.89 1.32 SM10A3S_40 18.34 1045.23 14.71 6.66 3.09 632151.08 0.92 547.02 7.98 424.49 6.50 SM10A3S_27A 779.04 0.18 13.84 5.65 48.88 2589.98 24.48 10.41 500279.02 294.06 SM10A3S_24 0.25 784.77 0.57 1140.38 21.45 558782.37 0.94 1.95 3.83 3.53 491.14 SM10A3S_28A 38.76 3.84 63.21 591998.02 0.32 14.47 14.55 2.90 461.31 SM10A3S_29B 1383.41 53.75 1.12 16.24 0.28 3.20 8.40 3.72 0.79 14.39 10.22 1878.08 SM10A3S_30 576997.35 5.49 52.56 5.49 10.91 387.48 0.31 5.98 4.32 641813.87 1601.77 8.31 6.57 0.98 21.65 12.24 10.26 31.66 1.92 78.42 3.06 488780.38 8.10 12.98 6.62 17.80 1.08 1172.79 5.31 5.91 2.84 0.52 2.59 25.52 42.06 10.43 7.54 0.23 602151.46 0.31 42.47 1.31 19.93 2.79 40.67 40.90 0.91 0.83 1.40 4.90 121.76 21.04 14.14 24.19 6.91 1.96 3.77 7.53 7.42 49.24 28.63 17.11 27.80 33.87 1.09 0.33 18.82 149.16 4.68 1.42 23.72 2.21 106.23 18.16 86.95 0.75 402.02 3.20 7.08 6.83 51.21 10.13 0.94 13.00 0.23 10.98 34.91 10.86 44.49 82.95 22.66 36.59 17.67 680.72 74.40 109.45 1.61 3.53 1.23 6.43 9.69 140.70 9414.98 256.14 7.47 26.28 1.83 13.91 95.67 35.28 18.89 9.14 26.39 68.70 21.43 7.94 34.11 9.52 2.73 30.16 8395.08 321.38 71.71 153.24 226.60 2.36 36.50 53.58 8.45 25.44 207.01 345.89 9800.67 23.03 39.29 4.56 46.92 1.29 43.25 65.76 19.37 1438.97 10.72 45.57 20.67 110.22 103.52 34.73 11779.82 6.18 159.28 487.53 18.21 278.15 248.36 30.99 144.84 0.04 1135.13 13.21 326.23 10815.09 10.56 30.14 36.68 888.50 53.38 69.65 28.79 85.92 45.26 11.41 1540.54 6.17 171.52 43.97 14.54 308.36 357.99 166.55 10448.38 11361.83 1256.74 755.81 11717.38 185.94 23.65 147.95 55.59 537.77 39.64 5.79 46.64 11.67 8.95 20.63 1467.85 89.76 48.68 250.46 53.14 252.57 12663.95 524.67 575.21 87.91 575.81 8540.37 119.54 1236.72 508.11 32.14 215.60 8.47 65.84 1584.38 55.73 902.84 19.07 31.39 11307.09 56.21 56.60 735.34 486.89 9557.36 259.44 167.56 1625.85 5.89 8968.34 582.33 78.00 1895.07 7.67 46.41 317.76 8.84 63.22 9406.10 1394.92 731.31 532.39 1426.32 1847.56 7966.58 9.05 2062.33 56.22 8.97 1505.91 2273.99 9808.53 1242.17 2101.28 40.65 2510.57 3175.24 Mesoarchean 1 1360.27 SM10A3S_35B 1228.92 24.61 SM10A3S_36B 3231.86 1478.87 15.88 SM10A3S_35A 520937.34 3672.87 7.44 Neoarchean 515253.40 10.27 4442.99 9.06 656715.79 11.22 SM10A3S_37 242.76 6.27 449.66 SM10A3S_36A 14.20 20.45 7.09 SM10A3S_32A 0.64 306.77 23.72 13.95 905.62 2.18 1499.19 SM10A3S_38A 119.84 14.22 630285.67 3.88 1.21 654099.85 627.07 9.58 SM10A3S_31 9274.76 54.81 4.78 11.86 0.09 373.77 SM10A3S_22A 9.63 635093.57 396.77 12.35 9.50 0.04 4.43 614.47 SM10A3S_26A 660943.92 800.33 158.96 10.74 1.63 8.82 1315.03 0.53 113.21 SM10A3S_33B 611113.71 13.03 3.99 7.33 9.83 4.29 614281.22 1238.28 6.41 0.68 SM10A3S_43 15.56 41.99 3.44 82.53 1.42 7.01 0.06 648623.97 0.50 405.26 8.12 276.00 46.61 0.49 17.75 4.14 1.92 526258.00 3.22 3.92 0.77 438.25 0.95 5.37 19.52 261.60 297.78 52.51 2.18 2.85 14.16 61.60 0.38 5.02 506104.53 347.76 112.60 2.38 3.30 22.78 1.10 296.19 11.76 0.74 123.83 523.23 1.97 4.32 0.96 409.99 0.41 0.56 67.87 571.94 147.67 2.44 0.70 0.14 146.56 4.40 0.21 14.12 0.46 23.12 1639.59 147.68 0.54 710.24 0.06 7.05 0.82 194.94 5.72 1495.84 0.16 5.57 9.24 5.78 191.85 61.86 12187.50 170.01 0.44 6.69 1.90 2139.57 136.24 3.75 84.20 15.77 10747.16 2.46 9.45 217.27 1.48 2.24 49.70 35.59 7.37 447.69 30.04 2.41 41.45 13217.45 78.00 1484.89 232.88 141.39 0.12 31.40 10.04 414.72 6.93 38.34 17.28 18.60 1041.31 67.50 36.11 140.56 9.45 4.66 68.32 113.13 12.26 71.10 834.58 402.48 44.01 276.89 125.59 45.43 59.36 1.88 20.02 96.07 45.83 176.95 40.30 720.04 17.89 12132.68 30.08 196.31 10387.76 47.38 175.82 96.90 25.58 204.85 3.43 22.92 14.10 559.61 8905.01 42.01 726.10 11789.46 21.11 156.52 62.84 2023.33 52.50 42.40 487.57 293.89 14909.35 5.26 9883.61 18.67 224.97 46.05 4.39 158.33 1362.98 11.14 210.63 10132.71 689.82 67.85 758.22 3.70 26.18 711.31 1421.94 11702.86 645.53 1125.63 4.52 143.85 877.36 Square Mountain trace element concentrations element Square Mountain trace Element ConcentrationsTable SM10-A3 Trace D2.1 Spot Spot P 254

U U Th Th

Ta Ta

Hf Hf

Lu Lu

Yb Yb

Tm Tm

Er Er

Ho Ho

Dy Dy

Tb Tb

Gd Gd

Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

Zr Zr A3 Trace Element Concentrations con’t A3 Trace Y Y Ti Ti Concentrations (ppm) (ppm) Concentrations Concentrations (ppm) (ppm) Concentrations

