Not All Growth Disorders Reflect Hormone Deficit

Total Page:16

File Type:pdf, Size:1020Kb

Not All Growth Disorders Reflect Hormone Deficit November 15, 2005 • www.familypracticenews.com Metabolic Disorders 21 Not All Growth Disorders Reflect Hormone Deficit BY HEIDI SPLETE problems when the growth rate is less than corticoids might contribute to delayed bolic profile, complete blood count, thy- Senior Writer 5 cm/yr from age 3 years to 12 years, Dr. growth. Long-term data on the impact of roid function test, and celiac screen. Plotnick advised. In addition, consider the other medications—including stimulants, A definitive diagnosis of growth hor- B ALTIMORE — Consider a wide range possibility of a growth disorder when a antidepressants, antiseizure medications, mone deficiency requires at least two tests of causes when evaluating a child for a child’s height is below the 5th percentile or and antipsychotics—on growth delay re- that indicate a growth hormone level of growth disorder, Leslie Plotnick, M.D., said when height drops across percentiles over main inconclusive as well. less than 10 ng/mL, including arginine, L- at a meeting on pediatric endocrinology time. Another sign is when a child’s height Carefully monitor height and weight dopa, clonidine, glucagon, and insulin-in- sponsored by Johns Hopkins University. is more than two standard deviations below patterns in children who take these med- duced hypoglycemia. If a child appears to Although growth hormone treatment is the average height of the biologic parents. ications, Dr. Plotnick said. Changes from have growth hormone deficiency, con- approved by the Food and Drug Adminis- Causes of short stature or poor linear established pretreatment growth patterns duct a brain MRI and test other pituitary tration for some conditions, not all chil- growth include major organ system dis- suggest a medication effect and may re- axis hormones, she added. dren with growth problems are growth eases that are cardiac, pulmonary, renal, quire further evaluation. Growth hormone deficiency can be con- hormone deficient, and a thorough eval- gastrointestinal, nutritional, hematolog- Endocrine-related causes of short genital or genetic, or it can be acquired as uation is important, including a complete ic, or CNS-related. In addition, chromo- stature include hypothyroidism, cortisol a result of brain tumors, infiltrative dis- history and physical examination. somal disorders such as Turner’s syn- excess, pseudohypoparathyroidism, poor- eases, head trauma, infection, central ner- “A child with normal growth will track drome; intrauterine growth retardation; ly controlled diabetes mellitus, and growth vous system surgery, or central nervous along a percentile line,” said Dr. Plotnick, endocrine disorders; or, simply, familial hormone deficiency. Features associated system irradiation to treat a tumor. a pediatric endocrinologist at Johns Hop- short stature or constitutional growth de- with these conditions include goiter, dry For more specific information about kins University. Growth velocity normal- lay can cause a child to grow at a slower skin, midline defects, micropenis in boys, growth patterns in children and to down- ly decreases prior to puberty, until the ado- than average rate. and an especially round, cherubic face. load the current growth charts from the lescent growth spurt begins. Although evidence of any association The screening work-up for short stature Centers for Disease Control and Preven- Consider evaluating children for growth remains uncertain, oral or inhaled gluco- is extensive and includes a complete meta- tion, visit www.cdc.gov/growthcharts. ■ Dosing Growth Hormones to ICMA Gonadotropin Test Called IGF-1 Levels More Effective The Best Lab Evidence of Puberty BY BETSY BATES justable doses of growth hormone Los Angeles Bureau based on IGF-1 levels at 3-month check- BY DOUG BRUNK evidence of breast development by age 13 ups. San Diego Bureau years or a boy who has no evidence of tes- S AN D IEGO — Short children grew One group received growth hor- ticular enlargement by age 14 years. The fol- far taller when their growth hormone mone in amounts necessary to Y OSEMITE, CALIF. — The best laborato- lowing are general possibilities in this differ- doses were adjusted according to their achieve normal IGF-1 levels, and in- ry evidence of puberty is a test for luteinizing ential diagnosis: insulin-like growth factor 1 levels cluded 70 children. The other group, hormone and follicle-stimulating hormone Ǡ Constitutional delay in growth. Most rather than to their weight, according which numbered 68 children, received done by immunochemiluminometric assay, children seen for concerns about delayed pu- to randomized study results. enough growth hormone to drive Stephen M. Rosenthal, M.D., said at a pediatric berty will fit this category. “IGF-1 levels do matter,” said Pin- their IGF-1 levels two standard devi- conference sponsored by