Gonadotropin-Releasing Hormone Agonist Treatment of Girls with Constitutional Short Stature and Normal Pubertal Development

Total Page:16

File Type:pdf, Size:1020Kb

Gonadotropin-Releasing Hormone Agonist Treatment of Girls with Constitutional Short Stature and Normal Pubertal Development 0021-972X/96/$03.00/0 Vol. 81, No. 9 Journal of Clmcal Endocrinology and Metabolism Printed in U.S.A. Copyright 0 1996 by The Endocrine Society Gonadotropin-Releasing Hormone Agonist Treatment of Girls with Constitutional Short Stature and Normal Pubertal Development JEAN-CLAUDE CAREL, FRlkDliRIQUE HAY, RliGIS COUTANT, DANIlkLE RODRIGUE, AND JEAN-LOUIS CHAUSSAIN Downloaded from https://academic.oup.com/jcem/article/81/9/3318/2651102 by guest on 23 September 2021 INSERM U-342 and Department of Pediatric Endocrinology, University of Paris V, Hbpital Saint Vincent de Paul, Paris, France ABSTRACT interruption of treatment, bone age was 14.9 2 1.3 yr (~13.5 yr in all GnRH agonists have been proposed to improve final height in patients), height was 149.1 k 4 cm, and final height prognosis was patients with constitutional short stature. We treated 31 girls, aged 150.6 2 3.6 cm. Final height prognosis was 1 2 2.3 cm greater than 11.9 i 1 yr (mean t- SD), with short stature, recent pubertal onset and pretreatment height prognosis (P < 0.02) and 1.2 k 2.2 cm below the predicted final height of 155 cm or less with depot triptorelin. During height predicted at the end of the treatment (P < 0.01). No major the 23 2 4 months of treatment, bone age progression was 0.6 ? 0.3 side-effect was observed. Height SD score decreased during treatment bone age yr/yr, and growth velocity declined from 7 k 2 to 4 2 0.8 with GnRH agonist from -2.3 ? 0.9 to -2.7 -C 0.7 SD score (P < cm/yr (P < 0.0001). Height prognosis, calculated by the Bayley-Pin- 0.0001). We conclude that 2 yr of depot triptorelin-induced pubertal neau method, progressed from 149.6 k 3.4 to 151.8 2 4 cm at the end delay has a limited effect on near-final height in girls with constitu- of treatment (+2.2 t 2.6 cm; P < 0.0001). When treatment was tional short stature and that the growth benefit observed does not interrupted, growth velocity slightly increased to 4.6 ? 1.6 cm/yr, and currently justify the use of GnRH agonists, given their cost and po- bone age maturation was accelerated: 1.3 2 0.4 bone age yr/yr during tential side-effects. (J Clin Endocrinol Metab 81: 33183322, 1996) the first posttreatment year. At the last visit, 26 k 9 months after LJBERTY IS associated with increased growth velocity of the fourth treatment year. However, no follow-up after P and bone maturation, leading to fusion of growth cessation of treatment was presented. plates and achievement of final height. Extreme abnormal- We initiated an open trial of long acting GnRH agonist in ities of pubertal timing can affect final height. Premature girls with constitutional short stature, and we report here the exposure to sexual steroids in situations such as precocious results of 31 patients who have reached final or near-final puberty or congenital adrenal hyperplasia is associatedwith height. a reduction of final height, averaging, in the case of preco- cious puberty, 2 SD (-10 cm) (1,2). Conversely, gonadotropin Subjects and Methods deficiency (idiopathic or Kallmann’s syndrome) is associated Patients with prolonged statural growth and a 3-cm increment in final Thirty-one girls were included with the following criteria: height -1 height. However, this increment is attributable to patients SD or less, height prognosis of 155 cm or less, recent pubertal onset treated after age 18 yr, i.e. after 5 yr of pubertal delay (3). defined by breast development (B2-B3) of less than 12-month duration, Several reports have documented the ability of treatment chronological age of 9-14 yr, bone age less than 12.5 yr, and pubertal with GnRH agonist to increase final height in patients with response of LH to GnRH (8). Preliminary data for nine patients have been previously reported (9). central precocious puberty (2, 4-6). However, genetic growth potential is not always fully restored (5), and some Treatment reports have suggested that the benefit on final height might be insignificant in patients with pubertal onset occurring Patients were treated with depot triptorelin (Decapeptyl, Ipsen-Bio- tech, France; 3.75 mg every 28 days) as previously described (10). Ad- close to the normal age of puberty (2). equate suppression of the gonadotroph was assessed clinically by the Given their action on final height in precocious puberty, interruption of pubertal development and suppressed LH response to GnRH agonists are candidates for increasing final height in GnRH. The planned treatment duration was 2 yr, but varied from 15-30 constitutional short stature. Municchi et al. (7) treated pa- months. After the end of treatment, growth and bone age were assessed every 6-12 months, and in most patients, a GnRH test was performed tients with short stature with deslorelin in a double blind 6-12 months after interruption of treatment. Data were analyzed in trial. Their preliminary data, concerning 16 patients, indi- patients followed for at least 12 months after discontinuation of the cated a 7.2-cm increase in predicted adult height at the end treatment who had reached a bone age of 13.5 yr or more. Methods Received September 5, 1995. Revision received February 15, 1995. Rerevision received February 20, 1995. Accepted February 21, 1995. Bone age was evaluated by two of us (J.