Mesoarchean 2 SM10C2M_17 443.65 10638.03 SM10C2M_20A 49.57 10.50 4004.31 SM10C2M_20B 834.07 1169.02 751.61 5.81 SM10C2S_70A 451540.41 588281.10 668.37 16.10 Neoarchean 8.43 1507.28 4.46 557854.59 1.97 230.41 622522.00 SM10C2S_80 1.33 778.79 373.58 SM10C2S_73 4.02 7.81 45.08 500.55 23.28 51.29 SM10C2S_78 0.06 2363.74 672.21 10.11 0.55 86.49 311.56 SM10C2S_69 1786.32 582742.28 799.19 9.81 1.59 12.11 2.51 SM10C2S_74 639372.90 93.44 538.66 2126.92 4.37 11.06 65.19 SM10C2S_79 0.31 640086.59 1572.63 7.08 657.28 1.95 17.11 2.29 9.32 SM10C2S_71 1653.87 27.63 610143.61 403.53 18.31 1.93 3.40 104.49 0.03 11.07 SM10C2M_18 1119.03 533330.97 1926.54 19.68 7.02 2.81 23.97 559.69 SM10C2S_72B 2.09 28.25 592019.18 671.03 10.29 10.62 5.28 10.31 0.68 2056.73 43.59 SM10C2S_76 189.89 0.46 6.33 613171.37 531.46 12.34 0.05 4.70 43.42 539021.71 12.98 0.01 SM10C2S_68 1091.92 3.88 39.32 616.86 9.89 0.82 24.84 16.62 17.12 13.12 24.56 35.75 69.01 687.25 504244.72 SM10C2M_21B 1028.70 133.20 1.69 2.08 7.65 0.16 92.69 17.40 2.70 0.30 386.65 SM10C2M_21A 520044.50 25.15 28.05 7.21 21.36 4.41 1081.29 24.92 1323.22 4.44 3.22 24.75 SM10C2S_77 0.34 3.39 2.58 7.94 16.73 823.07 569309.19 7.23 108.37 0.77 2.36 135.57 250.70 97.00 471604.87 SM10C2S_75 784.72 90.68 2.62 0.76 0.45 13.48 12.28 36.82 429.76 3.47 5.00 43.99 6.80 23.99 1.19 7.08 24.74 6.86 40.30 1437.98 585473.89 21.46 1.32 498.04 8.44 30.61 230.51 5.79 8714.06 2.45 2.03 7.29 259.23 0.45 614114.02 0.95 9.23 1.84 13.12 0.90 225.76 905.18 58.06 69.63 4.88 3.16 12.55 70.80 1.16 13.22 0.49 1.25 4.94 23.86 1.60 7.92 46.51 19006.93 22.75 35.24 518092.97 4.34 858.71 174.75 316.41 7.22 276.94 0.48 10.78 24.56 8.47 8130.45 2.27 0.03 44.90 0.52 511.25 19.23 16.44 13.30 2.42 77.01 0.10 57.07 72.07 17.55 147.09 4.12 56.78 0.59 1.24 17.62 223.17 21091.92 2.98 155.62 0.14 6.91 3.66 253.86 22.83 717.81 1342.21 49.13 3.71 17.49 330.01 67.96 211.25 55.85 2.07 2.50 66.15 0.17 75.60 1.50 3.31 4.58 321.27 9.76 210.27 106.75 22.06 62.03 302.67 243.87 10.46 10314.96 697.56 2251.39 0.04 0.13 12.35 52.90 165.50 65.34 0.61 78.25 253.24 66.23 14.90 3.01 76.19 5.78 10.18 2.36 6.15 62.83 807.99 18.02 62.76 883.90 711.68 12276.02 0.34 262.22 95.46 22.51 321.88 85.85 7.00 1144.20 91.03 81.74 6.49 3.44 86.18 631.44 84.06 25.43 13455.32 111.54 31.52 11318.95 8.46 11249.08 32.29 95.37 8.69 32.26 61.96 272.41 0.11 37.44 1486.11 10.26 1518.05 132.85 2.93 9.85 11782.26 115.30 455.81 166.79 31.37 163.10 3.92 127.46 12.36 129.99 18.64 39.86 256.62 489.70 2367.00 39.84 58.46 21186.99 55.83 154.38 1799.92 2938.11 71.76 43.46 569.50 4.78 473.75 18677.99 45.32 183.24 749.60 51.01 4132.97 100.05 190.12 21.80 61.60 203.08 81.80 101.59 64.89 668.89 3515.23 58.66 57.01 17246.22 114.86 17828.38 858.22 27.27 73.97 1155.54 128.12 78.97 647.09 36.48 110.83 14004.89 117.18 50.77 71.26 71.65 23454.84 504.41 41.51 1925.85 42.74 1292.64 235.57 15602.69 52.59 95.95 520.77 31.76 106.33 19033.31 2519.59 2434.76 64.78 282.31 65.38 4414.49 16669.59 59.63 76.26 1594.99 65.53 1692.64 SM10A3S_41B 590.14 590.14 SM10A3S_41B SM10A3S_29A 406.24 50.54 1835.89 54.72 512551.79 1714.55 587177.75 12.68 6.91 9.15 5.51 21.17 16.89 2.10 1.00 7.30 7.52 6.90 7.57 1.31 1.66 25.87 12.22 42.39 156.81 12.45 56.73 168.56 245.54 54.92 63.84 235.22 649.39 60.10 73.29 705.51 9389.14 65.63 25.24 9035.91 1223.43 8.89 2649.68 1354.12 2311.76 Table SM10- D2.1 Spot Spot P Element ConcentrationsTable SM10-C2 Trace D3.2 Spot Spot P 255 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

Nd

Pr

Ce

La

Nb

Zr Y Ti Concentrations (ppm) (ppm) Concentrations

Paleoarchean SM10C3S_61 344.01 SM10C3M_2B 343.35 18.15 SM10C3M_2A 1491.17 271.49 5.34 SM10C3M_1B 539435.51 660.33 1139.16 9.88 515919.45 12.60 773.97 Neoarchean 3.04 1.57 620.03 688629.85 4.37 SM10C3M_1A 373.39 521507.42 0.14 2.60 6.90 SM10C3S_62 366.90 21.62 2.32 0.18 1696.96 SM10C3M_16 8.63 0.76 486.93 28.98 1.03 654441.53 SM10C3S_64 1603.71 1928.93 7.74 29.62 4.23 SM10C3M_6 582973.93 2831.28 37.57 7.24 9.58 606.06 2000.32 SM10C3M_5 4.47 633048.68 10.75 1.53 200.75 40.48 0.65 0.99 587270.05 SM10C3S_67 3365.91 2.88 745.79 14.30 24.73 0.28 16.34 1.28 SM10C3S_45 43.13 595938.56 1125.56 4.15 3.86 734.34 0.13 24.10 16.80 13.16 23.99 SM10C3S_57 0.63 1797.13 603712.05 2182.10 16.51 3.71 31.60 10.80 4.13 0.35 0.70 SM10C3S_65 605733.87 1825.39 37.93 51.37 5924.87 0.18 8.45 7.86 6.20 2496.52 0.05 SM10C3M_7 0.05 28.53 619214.33 0.12 34.99 12.01 352.70 3.07 5.53 1.82 132.57 18.13 630824.19 7.41 SM10C3M_15 770.75 10.49 514.51 17.47 31.19 8.82 14.66 36.68 0.80 48.12 39.45 27.44 3.55 SM10C3M_4 0.05 53.79 1794.13 511918.02 0.46 37.07 24.16 1.48 152.91 5.81 120.36 208.65 4.56 27.73 2544.04 6.99 SM10C3S_63 21.15 582065.27 0.93 419.74 1.01 2.39 1.89 3.66 10.95 3.16 40.41 42.72 643670.29 79.40 62.27 SM10C3S_49 65.28 62.77 14.69 613.15 29.14 83.24 1.56 579.17 0.96 26.50 6.97 175.42 9.38 SM10C3S_60A 1608.95 14.18 407.44 15.45 12.75 642.21 0.23 24.31 20.37 9.16 15.78 598872.93 200.68 47.22 39.46 781.30 11.04 SM10C3M_13A 597972.85 49.77 1.23 1103.98 5.93 73.75 182.33 68.56 106.04 2.65 6.81 1.16 84.32 29.27 1006.99 59.15 4.72 450.83 SM10C3M_14A 19.54 45.88 12.50 147.47 582966.07 12433.60 489.61 16.31 57.99 13.49 27.33 9.85 0.72 1834.17 73.61 646917.02 191.69 0.44 0.11 21.48 SM10C3S_58 24.05 1.81 17.12 270.49 0.28 9.22 163.00 51.16 578.61 24.85 58.43 230.63 335.52 647876.72 1368.30 0.43 SM10C3S_53 55.19 15.64 23.58 26.47 232.69 600.82 20.02 10646.60 12.63 9.35 89.51 59.15 228.83 32.82 407.34 0.27 0.15 58.24 6.84 697163.09 32.82 67.49 732.81 SM10C3M_12A 0.69 1699.00 1199.46 354.97 27.97 4.65 2.23 1.06 5.28 28.80 391.96 332.93 62.00 9.19 0.05 14.31 13711.32 636.73 29.82 6.89 46.48 11.77 SM10C3S_52 607783.72 36.01 1398.10 0.14 11397.63 112.27 0.51 1273.91 5.05 113.23 220.57 98.31 621.07 1358.66 56.57 1.94 74.26 7.25 0.26 127.83 54.15 SM10C3S_48 557822.55 1.93 0.61 9.71 1.11 20.12 31.09 454.97 899.93 6.91 40.62 232.69 1506.23 0.81 1006.91 648772.27 3.15 66.91 12852.43 0.23 3904.29 11.72 SM10C3M_3 262.30 28.06 52.47 2.84 2.17 24.18 112.97 4.50 186.70 11.46 34.11 161.65 287.68 125.58 108.50 2.74 0.57 422.15 232.27 11300.98 6.47 61.88 587097.44 SM10C3S_66A 2048.97 2.40 149.74 915.44 270.40 0.56 261.05 3.01 11267.60 1121.02 76.68 10789.34 0.80 10.36 43.48 71.11 52.77 11.40 3.40 8.93 0.18 8.33 18.64 SM10C3M_11 511095.42 0.26 538.36 771.90 92.83 22.43 111.16 44.37 46.13 86.51 8.28 24.40 20.17 0.30 7.72 1313.20 421.14 1639.44 17.92 313.06 0.71 2651.62 49.13 22.59 533.28 9901.16 2406.18 0.13 30.48 20.65 8.22 1018.59 607.09 7.11 2477.92 452.01 669117.27 5080.09 94.59 133.55 112.58 8.85 1548.46 15.95 594047.06 241.63 10.12 0.84 9.62 82.24 121.95 3720.50 3.26 3.49 83.77 10.27 1705.86 0.25 1542.31 22.21 557714.94 30.03 2.44 13865.14 80.31 0.29 47.53 135.48 8.49 20.43 997.47 12022.58 18.28 1.36 206.98 5.01 186.04 25.23 0.07 2.85 3.92 18.35 45.54 5507.43 47.42 355.73 15.33 361.89 52.46 41.21 12022.49 5.37 12543.95 136.03 8.67 108.06 3.74 0.06 0.28 6.55 3.02 315.61 40.08 48.75 6.02 75.02 113.37 0.18 62.29 93.26 280.40 5.36 15.87 51.31 435.75 59.62 2922.56 4.25 24.84 11580.11 115.64 1567.82 9.39 864.47 965.29 7.33 0.01 0.18 33.13 82.58 4.73 14.98 245.68 91.41 85.91 2866.37 4054.30 2.80 2.15 15.89 75.03 107.14 1025.54 200.71 13.77 4.91 67.22 27.17 0.09 8.80 7.41 43.52 27.13 11171.78 121.98 630.69 120.12 2 Table D3.3 SM10-C3 Trace Element ConcentrationsTable SM10-C3 Trace D3.3 Spot Spot P 256