Symposia Medicus. “This is one of those interesting scenarios chas Cohen, M.D., professor and di- ations above the norm. Two labs that run the tests are Esoterix Inc. where it appears that people not only grow rector of research and training in the The three groups achieved mean and Quest Diagnostics Inc., said Dr. Rosenthal, more slowly and reach puberty more slowly, division of endocrinology at the Uni- IGF-1 levels of +0.4, +0.4, and +2.0 professor of pediatrics it’s like there’s some- versity of California, Los Angeles, standard deviation scores in the first 9 at the University of Cal- Some ‘people thing in their biological School of Medicine. months of the study, and doses of 41 ifornia, San Francisco. not only grow clock that makes them The notion of targeting dosing in mcg/kg per day, 33 mcg/kg per day, “If you ever order more slowly and age more slowly,” Dr. order to maximize height in children and 110 mcg/kg per day were required tests for LH and FSH, it’s reach puberty Rosenthal noted. “They of short stature is somewhat new and to sustain these levels, said Dr. Cohen. very important that you more slowly ... ultimately reach a nor- had been thought clinically impracti- Only a small, nonsignificant differ- order them by immuno- [they] age more mal adult height and full cal, Dr. Cohen said at a clinical sym- ence was seen in children receiving chemiluminometric as- slowly.’ pubertal development; posium during the annual meeting of standard growth hormone doses ac- say (ICMA), because [the it just takes them longer the Endocrine Society. cording to weight and those receiving tests] are able to distin- DR. ROSENTHAL to get there. This often However, it was “possible and doses targeted at a normal IGF-1. guish between someone runs in families. Is it pos- doable” to adjust doses according to The big difference in height was seen who’s prepubertal and the different Tanner sible that these kids actually age more slowly a simple IGF-1–based algorithm. This in children who received growth hor- stages,” he said. as they grow older, even as adults?” he asked. approach resulted in “significant, mone at a dose aimed at raising their If you get results that are difficult to inter- “Is there something to be learned here to give quite dramatic improvement in IGF-1 levels to two standard deviations pret, Dr. Rosenthal recommended doing a us some insight? We don’t know the answer to height” for some children enrolled in greater than the norm. In this group, GnRH stimulation test, which is also called a that yet because there are so many variables the 2-year, multicenter trial. children with growth hormone defi- luteinizing hormone releasing factor (LRF) as we get older that affect longevity.” In all, 172 children diagnosed with ciency grew 45% more, and children stimulation test. This involves giving a syn- Ǡ Hypogonadotropic hypogonadism. In growth hormone deficiency or idio- with idiopathic short stature grew 58% thetic bolus of GnRH and then measuring this condition, the defect is located in the hy- pathic short stature were enrolled in more than children in the other groups. the patient’s levels of LH, FSH, and either pothalamus or in the pituitary gland. The the trial sponsored by Novo Nordisk Side effects and adverse events were estradiol or testosterone. cause could be Kallmann syndrome or could Inc., a manufacturer of human growth similar in all three groups. Dr. Rosenthal noted that there have been be associated with other conditions including hormone, and the Lucile Packard Interestingly, a huge variability was availability problems with GnRH. If GnRH cleft palate; congenital deafness; the X-linked Foundation for Children’s Health. seen in the amount of growth hor- is not available, a similar test can be done with form of congenital adrenal hypoplasia; Prad- The children were aged 3-15 years mone required to maintain targeted leuprolide acetate, a GnRH agonist. Guide- er-Willi syndrome; Laurence-Moon-Biedl and significantly below normal height IGF-1 levels among individual pa- lines for carrying out the latter test are de- syndrome; central nervous system disease; for their age, with a mean standard tients: 9-114 mcg/kg per day in the scribed in the following reference: J. Clin. En- and a variety of other conditions such as hy- deviation score of –2.63. They also first targeted group and 20-346 docrinol. Metab. 1994;78:30-5. pothyroidism, poorly controlled diabetes, had low levels of IGF-1, the core me- mcg/kg per day in the second. “If you give an injection of synthetic and anorexia nervosa. diator of growth hormone action on Dr. Cohen serves as a consultant or GnRH [or agonist] to somebody who’s in pu- Ǡ Hypergonadotropic hypogonadism. In linear growth. advisory board member or receives berty, their own pituitary gland has been this condition, the defect is in the testes or The complex study design featured research support from a number of primed by their own GnRH; so when you ovaries.