5884.79 U U 72 Th Th

Ta Ta

Hf Hf

Lu Lu

Yb Yb

Tm Tm

Er Er

Ho Ho

Dy Dy

Tb Tb

Gd Gd

4.39 2.69 45.97 20.95 132.68 54.07 931.99 134.94 12764.57 126.30 24.11 580.05 Eu Eu

Sm Sm

Nd Nd

Pr Pr

Ce Ce

La La

Nb Nb

Zr Zr 77740.26 77740.26 4.55 24.95 0.46 7.69 2.65 55.38 17.45 228.99 79.13 375.09 102.38 1005.00 121.61 9585.78 1.90 395.22 974.46 C3 Trace Element Concentrations con’t C3 Trace Y Y Ti Ti Concentrations (ppm) (ppm) Concentrations Concentrations (ppm) (ppm) Concentrations

Neoarchean SM10C4M_32 256.53 SM10C4M_14B 260.08 190.34 1052.74 SM10C4M_40 13.85 418.57 712261.35 2020.33 301.69 SM10C4M_25B 7.27 770103.63 SM10C4M_69 13.76 7.14 376.61 1273.12 2472.79 SM10C4M_15B 257.18 4.71 0.06 739987.93 25.08 7 SM10C4M_3 6205.19 20.38 0.06 512.31 5.53 19.95 2204.76 760430.86 32.95 36.52 0.07 763834.09 0.19 3120.14 7.82 0.19 694349.34 5.79 7.89 3.57 15.69 2.92 0.26 4.46 0.28 71.43 13.42 2.61 0.27 71.50 26.40 0.18 3.61 6.40 18.67 0.27 0.15 3.83 66.45 0.89 7.67 5.41 0.78 19.54 18.29 20.88 86.74 17.93 5.22 214.54 8.12 35.05 7.41 7.51 69.77 147.42 1.79 160.55 117.07 287.12 87.70 47.79 45.52 41.58 43.83 76.49 22.58 582.59 18.80 432.44 187.96 726.03 206.08 241.04 257.56 49.33 55.52 905.19 82.74 70.14 98.10 9751.75 593.43 211.60 8335.62 287.91 477.78 2.57 2100.60 66.59 1.67 74.53 128.13 217.26 11200.81 341.87 1181.71 704.18 1482.89 264.18 9732.23 1154.28 2.40 148.01 78.35 2.19 228.82 11142.86 10604.35 668.88 1638.08 13.77 2168.23 3.26 991.02 2555.92 2920.05 2122.72 Element ConcentrationsTable SM10-C4 Trace D3.4 Spot P SM10C3S_47B 1182.77 1182.77 SM10C3S_47B 53.23 SM10C3S_55 696.46 3184.40 SM10C3S_56 893.73 42.74 484794.50 812.08 SM10C3S_66B 3525.77 52.43 45.36 SM10C3M_8A 489.26 623377.15 2928.71 30.11 45.09 2551.86 SM10C3S_44 582221.69 43.26 19.34 855.25 219.36 491428.52 2366.75 SM10C3S_46 0.13 34.14 327.56 24.91 573435.32 42.63 26.69 4.94 951.98 36.37 5.21 8.31 30.96 325.25 574193.42 32.02 818.66 15.39 0.13 175.86 18.74 27.01 596762.63 5.61 89.98 9.36 3.02 3.33 1.48 21.88 39.78 18.29 242.64 11.53 0.04 9.02 7.41 121.50 20.06 60.00 3.24 2.80 1.09 7.16 58.85 553.92 0.71 74.50 135.11 7.62 0.90 0.43 47.28 28.00 468.74 84.76 28.66 2.69 17.21 369.17 124.06 0.03 21.13 12.79 257.36 1268.65 0.17 112.54 229.88 146.55 92.21 209.19 464.26 7.28 11442.02 72.52 81.06 456.65 113.88 60.52 3.71 1105.78 131.87 351.43 405.05 5916.79 115.01 1534.25 26173.62 108.28 121.96 67.80 10645.17 181.96 1381.61 1271.41 27.09 14.71 15783.53 158.34 167.35 70.72 153.16 1409.88 12983.54 12739.40 5330.76 1583.45 20.45 41.09 61.67 7186.12 1436.96 447.95 882.30 10844.47 3548.09 117.52 12526.33 104.60 1440.15 1802.02 Table SM10- D3.3 Spot Spot P SM10C3S_59 663.36 SM10C3M_8B 1088.79 45.29 40750.69 SM10C3M_10 3319.07 42.75 3948.80 18.01 SM10C3S_50 598450.84 1275.83 2101.37 505512.03 SM10C3S_51 1052.06 18.33 26.36 575662.73 23.26 SM10C3S_54 1674.80 58.92 0.75 589.62 27.83 56.44 2616.33 500500.14 223.76 557.15 25.31 563850.27 7455.57 312.94 29.16 1169.10 563323.28 0.37 50.43 64.42 24.24 184.24 28.75 57.19 1038.61 466.99 46.55 3.53 36.80 117.14 238.68 220.37 5.19 9.94 244.46 22.72 3.92 5.76 37.38 45.49 167.84 2.54 238.17 314.90 12.11 380.18 78.31 72.08 34.64 80.63 324.59 0.11 1.28 253.71 26.53 697.61 26.95 55.30 22.83 165.57 344.02 96.42 605.02 581.59 108.42 224.29 8.26 26.55 178.15 124.54 444.69 65.27 273.60 1689.65 130.35 1272.26 109.50 864.47 356.83 82.42 49.90 152.80 1080.58 1129.43 133.92 12383.67 383.52 290.47 109.80 13374.18 233.06 17.12 10359.42 110.01 103.89 137.58 2023.74 8625.82 13.40 1237.71 1366.66 38223.79 112.43 194.29 139.96 168.16 1073. 935.35 12380.30 12296.58 12429.18 60.61 148.54 29.24 6807.57 64534.63 151.78 3732.43 10170.70 2221.57 257 97.61 97.61 U Th