Recommended publications
  • MR Imaging of Kallmann Syndrome, a Genetic Disorder of Neuronal Migration Affecting the Olfactory and Genital Systems
    MR Imaging of Kallmann Syndrome, a Genetic Disorder of Neuronal Migration Affecting the Olfactory and Genital Systems 1 2 2 3 4 Charles L. Truwit, ' A. James Barkovich, Melvin M. Grumbach, and John J. Martini PURPOSE: We report the MR findings in nine patients with clinical and laboratory evidence of Kallmann syndrome (KS), a genetic disorder of olfactory and gonadal development. In patients with KS, cells that normally express luteinizing hormone-releasing hormone fail to migrate from the medial olfactory placode along the terminalis nerves into the forebrain. In addition, failed neuronal migration from the lateral olfactory placode along the olfactory fila to the forebrain results in aplasia or hypoplasia of the olfactory bulbs and tracts. Patients with KS, therefore, suffer both reproductive and olfactory dysfunction. METHODS: Nine patients with KS underwent direct coronal MR of their olfactory regions in order to assess the olfactory sulci, bulbs, and tracts. A lOth patient had MR findings of KS, although the diagnosis is not yet confirmed by laboratory tests. RESULTS: Abnormalities of the olfactory system were identified in all patients. In particular, the anterior portions of the olfactory sulci were uniformly hypoplastic. The olfactory bulbs and tracts appeared hypoplastic or aplastic in all patients in whom the bulb/ tract region was satisfactorily imaged. In two (possibly three) patients, prominent soft tissue in the region of the bulbs suggests radiographic evidence of neurons that have been arrested before migration. CONCLUSIONS: Previous investigators of patients with KS used axial MR images to demonstrate hypoplasia of the olfactory sulci but offered no assessment of the olfactory bulbs.
    [Show full text]
  • Loss-Of-Function Mutation in the Prokineticin 2 Gene Causes
    Loss-of-function mutation in the prokineticin 2 gene SEE COMMENTARY causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism Nelly Pitteloud*†, Chengkang Zhang‡, Duarte Pignatelli§, Jia-Da Li‡, Taneli Raivio*, Lindsay W. Cole*, Lacey Plummer*, Elka E. Jacobson-Dickman*, Pamela L. Mellon¶, Qun-Yong Zhou‡, and William F. Crowley, Jr.* *Reproductive Endocrine Unit, Department of Medicine and Harvard Reproductive Endocrine Science Centers, Massachusetts General Hospital, Boston, MA 02114; ‡Department of Pharmacology, University of California, Irvine, CA 92697; §Department of Endocrinology, Laboratory of Cellular and Molecular Biology, Institute of Molecular Pathology and Immunology, University of Porto, San Joa˜o Hospital, 4200-465 Porto, Portugal; and ¶Departments of Reproductive Medicine and Neurosciences, University of California at San Diego, La Jolla, CA 92093 Communicated by Patricia K. Donahoe, Massachusetts General Hospital, Boston, MA, August 14, 2007 (received for review May 8, 2007) Gonadotropin-releasing hormone (GnRH) deficiency in the human associated with KS, although no functional data on the mutant presents either as normosmic idiopathic hypogonadotropic hypo- proteins were provided (17). Herein, we demonstrate that homozy- gonadism (nIHH) or with anosmia [Kallmann syndrome (KS)]. To gous loss-of-function mutations in the PROK2 gene cause IHH in date, several loci have been identified to cause these disorders, but mice and humans. only 30% of cases exhibit mutations in known genes. Recently, murine studies have demonstrated a critical role of the prokineticin Results pathway in olfactory bulb morphogenesis and GnRH secretion. Molecular Analysis of PROK2 Gene. A homozygous single base pair Therefore, we hypothesize that mutations in prokineticin 2 deletion in exon 2 of the PROK2 gene (c.[163delA]ϩ [163delA]) (PROK2) underlie some cases of KS in humans and that animals was identified in the proband, in his brother with KS, and in his deficient in Prok2 would be hypogonadotropic.
    [Show full text]
  • Kallmann Syndrome
    Kallmann syndrome Author: DoctorJean-Pierre Hardelin1 Creation date: July 1997 Updates: May 2002 December 2003 February 2005 Scientific editor: Professor Philippe Bouchard 1 Unité de Génétique des Déficits Sensoriels (INSERM U587), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France. [email protected] Abstract Keywords Disease name and synonyms Excluded diseases Diagnostic criteria / Definition Differential diagnosis Incidence Clinical description Management including treatment Etiology Diagnostic methods Genetic counseling Prenatal diagnosis Unresolved questions and comments References Abstract Kallmann syndrome combines hypogonadotropic hypogonadism due to GnRH deficiency, with anosmia or hyposmia. Magnetic resonance imaging (MRI) shows hypoplasia or aplasia of the olfactory bulbs. The incidence is estimated at 1 case in 10,000 males and 1 case in 50,000 females. The main clinical features consist of the association of micropenis and cryptorchidism in young boys, the absence of spontaneous puberty, a partial or total loss of the sense of smell (anosmia). Other possible signs include mirror movements of the upper limbs (synkinesis), unilateral or bilateral renal aplasia, cleft lip/palate, dental agenesis, arched feet, deafness. Diagnostic methods consist of hormones evaluation (GnRH stimulation test) as well as qualitative and quantitative olfactometric evaluation. Hormonal replacement is used to induce puberty, and later, fertility. Kallmann syndrome is due to an impaired embryonic development of the olfactory system and the GnRH-synthesizing neurons. Sporadic cases have been predominantly reported. Three modes of inheritance have been described in familial forms: X-linked recessive, autosomal dominant, or more rarely autosomal recessive. To date, only two of the genes responsible for this genetically heterogeneous disease have been identified: KAL-1, responsible for the X-linked form and FGFR1, involved in the autosomal dominant form (KAL-2).