Ta

Hf

4.99 4.99 12569.91 6.34 227.47 1734.82 Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

7.32 4.83 76.77 33.11 189.23 56.20 779.39 75.50 17668.14 15.64 89.64 1593.31 Eu

0.17 1.76 0.71 16.86 8.66 53.55 17.67 243.65 46.49 13721.14 1.05 6.58 276.48 Sm

1.23 0.10 5.17 2.44 34.54 13.95 70.12 22.13 260.68 32.94 10001.25 5.31 109.10 782.95 0.44 7.70 2.06 4.36 0.73 63.18 29.01 14.93 155.16 5.58 44.26 92.44 512.64 36.52 54.73 173.77 13311.10 55.24 6.60 744.19 98.29 74.26 888.21 20866.31 23.93 123.52 806.63 2.57 0.17 17.85 8.15 144.53 54.61 279.94 76.54 886.62 112.22 22472.07 28.68 221.01 1976.31 Nd

Pr

Ce

La

Nb

Zr 593850.66 9.93 11.39 0.07 2.82 0.59 23.54 9.78 134.97 46.72 247.41 64.75 801.11 71.10 13249.41 8.00 222.83 1830.16 866877.28 17.24 0.06 23.30 0.07 2.73 6.38 1.71 56.65 19.29 273.11 102.43 495.95 128.54 1513.79 191.15 16232.54 12.52 1154.17 2069.34 96 16 C4 Trace Element Concentrations con’t C4 Trace Y Ti Concentrations (ppm) (ppm) Concentrations

SM10C4L_90B SM10C4L_90B 434.85 SM10C4L_85 10.81 77.48 1877.01 5.11 650717.96 296.97 16.38 665612.80 0.79 20.91 0.67 1.01 4.28 0.54 26.62 11.48 160.99 60.45 265.25 74.24 759.90 102.24 17047.86 23.26 559.61 1554.09 SM10C4L_86 SM10C4L_86 591.41 SM10C4M_65 550.17 26.70 2988.00 17.46 2080.62 765705.16 777801.02 12.16 11.40 0.12 0.07 7.18 13.29 0.07 0.97 1.07 3.54 1.99 0.41 27.59 1.06 13.93 31.96 SM10C4M_61 1036.44 241.53 10.92 SM10C4M_59 30.62 300.27 94.59 1657.25 188.56 SM10C4M_12 533.95 1.89 475.58 693362.22 69.21 SM10C4M_83 359.81 17.10 935.05 130.53 2140.92 286.50 SM10C4L_88A 40.19 338.94 16.10 715885.26 1364.23 742443.59 1482.23 4.94 SM10C4M_77 32.10 240.53 96.77 186.92 10.65 3335.51 713186.51 SM10C4M_24A 273.63 8.57 18.21 11.07 18125.88 981.82 819113.34 1280.53 SM10C4M_72 6.88 0.12 10.00 387.44 6.85 116.22 1.31 727064.77 27.83 SM10C4L_94 1071.18 520.86 12026.73 0.14 454.77 27.54 26.39 7.80 1.07 302.89 SM10C4M_15A 2152.83 649557.35 2057.11 7.85 8.86 5.90 11.04 27.59 SM10C4L_100 0.09 2063.00 784148.56 487.98 2.87 25.63 10.03 763.43 2.74 1056.53 SM10C4M_38A 0.16 753273.81 285.87 19 24.58 0.21 11.10 1.69 0.36 655344.53 3611.52 0.11 15.62 18.19 0.12 25.10 2.43 5.88 777343.89 7.77 921.72 2.90 14.18 0.17 23.50 23.24 0.07 5.45 22.82 543543.82 0.77 7.62 5.06 8.49 0.11 0.40 0.87 1.26 5.75 44.60 3.61 130.72 0.01 4.18 19.98 2.08 4.05 39.35 14.56 49.69 66.39 0.29 6.34 11.68 182.47 0.38 254.60 19.99 13.84 1.50 141.60 69.79 2.40 74.10 24.18 312.71 0.18 0.42 1.37 48.93 329.00 0.13 950.60 39.82 109.21 8.72 213.50 0.33 4.98 85.60 109.32 483.34 14.77 13.41 115.07 20732.49 53.70 1013.08 120.48 3.73 0.59 189.78 8.11 41.83 98.82 120.39 566.18 1249.94 71.84 43.02 10494.57 0.71 189.05 131.30 188.27 154.37 57.01 2106.58 6.92 313.03 16241.34 48.14 18.41 57.29 21.46 9843.15 15.00 78.40 531.62 553.55 295.69 320.87 4.84 8.15 2703.62 1997.06 891.72 108.61 59.70 98.33 2426.30 806.89 99.56 521.75 10645.50 93.32 2212.62 1153.38 31.54 10678.80 142.81 7.60 159.92 17739.48 1530.16 6.81 154.60 769.42 23.38 208.42 1846.81 35.17 906.09 24961.36 2336.95 196.73 453.01 41.24 2014.97 39.61 1268.84 3153.19 10865.06 4.19 259.19 1210.21 SM10C4M_49 SM10C4M_49 672.08 SM10C4M_44 122.79 57.49 2675.91 6.27 699087.96 471.85 16.93 724789.78 179.24 4.89 231.20 32.04 114.24 5.94 23.52 1.17 45.83 15.99 203.72 84.25 416.01 115.79 1320.08 140.31 9296.54 14.94 4366.54 4436.00 SM10C4M_30A 456.44 456.44 SM10C4M_30A SM10C4L_87 9.81 455.61 2390.30 394.64 SM10C4M_26A 18.92 587009.06 SM10C4L_90 37.46 3251.92 500.20 5897.84 15.47 768065.33 27.06 648491.64 3180. 12.02 16.05 0.11 1.88 40.41 8.80 276.38 0.10 2.23 4.04 41.08 8.87 0.80 63.64 1.58 3.55 18.52 51.79 243.41 1.08 65.42 17.57 36.79 729.46 261.14 16.59 221.09 82.22 274.57 873.85 393.98 105.64 200.95 101.95 519.63 2152.38 1243.28 134.68 195.81 114.65 1399.62 9780.08 10047.07 188.00 7.61 8.05 16368.79 4073.53 1194.00 5.49 2303.79 2641.03 525.04 1835.31 Table SM10- D3.4 Spot Spot P 388.20 SM10C4L_81A SM10C4M_68 14.79 304.94 1817.38 SM10C4M_17 570.62 27.81 809857.76 SM10C4L_84A 2612.93 165.27 45.58 21.66 5173.14 SM10C4M_57 697085.04 274.05 13.41 755254.33 SM10C4M_55 1092.68 306.85 11.07 7.79 1005.86 SM10C4L_103 836409.30 18.70 287.80 9.65 0.69 717162.96 1232.13 SM10C4M_21B 10.31 0.45 735.41 44.70 9.65 13.26 27.16 4222.90 SM10C4M_51 5.63 328.76 640831.17 0.12 81.61 1432.86 753303.53 SM10C4M_6 0.28 21.58 320.71 858270.25 7.54 10.84 0.25 SM10C4M_38B 1194.23 19.77 328.78 11.82 1.96 4.54 0.55 504.61 SM10C4M_14A 712095.07 0.07 0.06 4.59 14.98 12.31 1230.13 5.32 1305.25 10.47 12.75 7.41 9.54 74.24 705374.82 0.80 19.98 1451. 729928.78 37.01 0.31 3.25 5.99 0.22 6.88 1.68 5.86 1.68 1.93 55.20 0.80 125.29 5.46 0.07 21.48 0.11 11.37 18.74 39.21 2.86 1.93 17.48 21.29 14.20 24.57 12.34 234.94 493.34 0.30 0.14 5.56 0.21 5.68 0.11 1.30 84.64 174.58 1.33 14.67 110.90 15.10 1.05 740.59 92.98 392.12 35.46 1.16 34.81 5.34 2.78 172.33 6.37 98.36 34.06 10.60 8.10 3.87 446.70 1715.97 1032.49 69.25 161.35 84.12 0.35 125.67 0.97 178.69 141.22 1.09 113.95 47.67 24.73 48.64 10300.74 30.77 30.91 10278.12 607.07 32.47 27.29 4.85 527.35 133.17 210.05 147.52 3.65 140.77 8.57 9.57 67.87 9.13 3175.58 35.14 54.67 1363.90 38.99 624.02 3471.00 108.61 20643.31 130.07 169.21 1462.31 431.74 572.00 113.74 428.45 36.23 14746.15 10.96 40.04 42.40 69.28 39.40 4 168.40 8.87 207.79 12743.06 172.36 11389.99 182.42 1160.40 50.66 3763.33 9.06 6.31 49.75 3299.83 49.52 527.48 197.03 476.69 957.56 581.14 2056.73 879.37 64.26 49.89 59.26 10158.92 9861.47 9471.26 7.78 4.76 3.78 423.48 458.66 2351.43 505.08 1743.75 1325.57 258 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