    [Show full text]
  • Gonadotropin-Releasing Hormone Agonist Treatment of Girls with Constitutional Short Stature and Normal Pubertal Development
    0021-972X/96/$03.00/0 Vol. 81, No. 9 Journal of Clmcal Endocrinology and Metabolism Printed in U.S.A. Copyright 0 1996 by The Endocrine Society Gonadotropin-Releasing Hormone Agonist Treatment of Girls with Constitutional Short Stature and Normal Pubertal Development JEAN-CLAUDE CAREL, FRlkDliRIQUE HAY, RliGIS COUTANT, DANIlkLE RODRIGUE, AND JEAN-LOUIS CHAUSSAIN Downloaded from https://academic.oup.com/jcem/article/81/9/3318/2651102 by guest on 23 September 2021 INSERM U-342 and Department of Pediatric Endocrinology, University of Paris V, Hbpital Saint Vincent de Paul, Paris, France ABSTRACT interruption of treatment, bone age was 14.9 2 1.3 yr (~13.5 yr in all GnRH agonists have been proposed to improve final height in patients), height was 149.1 k 4 cm, and final height prognosis was patients with constitutional short stature. We treated 31 girls, aged 150.6 2 3.6 cm. Final height prognosis was 1 2 2.3 cm greater than 11.9 i 1 yr (mean t- SD), with short stature, recent pubertal onset and pretreatment height prognosis (P < 0.02) and 1.2 k 2.2 cm below the predicted final height of 155 cm or less with depot triptorelin. During height predicted at the end of the treatment (P < 0.01). No major the 23 2 4 months of treatment, bone age progression was 0.6 ? 0.3 side-effect was observed. Height SD score decreased during treatment bone age yr/yr, and growth velocity declined from 7 k 2 to 4 2 0.8 with GnRH agonist from -2.3 ? 0.9 to -2.7 -C 0.7 SD score (P < cm/yr (P < 0.0001).
    [Show full text]
  • Genetic Disorders in Premature Ovarian Failure
    Human Reproduction Update, Vol.8, No.4 pp. 483±491, 2002 Genetic disorders in premature ovarian failure T.Laml1,3, O.Preyer1, W.Umek1, M.HengstschlaÈger2 and E.Hanzal1 University of Vienna Medical School, Department of Obstetrics and Gynaecology, 1Division of Gynaecology and 2Division of Prenatal Diagnosis and Therapy, Waehringer Guertel 18-20, A-1090 Vienna, Austria 3To whom correspondence should be addressed. E-mail: [email protected] This review presents the genetic disorders associated with premature ovarian failure (POF), obtained by Medline, the Cochrane Library and hand searches of pertinent references of English literature on POF and genetic determinants cited between the year 1966 and February 2002. X monosomy or X deletions and translocations are known to be responsible for POF. Turner's syndrome, as a phenotype associated with complete or partial monosomy X, is linked to ovarian failure. Among heterozygous carriers of the fragile X mutation, POF was noted as an unexpected phenotype in the early 1990s. Autosomal disorders such as mutations of the phosphomannomutase 2 (PMM2) gene, the galactose-1-phosphate uridyltransferase (GALT) gene, the FSH receptor (FSHR) gene, chromosome 3q containing the Blepharophimosis gene and the autoimmune regulator (AIRE) gene, responsible for polyendocrinopathy-candidiasis-ectodermal dystrophy, have been identi®ed in patients with POF. In conclusion, the relationship between genetic disorders and POF is clearly demonstrated in this review. Therefore, in the case of families affected by POF a thorough screening, including cytogenetic analysis, should be performed. Key words: autosomal disorders/FSH receptor/inhibin/premature ovarian failure/X chromosome abnormalities TABLE OF CONTENTS diagnosis requires histological examination of a full-thickness ovarian biopsy (Metha et al., 1992; Olivar, 1996).
    [Show full text]
  • Dental-Craniofacial Manifestation and Treatment of Rare Diseases
    International Journal of Oral Science www.nature.com/ijos REVIEW ARTICLE OPEN Dental-craniofacial manifestation and treatment of rare diseases En Luo1, Hanghang Liu1, Qiucheng Zhao1, Bing Shi1 and Qianming Chen1 Rare diseases are usually genetic, chronic and incurable disorders with a relatively low incidence. Developments in the diagnosis and management of rare diseases have been relatively slow due to a lack of sufficient profit motivation and market to attract research by companies. However, due to the attention of government and society as well as economic development, rare diseases have been gradually become an increasing concern. As several dental-craniofacial manifestations are associated with rare diseases, we summarize them in this study to help dentists and oral maxillofacial surgeons provide an early diagnosis and subsequent management for patients with these rare diseases. International Journal of Oral Science (2019) 11:9 ; https://doi.org/10.1038/s41368-018-0041-y INTRODUCTION In this review, we aim to summarize the related manifestations Recently, the National Health and Health Committee of China first and treatment of dental-craniofacial disorders related to rare defined 121 rare diseases in the Chinese population. The list of diseases, thus helping to improve understanding and certainly these rare diseases was established according to prevalence, diagnostic capacity for dentists and oral maxillofacial surgeons. disease burden and social support, medical technology status, and the definition of rare diseases in relevant international institutions. Twenty million people in China were reported to suffer from these DENTAL-CRANIOFACIAL DISORDER-RELATED RARE DISEASES rare diseases. Tooth dysplasia A rare disease is any disease or condition that affects a small Congenital ectodermal dysplasia.