37.44 37.44 58.29 294.92 84.79 1007.10 103.16 11615.92 34.61 240.95 6068.88 Dy

Tb

Gd

.41 .41 32.10 17.32 291.41 104.32 494.89 122.28 1239.70 163.43 19342.53 57.02 514.67 8303.72 Eu

Sm

0.51 0.25 10.37 4.81 70.29 33.69 175.89 54.32 610.57 77.30 12444.43 16.57 137.44 2237.87 2.46 0.40 1.69 21.99 0.38 13.31 18.29 216.02 9.08 79.34 127.43 393.95 107.95 44.56 1274.62 203.65 122.27 61.87 15358.27 613.20 54.64 64.17 316.56 7772.01 11693.08 24.35 224.07 4862.64 Nd

Pr

Ce

La

Nb

Zr C4 Trace Element Concentrations con’t C4 Trace Y Ti Concentrations (ppm) (ppm) Concentrations 0C4M_71 0C4M_71 333.22 23.11 1490.94 641216.22 12.84 0.38 12.51 0.40 2.15 0.87 21.86 8.72 136.87 48.43 240.85 63.72 786.59 74.87 17681.04 17.06 1013.43 1948.87 SM10C4M_11 SM10C4M_11 606.99 SM10C4M_37 535.12 6.96 SM10C4M_76 567.08 2485.39 760653.19 2.25 2379.29 2296.01 25.04 669186.43 785029.26 24.38 35.64 8.24 0.06 7.60 11.40 0.80 0.02 0.06 3.17 0.61 0.21 0.57 2.03 4.35 25.98 0.13 0.40 12.99 21.40 36.73 193.27 13.63 13.06 74.72 189.15 203.46 327.65 70.88 71.44 91.32 311.60 301.32 899.13 76.65 82.12 99.23 855.60 805.90 11901.88 83.20 90.77 38.82 12807.18 12036.05 366.91 39.73 41.00 7894.91 323.37 505.45 7070.95 8407.52

SM10C4M_84 SM10C4M_84 518.15 SM10C4M_27 184.97 18.50 1254.90 SM10C4M_2B 1029.00 0.70 686078.61 SM1 17.37 926.13 2197.06 SM10C4M_31 27.78 506.47 740625.44 732384.19 SM10C4M_47 2.30 560.15 5.33 9.30 19.23 220.06 SM10C4L_84B 1350.42 28.06 10.75 1.14 2848.48 SM10C4L_102 7.29 695010.92 1519.50 0.55 698648.28 SM10C4M_53 950.25 242.15 75.37 9.66 14.87 1556.99 10.46 SM10C4M_52 670683.71 9.61 505.06 3.38 4.81 3.37 0.35 732595.32 SM10C4M_2A 399.42 711.71 18.64 8.99 2.15 4.59 210.04 SM10C4M_21A 782.91 10.70 9.39 3.07 718096.26 0.26 1075.58 SM10C4M_33 109.41 4.60 0.15 738369.60 369.97 2.34 31.52 0.41 7.55 3.10 583887.65 10.23 SM10C4M_10 743.68 137.62 410.48 7.14 9.48 13.60 17.13 0.49 SM10C4L_93 1.70 9.93 655207.93 364.14 1020.35 19.46 11.43 3.11 5.69 SM10C4L_97A 980.94 421.95 7.87 0.39 767078.75 6.01 206.16 11.48 94.09 0.34 1585.30 10.09 7.35 706203.09 16.08 93.92 0.40 34.95 Paleogene 13.24 0.70 1.79 12.71 4.40 18.68 738327.84 1661.57 11.75 25.10 0.93 0.32 38.11 11.90 4.87 798153.66 25.42 1.28 SM10C4M_19 2.10 22.40 0.39 0.08 5.26 352.50 5.04 213.46 171.30 6.73 4.32 368.17 2.14 SM10C4M_18A 16.76 9.05 65.05 22.09 3.13 68.71 0.49 11.39 0.36 63.01 65.15 SM10C4L_104 5.16 2.18 1285.42 0.95 10.08 0.16 363.37 103.91 19.75 28.46 7.51 2524.83 793.56 SM10C4M_54 1.25 319.06 1.52 730565.54 2.40 391.04 10.91 0.43 12.27 2.36 36.24 0.37 261.76 0.59 647870.75 SM10C4M_63B 147.01 107.31 117.46 92.71 751.00 2130.23 15.10 6.07 6.57 0.65 0.19 176.40 85.10 1.04 4.67 SM10C4M_82 1175.28 14714.81 27.29 42.22 2.68 276.70 46.66 2.62 774823.50 1547.56 4.44 130.17 50.68 3.38 34.21 SM10C4M_46 7.94 385.51 15.63 2353.03 7.18 494.05 75.37 715676.13 444.07 271.27 0.33 1.91 17.10 2.24 13.94 11485.00 0.21 310.30 SM10C4L_82A 109.13 639.46 194.13 808708.24 1035.43 59.64 0.10 3.76 3.38 87.10 18.67 31.05 1.60 4.48 4.76 10.92 2365.64 7.12 455.42 SM10C4M_13B 1132.67 6.29 0.35 11.18 4.45 72.71 711158.12 8.51 12452.35 29.16 1958.32 1061.57 141.26 60.07 378.29 52.49 123.80 8.02 1882.55 SM10C4L_96 0.04 16631.45 4.71 13.88 0.25 672693.29 460.30 4.01 93.45 12.38 2705.53 15.78 4.29 165.24 7.74 9032.02 43.55 833553.41 2157.01 SM10C4M_23 22.08 19.48 22.35 523.55 25236.33 3.33 0.06 254.47 21.05 0.45 35.04 55.89 6.73 6.24 6.57 72.21 685520.82 7.62 SM10C4L_101 463.86 1595.02 14.80 118.31 16.20 14.39 95.71 66.63 505.10 2794.84 1.99 57.65 202.97 8.28 22.86 1474.89 115.70 28.60 1031.93 21.96 68.74 2744.93 1093.42 0.12 743460.79 43.87 29.55 4.88 6.64 3810.38 1978.97 1.10 61.12 24.71 17630.98 812627.91 135.07 46.92 157.55 0.05 3576.73 0.46 513.46 26.05 315.42 1.15 7.24 112.87 11.75 874.41 152.11 41.23 0.14 25.24 8.28 765831.72 254.44 54.17 71.39 0.33 35.89 2.56 50.49 183.68 2.54 89.78 57.96 7.68 526.90 78.92 604.64 31.15 15.17 9039.56 1528.62 10466.35 0.06 14072.19 283.32 1.45 0.33 785.45 0.15 58.30 955.00 74.24 0.20 11.92 9.75 8.76 6.09 8.32 0.23 87.68 108.56 0.02 14843.11 8.42 12639.76 143.97 0.13 27.37 425.47 9.07 16.27 177.48 19050.01 1123.83 92.01 11.37 168.03 2091.60 21162.53 17.84 1857.26 3.35 1.26 12.02 0.86 1529.54 13.25 84.61 151.79 8.91 31.88 0.06 213.00 37.51 105.65 21044.21 182.03 1988.69 0.49 2259.48 0.30 87.89 0.61 6.02 1.92 293.01 142.68 180.39 0.48 32.70 1828.64 2431.05 0.49 62.38 24.94 16.73 66.27 80.61 50.97 2.87 0.28 184.66 3.15 269.94 2.56 3045.57 10.50 371.14 563.31 29.82 8.77 24.93 0.39 66.09 0 161.61 124.67 0.26 68.80 139.66 1 10.87 653.77 32.69 1384.10 53.45 13750.57 36.62 29.30 168.55 167.49 82.63 17.57 24.74 238.13 465.65 12743.53 13.20 17988.87 63.34 245.52 137.60 61.57 38.69 52.47 29.35 3282.35 208.82 296.48 78.78 633.79 11905.39 317.58 379.97 80.47 76.49 5397.31 334.58 5158.56 30.77 76.45 383.24 847.94 81.90 19086.36 286.00 3476.86 99.27 89.34 24.96 805.22 12896.87 1087.61 344.41 98.80 4142.49 SM10C4M_29 SM10C4M_29 298.51 4.07 1122.68 760952.41 11.82 6.62 Table SM10- D3.4 Spot Spot P 259 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

0.87 2.44 0.25 0.37 11.83 2.08 19.20 6.41 0.07 9.04 106.88 26.23 2.48 140.50 48.34 10.77 0.27 45.52 266.58 169.26 198.88 20.61 76.63 3.80 60.26 54.69 924.59 10.91 0.05 287.18 528.18 110.09 173.08 74.02 38.06 14202.05 59.44 73.34 31.21 810.61 15.43 13073.04 360.95 174.74 68.00 27.87 199.39 4220.02 97.23 12114.29 2.67 282.51 66.47 1131.66 5774.69 33.24 0.39 276.37 120.02 295.20 13567.40 6670.56 72.21 26.42 45.81 732.59 14.61 290.06 74.72 6708.77 204.18 11366.01 74.34 39.65 334.79 470.17 8768.65 84.93 916.73 1.74 91.27 2.14 0.26 12992.42 0.05 40.96 24.33 22.05 339.27 12.36 7394.58 10.78 185.88 169.66 69.43 57.85 285.13 263.62 83.47 72.51 770.55 710.32 81.29 11627.20 76.02 32.43 11588.65 33.44 385.30 8138.44 258.54 6224.23 Nd

Pr

Ce

La

Nb

Zr C4 Trace Element Concentrations con’t C4 Trace Y Ti Concentrations (ppm) (ppm) Concentrations

SM10C4M_28B SM10C4M_28B 430.43 SM10C4M_75 422.67 2.15 SM10C4M_7A 477.93 1612.53 0.23 SM10C4M_60 794908.89 355.96 2103.30 3.88 SM10C4M_45 1883.03 658.81 718362.91 17.10 2.41 SM10C4M_62 542941.53 467.25 1441.68 9.35 19.47 SM10C4M_4A 473.57 2723.97 746292.49 19.44 SM10C4L_83 710879.86 8.75 340.49 15.74 6.83 2469.61 SM10C4M_35 3153.75 490.10 30.03 3.19 6.51 729514.47 SM10C4M_4B 608961.93 404.37 0.88 2143.60 8.50 SM10C4M_67 25.61 30.74 485.43 775830.77 8.82 5.60 9.00 2379.28 SM10C4L_91 2109.83 467.43 4.36 11.17 709769.11 SM10C4M_86 415.56 744102.41 0.25 2712.10 0.22 5.17 SM10C4M_50 29.45 385.86 767269.66 2965.49 7.95 14.39 17.69 5.87 0.99 2.37 SM10C4M_58 531.70 1717.14 766523.04 0.32 0.80 28.67 13.27 0.12 SM10C4M_42 698457.56 1731.46 2.59 0.33 473.16 5.48 29.24 1.81 SM10C4M_43 0.04 690072.60 2558.10 1.44 9.93 11.76 505.72 10.56 4.83 0.52 21.47 SM10C4M_1 718280.60 0.27 20.23 452.33 1949.14 0.27 7.29 7.39 7.95 11.53 SM10C4M_64 28.96 25.38 704473.78 462.05 2335.87 7.83 14.99 9.46 4.40 SM10C4M_66 170.13 0.74 305.19 12.38 693005.09 1836.67 8.81 19.75 2.44 SM10C4M_28A 7.17 1.55 299.72 60.53 660867.94 2709.60 7.51 198.31 0.67 49.46 6.54 25.39 SM10C4L_82B 410.50 2012.48 108.29 277.52 753885.60 0.51 3.35 3.39 8.30 18.34 79.18 21.14 32.85 SM10C4M_81 674045.22 473.71 1644.61 3.63 0.53 42.22 69.83 28.43 419.68 6.48 1.78 305.31 SM10C4M_74 0.81 13.08 2809.79 661177.96 262.76 0.22 13.09 3.50 0.02 201.91 757.71 122.30 8.06 3.99 111.32 SM10C4M_7B 541.16 627736.71 2116.99 195.67 0.15 0.45 10.04 33.86 3.99 1465.19 55.99 2.87 6.83 78.63 527.98 8.72 SM10C4M_36 708580.48 536.21 1161.82 26.58 0.37 2.74 64.87 154.17 13.83 26.77 13223.48 1.60 632.91 771.21 138.24 SM10C4M_20A 2252.90 593006.00 0.42 0.03 29.39 2.10 12244.18 0.15 278.91 9.42 33.34 34.37 178.11 1642.46 12.42 66.95 SM10C4L_95 692460.11 2008.60 7.13 0.26 42.98 17.38 437.85 10.06 0.33 25.23 70.69 303.67 149.74 61.66 13528.86 17.54 1.74 3669.43 196.37 713563.45 24.43 1.16 6458.61 391.30 9.08 17.17 1.81 11805.50 0.39 698.54 0.10 10.70 25.49 643234.61 1.45 278.03 261.08 6442.19 76.52 22.42 2842.87 0.24 9.27 25.51 5.76 91.94 8.42 2.00 0.13 144.07 166.73 40.96 3.09 79.86 86.16 0.41 0.88 376.09 736156.29 0.08 3886.67 605.61 19.83 15299.73 52.61 0.55 132.07 0.13 6348.07 856.57 361.48 102.70 0.29 1.13 8.64 26.68 0.39 3.55 2.47 12.23 24.71 11.05 237.91 1114.31 51.72 91.42 87.12 6.89 9.83 1.82 23.39 5.07 642.96 30.46 12.74 157.05 0.80 0.77 122.17 0.09 61.28 239.04 9426.68 3999.08 863.54 10.13 0.16 14188.42 179.78 1.00 14.36 59.25 0.32 709.53 14.72 31.44 27.22 64.88 103.98 2.56 8.01 51.46 150.59 68.88 214.24 277.92 18527.66 0.95 70.48 0.26 311.02 36.39 730.52 12.61 12.88 315.43 0.49 56.14 3545.71 46.41 316.55 80.61 75.25 10112.64 6823.16 73.33 184.75 149.31 19.18 5.16 6.12 246.25 11.65 30.07 509.28 85.47 370.66 836.43 12531.90 66.25 54.19 260.71 7812.14 0.44 0.30 63.63 3.79 286.06 31.36 951.07 13.58 92.19 81.97 317.36 244.24 86.81 3387.58 706.65 12944.49 32.86 92.81 265.95 184.49 0.97 82.06 996.61 80.69 61.11 336.33 5604.63 37.87 12595.56 67.58 102.47 13.94 64.64 38.68 0.44 929.42 722.36 89.95 42.18 12138.41 13872.92 254.94 277.90 279.78 221.67 6451.53 92.69 70.77 761.19 30.38 47.58 19.67 287.01 116.00 70.23 7177.74 74.96 13609.65 13323.94 99.94 268.19 314.73 10.80 653.50 6271.91 18.31 7024.35 765.43 14.63 1013.90 16325.78 194.67 198.59 99.06 309.78 77.18 304.28 39.20 2480.06 3500.53 3088.09 78.92 13143.46 12183.75 602.31 259.08 32.81 7953.91 431.26 38.35 16447.07 126.90 372.64 95.87 61.33 7073.34 2758.44 1422.45 401.13 190.73 7430.55 17061.27 38.30 244.25 4851.14 574.80 SM10C4M_48B SM10C4M_70 3.46 456.75 2239.99 SM10C4M_79 428.55 2.93 749739.61 SM10C4M_16 409.84 2512.20 SM10C4M_22 26.31 752915.96 2.61 363.44 1848.70 1966.76 27.76 3.86 711179.02 756050.93 1643.85 16.92 17.99 8.73 771146.40 18.88 8.47 8.21 6.38 1.06 6.01 0.01 0.43 1.57 0.50 1.35 0.33 0.24 3.39 25.33 0.51 1.15 0.30 12.17 22.93 0.13 25.96 178.07 11.86 21.39 62.77 11.26 192.76 10.29 282.29 155.70 73.79 156.22 81.78 53.25 357.67 58.18 842.90 232.22 95.49 271.17 87.03 58.09 1062.38 71.58 11453.35 111.51 615.47 38.27 13384.04 745.27 61.67 48.72 262.11 79.74 12021.12 6419.64 298.45 13933.07 29.49 6759.97 28.71 351.22 6176.81 248.07 5508.30 Table SM10- D3.4 Spot Spot P 260