    [Show full text]
  • Turner Syndrome Diagnosed in Northeastern Malaysia Kannan T P, Azman B Z, Ahmad Tarmizi a B, Suhaida M A, Siti Mariam I, Ravindran A, Zilfalil B A
    Original Article Singapore Med J 2008; 49(5) : 400 Turner syndrome diagnosed in northeastern Malaysia Kannan T P, Azman B Z, Ahmad Tarmizi A B, Suhaida M A, Siti Mariam I, Ravindran A, Zilfalil B A ABSTRACT counselling, gonadal dysgenesis, short stature, Introduction: Turner syndrome affects about one Turner syndrome in 2,000 live-born females, and the wide range Singapore Med J 2008; 49(5): 400-404 of somatic features indicates that a number of different X-located genes are responsible for the INTRODUCTION complete phenotype. This retrospective study Turner syndrome, gonadal dysgenesis or gonadal agenesis highlights the Turner syndrome cases confirmed represents a special variant of hypergonadotrophic through cytogenetic analysis at the Human hypogonadism, and is due to the lack of the second sex Genome Centre of Universiti Sains Malaysia, from chromosome or parts of it. This syndrome affects about one 2001 to 2006. in 2,000 live-born females.(1) The wide range of somatic features in Turner syndrome indicates that a number of Methods: Lymphocyte cultures were set up using different X-located genes are responsible for the complete peripheral blood samples, chromosomes were phenotype.(2) The syndrome includes those individuals prepared, G-banded, karyotyped and analysed in with a phenotypic spectrum from female to male, with accordance to guidelines from the International varying clinical stigmata of the syndrome, as described System for Human Cytogenetic Nomenclature. by Turner.(3) Though many karyotype abnormalities have been described in association with Turner syndrome, Results: The various karyotype patterns observed monoclonal monosomy X and its various mosaicisms, Human Genome were 45,X; 46,X,i,(Xq); 45,X/45,X,+mar; each with an X monosomic (XO) cell clone, are the most Centre, Universiti Sains 45,X/46,X,i,(Xq) and 45,X/46,XY.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Orphanet Report Series Rare Diseases Collection
    Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic
    [Show full text]
  • A Novel De Novo 20Q13.32&Ndash;Q13.33
    Journal of Human Genetics (2015) 60, 313–317 & 2015 The Japan Society of Human Genetics All rights reserved 1434-5161/15 www.nature.com/jhg ORIGINAL ARTICLE Anovelde novo 20q13.32–q13.33 deletion in a 2-year-old child with poor growth, feeding difficulties and low bone mass Meena Balasubramanian1, Edward Atack2, Kath Smith2 and Michael James Parker1 Interstitial deletions of the long arm of chromosome 20 are rarely reported in the literature. We report a 2-year-old child with a 2.6 Mb deletion of 20q13.32–q13.33, detected by microarray-based comparative genomic hybridization, who presented with poor growth, feeding difficulties, abnormal subcutaneous fat distribution with the lack of adipose tissue on clinical examination, facial dysmorphism and low bone mass. This report adds to rare publications describing constitutional aberrations of chromosome 20q, and adds further evidence to the fact that deletion of the GNAS complex may not always be associated with an Albright’s hereditary osteodystrophy phenotype as described previously. Journal of Human Genetics (2015) 60, 313–317; doi:10.1038/jhg.2015.22; published online 12 March 2015 INTRODUCTION resuscitation immediately after birth and Apgar scores were 9 and 9 at 1 and Reports of isolated subtelomeric deletions of the long arm of 10 min, respectively, of age. Birth parameters were: weight ~ 1.56 kg (0.4th–2nd chromosome 20 are rare, but a few cases have been reported in the centile), length ~ 40 cm (o0.4th centile) and head circumference ~ 28.2 cm o fi literature over the past 30 years.1–13 Traylor et al.12 provided an ( 0.4th centile).