26 U Th

Ta

Hf

Lu

Yb

Tm

Er

Ho

Dy

Tb

Gd

Eu

Sm

3.83 1.70 0.48 0.12 38.00 2.39 13.36 19.53 0.01 0.66 6.28 302.83 13.53 100.14 89.29 8.35 468.84 31.89 114.78 111.03 7.17 140.70 1371.57 37.92 35.41 114.86 2.93 195.91 13235.64 364.42 50.72 57.19 58.94 44.80 19.17 652.06 407.06 16547.72 9405.08 90.66 62.27 9.20 14146.64 26.41 195.77 22.94 2055.05 316.15 207.38 32.30 3786.25 13806.61 15.07 68.98 2211.19 Nd

Pr

Ce

La

Nb

Zr C4 Trace Element Concentrations con’t C4 Trace Y Ti Concentrations (ppm) (ppm) Concentrations

SM10C4M_73 556.25 SM10C4M_41 399.76 12.63 2960.42 SM10C4M_5 3.44 706.12 619006.97 SM10C4L_98 1737.24 478.30 8.42 531.35 SM10C4M_13A 29.20 686337.63 3700.08 2.28 SM10C4L_89 0.39 2.59 621.04 18.39 2962.28 688820.69 2527.33 744624.39 17.33 2.28 46.76 731997.78 3730.16 29.57 0.17 31.00 759334.75 0.13 8.57 2.45 36.48 9.67 8.27 0.04 7.51 8.74 0.06 8.55 1.00 0.45 0.52 0.06 0.43 53.43 2.29 2.01 22.32 0.41 0.49 3.26 0.26 0.34 295.05 2.07 4.24 0.37 23.82 101.85 25.82 0.23 10.81 37.30 0.36 466.51 14.39 153.44 118.87 18.35 24.82 27.39 237.52 1395.08 51.09 279.97 14.06 12.56 85.53 123.85 225.50 108.73 268.26 11435.06 200.31 409.82 532.31 55.36 107.73 26.32 76.63 106.74 140.07 605.95 586.03 860.36 1090.69 345.66 1604.00 7117.43 169.49 60.31 139.23 90.15 153.58 1878.12 11984.58 18379.20 12662.79 1022.84 257.07 29.69 51.08 65.45 101.47 19562.57 317.80 375.39 12956.38 540.65 56.36 6002.39 6519.46 10173.31 35.99 413.36 6773. 292.82 6292.05 Table SM10- D3.4 Spot Spot P SM10C4M_56 294.86 548.21 SM10C4M_48A 2.51 SM10C4L_92 9.50 1167.59 209.44 3047.77 SM10C4L_99 721528.74 204.31 3.33 588156.05 281.45 SM10C4M_78A 1003.81 8.33 3.67 SM10C4M_63A 32.75 763.32 5.26 778253.07 1240.94 1175.46 SM10C4M_8 225.48 8.33 826015.52 6.18 607866.29 SM10C4M_80A 1338.61 2728.21 1.69 17.41 7.40 15.02 13.26 652418.20 11.20 654.32 3407.62 22.13 704822.50 579684.00 6.62 0.78 4.30 6.10 34.01 8.61 0.35 9.44 8.24 0.00 1.30 22.90 0.22 3.03 0.24 3.56 1.51 17.39 17.61 0.93 4.63 12.22 7.21 0.17 0.24 0.56 98.51 7.74 26.99 35.74 37.69 13.69 4.08 160.60 17.48 222.95 81.53 40.22 248.45 88.26 35.86 464.94 114.57 454.99 197.81 645.87 48.58 118.84 11541.18 59.65 196.86 1543.99 10.84 2688.55 683.93 149.12 267.11 14765.28 266.29 98.79 3206.25 14291.72 35.33 19743.87 56.76 328.08 29.36 6130.70 438.89 104.35 7858.37 2521.12

Table D5.1 HM11-01 Trace Element Concentrations Concentrations (ppm) Spot P Ti Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Th U Paleoarchean

HM11-01_M_43 67.33 16.71 845.34 8.02 0.30 22.76 0.12 1.13 2.11 1.01 14.17 5.44 82.88 32.99 156.37 40.48 442.51 52.07 8544.78 2.47 454.70 2040.98

HM11-01_M_42 97.24 14.69 816.83 8.26 0.46 19.14 0.13 1.10 1.82 1.22 10.48 5.12 77.13 32.06 150.11 40.59 443.49 49.57 9082.12 3.78 436.19 2189.26 Neoarchean

HM11-01_M_50 378.42 6.69 2086.04 15.03 2.35 43.99 1.07 12.54 16.91 1.88 65.40 20.48 232.68 78.33 298.75 68.76 709.99 71.53 8644.92 6.24 749.88 501.27

HM11-01_M_48 215.77 5.67 1321.74 14.16 0.36 11.24 0.20 1.83 3.31 1.24 20.42 8.91 122.75 46.15 216.80 63.31 742.57 78.06 9965.42 11.21 169.56 988.76

HM11-01_M_44 290.62 16.96 2826.77 12.50 0.33 26.91 0.30 5.30 10.07 3.23 59.80 21.89 277.43 102.27 429.28 113.90 1189.48 129.41 8409.32 4.00 570.50 1206.32

HM11-01_M_45 181.92 10.97 958.87 32.04 0.31 6.72 0.22 1.02 1.20 0.39 9.23 4.68 80.99 36.16 180.54 54.37 627.03 66.20 12340.69 19.04 108.78 1410.99

HM11-01_M_52 162.04 14.76 865.13 27.62 1.06 8.38 0.21 1.39 1.37 0.42 10.28 4.97 81.91 33.41 164.92 43.12 471.39 50.69 11348.72 13.44 144.55 1398.47

HM11-01_M_49 183.96 9.74 900.53 36.09 27.28 16.53 4.20 21.92 6.59 2.10 14.83 6.07 85.59 33.15 163.49 46.16 551.28 59.92 12212.20 29.12 191.09 1574.08 Paleoproterozoic

HM11-01_M_53 193.93 12.40 1339.68 34.97 15.14 16.05 2.41 9.56 3.98 1.45 14.31 7.25 112.81 47.94 234.90 68.88 780.80 88.86 12439.83 24.85 204.24 2052.02

HM11-01_M_46 198.03 9.55 1023.42 39.90 14.19 19.20 1.99 9.80 5.61 2.37 14.22 6.52 96.95 38.73 181.78 55.00 666.79 72.82 10923.03 30.35 163.68 1723.58

HM11-01_M_54 165.65 14.65 970.06 21.54 8.19 16.18 1.73 10.91 4.65 9.40 14.68 5.42 81.36 34.94 177.48 49.94 565.46 70.20 10448.56 10.17 169.68 1635.50

Table D5.2 HM11-06 Trace Element Concentrations Concentrations (ppm) Spot P Ti Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Th U Neoarchean

HM11-06_S_149 266.32 1.42 1720.76 3.35 0.00 17.17 0.04 2.14 7.10 0.37 39.53 14.57 178.27 64.72 261.20 65.40 686.65 67.48 10025.50 2.08 372.17 530.42

HM11-06_S_150 260.99 0.73 2204.03 3.72 0.01 23.77 0.08 2.16 8.17 0.25 52.79 18.18 233.43 85.55 349.71 86.65 893.63 92.38 11399.06 1.96 404.40 295.69

HM11-06_S_155 174.06 0.93 1979.09 2.12 17.10 0.36 6.70 12.22 2.63 55.73 18.05 222.81 76.94 308.74 75.49 792.93 81.98 9480.55 0.87 168.38 118.70

HM11-06_S_152 149.76 1.31 1079.64 3.03 0.01 15.41 0.05 1.34 4.28 0.56 23.29 8.99 111.24 40.65 171.77 44.30 481.98 53.63 10419.39 1.28 118.57 113.09

HM11-06_M_165 215.87 1.35 1663.79 7.74 0.00 15.82 0.04 0.69 3.79 0.12 27.33 11.22 148.97 59.78 272.57 66.37 654.66 95.16 17582.70 4.87 284.08 368.58

HM11-06_S_147 179.51 1.40 975.46 4.39 0.02 11.93 0.04 1.11 4.12 0.13 19.32 7.63 99.72 36.34 151.47 40.55 437.67 45.74 10541.53 2.81 218.53 475.70

HM11-06_M_167 187.70 1.23 1523.16 6.49 16.42 0.02 0.89 3.31 0.12 26.92 10.48 141.40 54.66 243.08 59.66 580.86 85.04 17507.28 3.51 280.09 321.09

Table D5.2 HM11-06 Trace Element Concentrations con’t Concentrations (ppm) Spot P Ti Y Zr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta Th U

HM11-06_M_166 180.81 1.14 1613.79 5.27 0.41 24.04 0.22 2.33 5.42 0.64 33.99 11.90 151.45 61.13 260.00 63.22 586.69 85.89 15866.66 2.20 289.80 206.35

HM11-06_S_151 345.42 0.80 808.64 2.43 1.92 14.66 0.72 3.71 3.71 0.75 18.17 6.31 79.60 29.74 130.20 34.05 380.23 41.87 10126.39 1.09 74.04 111.39

HM11-06_S_146A 201.20 2.44 814.57 2.25 0.11 4.49 0.07 0.59 2.90 0.15 13.75 6.08 76.32 28.46 129.15 33.70 380.89 38.93 11490.07 1.50 126.20 396.56

HM11-06_S_145 231.44 2.02 1012.31 3.75 0.06 6.18 0.02 0.61 2.34 0.12 16.05 7.20 97.14 35.90 148.17 38.34 409.02 41.58 11328.10 2.43 183.70 780.97

HM11-06_S_161B 295.48 1.07 1626.98 4.03 0.12 12.38 0.07 1.98 5.86 0.20 29.54 11.50 150.63 60.16 280.22 78.21 969.56 108.73 12680.95 3.21 235.23 727.56

HM11-06_S_154 301.23 3.68 1787.26 2.87 9.02 0.07 2.49 5.73 2.15 33.52 12.69 170.56 66.18 304.58 83.72 964.93 116.60 8649.59 0.95 97.43 147.89

HM11-06_S_159 154.20 1.09 784.32 4.14 22.61 0.03 0.79 2.01 0.44 13.78 4.65 68.07 27.65 128.67 36.78 429.43 51.96 10855.66 2.01 153.95 296.48

HM11-06_S_146B 236.84 6.81 1050.62 3.90 0.94 9.08 0.46 3.21 3.81 5.69 17.43 7.15 95.86 35.91 169.14 50.62 588.44 55.95 11129.68 3.70 161.31 1027.73

HM11-06_S_143 194.32 2.93 1209.97 3.63 0.39 37.76 0.24 2.05 3.69 0.95 23.46 8.56 111.95 44.11 195.75 54.71 686.49 75.09 12489.93 6.50 353.55 665.98

HM11-06_S_163 242.91 1.62 1253.35 4.93 0.07 8.42 0.08 1.02 2.87 0.13 20.09 8.74 120.18 44.99 195.56 54.43 614.96 65.67 11304.83 2.93 163.29 461.10

HM11-06_S_158 121.33 1.04 893.09 3.12 0.01 14.67 0.14 2.05 4.24 0.79 22.33 7.28 93.04 34.81 151.14 40.98 507.11 53.36 10831.36 2.62 104.47 331.92

HM11-06_S_161A 299.48 1.04 1927.93 2.00 0.23 7.17 0.10 1.23 3.69 0.28 24.21 10.64 150.40 68.12 369.76 100.08 1003.40 201.08 8715.17 0.58 93.44 523.99

HM11-06_S_162 203.34 16.55 1047.84 3.90 0.35 5.11 0.13 1.39 1.66 0.55 12.46 5.47 80.80 34.76 173.98 50.82 601.48 84.35 11979.86 5.61 121.79 781.70

HM11-06_S_144 87.86 0.76 499.08 3.03 0.03 19.99 0.07 0.68 1.55 0.29 9.48 3.50 42.64 17.37 78.83 23.89 312.82 34.88 11077.16 2.61 190.64 395.31 Paleoproterozoic

HM11-06_S_160 197.49 5.31 1250.39 6.37 0.92 9.11 0.43 2.69 3.48 4.68 15.01 6.87 99.49 41.00 221.50 61.09 694.61 112.17 11371.25 6.91 204.01 1354.15

HM11-06_S_153 51.12 1.09 394.01 2.62 0.16 1.60 0.05 0.07 0.20 0.13 1.87 1.30 21.48 11.54 70.51 23.09 296.32 50.25 11252.16 3.15 14.72 460.42 Paleogene

HM11-06_S_156 366.46 0.33 4394.64 179.54 1.11 24.34 0.61 4.72 8.95 0.24 65.57 28.85 394.89 151.92 694.32 196.15 2263.97 247.39 14014.82 115.66 2538.43 9941.42

HM11-06_S_157 304.29 0.68 6996.67 345.63 0.05 38.87 0.06 2.14 13.39 0.43 117.25 51.16 693.60 257.88 1115.03 309.30 3389.23 340.86 13683.92 147.03 4222.27 15106.20