    [Show full text]
  • Review Article Mouse Homologues of Human Hereditary Disease
    I Med Genet 1994;31:1-19 I Review article J Med Genet: first published as 10.1136/jmg.31.1.1 on 1 January 1994. Downloaded from Mouse homologues of human hereditary disease A G Searle, J H Edwards, J G Hall Abstract involve homologous loci. In this respect our Details are given of 214 loci known to be genetic knowledge of the laboratory mouse associated with human hereditary dis- outstrips that for all other non-human mam- ease, which have been mapped on both mals. The 829 loci recently assigned to both human and mouse chromosomes. Forty human and mouse chromosomes3 has now two of these have pathological variants in risen to 900, well above comparable figures for both species; in general the mouse vari- other laboratory or farm animals. In a previous ants are similar in their effects to the publication,4 102 loci were listed which were corresponding human ones, but excep- associated with specific human disease, had tions include the Dmd/DMD and Hprt/ mouse homologues, and had been located in HPRT mutations which cause little, if both species. The number has now more than any, harm in mice. Possible reasons for doubled (table 1A). Of particular interest are phenotypic differences are discussed. In those which have pathological variants in both most pathological variants the gene pro- the mouse and humans: these are listed in table duct seems to be absent or greatly 2. Many other pathological mutations have reduced in both species. The extensive been detected and located in the mouse; about data on conserved segments between half these appear to lie in conserved chromo- human and mouse chromosomes are somal segments.
    [Show full text]
  • Case Report Kallmann's Syndrome: Clues to Clinical Diagnosis
    International Journal of Impotence Research (2000) 12, 121±123 ß 2000 Macmillan Publishers Ltd All rights reserved 0955-9930/00 $15.00 www.nature.com/ijir Case Report Kallmann's Syndrome: clues to clinical diagnosis H John1* and C Schmid2 Departments of 1Urology and 2Medicine (Division of Endocrinology), ZuÈrich University Hospital, Switzerland Hypogonadotropic patients may visit pediatricians, general practitioners, endocrinologists or urologists, presenting with microphallus, cryptochidism or pubertas tarda and delayed bone maturation. Congenital hypogonadotropic hypogonadism is characterized, apart from small testes, by the constellation of low serum levels of testosterone, LH and FSH. Kallman's syndrome is characterized by congenital hypogonadotropic hypogonadism with midline defects such as anosmia (a de®ciency of the sense of smell).1 The ®rst case report dates back to 1856,2 and genetic defects causing the syndrome have been recently described.3 The diagnosis can be clinically suspected and is established by con®rming hormonal studies. International Journal of Impotence Research (2000) 12, 121±123. Case Reports Case 2 Case 1 A 24-year-old patient consulted a general practi- tioner (the ®rst to address the problem of delayed puberty) for upper airway disease. He presented A 26-year old man fell on his right hand. The X-ray with an unbroken voice and sparse axillary and of the wrist (Figure 1) not only demonstrated the pubic body hair. He had a microphallus and fracture of the ®fth metacarpus but also an open testicular volumes of 2 ml, and a bone age of 17 epiphyseal line, thus revealing markedly delayed years. He did not smell garlic or curry.
    [Show full text]