-L.C. and J.-CC.) according Address all correspondence and requests for reprints to: Dr. Jean- to the method of Greulich and Pyle (ll), and height prognosis was Claude Carel, INSERM U-342, Hapital Saint Vincent de Paul, 82 avenue calculated by the method of Bayley-Pinneau (12). Methods for measure- Denfert Rochereau, 75014 Paris, France. E-mail: [email protected]. ment of plasma estradiol and gonadotropins were previously described 3318 GnRH AGONISTS AND SHORT STATURE 3319 (13). Informed consent was given by the patients and their families to 0.6 ? 0.3 bone age yr/yr of treatment (Fig. 2). This reduction participate in the protocol, which was approved by the local ethical of bone age maturation resulted in a 2.2 + 2.6 cm increase in committee. height prognosis at the end of treatment (Table 1 and Fig. 2; Statistics P < 0.0001). Although the treatment was planned to last 24 months, its average duration was 23 -C 4 months. Eight pa- Statistical tests were performed with the Statview- software (Abacus tients decided to interrupt the treatment before completing Concept, Berkeley, CA). Results are expressed as the mean i SD. Paired t tests were used. the 2-yr protocol, mainly becauseof poor growth velocity (2.7 2 2 cm / yr during the portion of the second year of treatment Results they completed). Their data have been maintained in the The initial characteristics of the 31 patients are described present analysis on the basis of the intention to treat. How- in Table 1. The patients were carefully evaluated to rule out ever, removal of these eight patients from the analysis would Downloaded from https://academic.oup.com/jcem/article/81/9/3318/2651102 by guest on 23 September 2021 defined causes of growth retardation; the peak plasma GH not affect the conclusions of our study (not shown). In three in response to a pharmacological stimulation test exceeded patients, treatment was slightly prolonged to 26, 27, and 30 10 ng/mL in all cases(mean GH peak, 22.1 ? 6.5 ng/mL). months, because of poor compliance with the schedule of When appropriate, other investigations ruled out defined out-patient visits. causes of short stature; a karyotype was performed in 5 The patients were followed for an additional 26 +- 9 patients with features suggestive of Turner’s syndrome, a months after interruption of treatment. Clinical pubertal de- jejunal biopsy was performed in 2 patients with abdominal velopment resumed in all patients, and a pubertal LH re- complaints compatible with celiac disease, and bone x-rays sponse to GnRH was documented in 23 patients 9.1 + 7 were performed in 2 patients with hyperlordosis clinically months after interruption of treatment (Table 2). Although suggestive of hypochondroplasia. All of these investigations bone age at the end of treatment was 11.8 + 0.6 yr, no clear were normal. Birth length adjusted for gestational age was growth spurt was observed (Fig. 1); growth velocity was 4.6 -1.8 t 1.2 SD, and a history of intrauterine growth retarda- t 1.6 cm/yr during the first posttreatment year, 1 ? 0.3 tion (IUGR; birth length, less than -2 SD) was found in 46% cm/yr more than that during the last year of treatment (P < (13 of 28) of the patients (12). Target height, calculated from 0.01). In contrast, bone age maturation was markedly in- midparental height, was 7.8 cm (1.4 SD) below the average creased, averaging 1.3 ? 0.4 bone age yr/yr during the first height of French women (14), indicating a genetic participa- posttreatment year and 1.5 + 0.3 bone age yr / yr during the tion in the short stature of our patients. A GnRH test was entire follow-up period (both P < 0.0001 VS. bone age pro- performed in 29 of 31 patients before treatment and con- gression during treatment; Fig. 2). Growth after interruption firmed the onset of pubertal development, with LH peak of treatment (difference between heights at last visit and at values greater than 5 IU/L in all cases (Table 2). the end of treatment) was inversely correlated with bone age As expected, treatment with GnRH agonist was associated at the end of treatment (r = 0.73; P < 0.0001).
Recommended publications
  • MR Imaging of Kallmann Syndrome, a Genetic Disorder of Neuronal Migration Affecting the Olfactory and Genital Systems
    MR Imaging of Kallmann Syndrome, a Genetic Disorder of Neuronal Migration Affecting the Olfactory and Genital Systems 1 2 2 3 4 Charles L. Truwit, ' A. James Barkovich, Melvin M. Grumbach, and John J. Martini PURPOSE: We report the MR findings in nine patients with clinical and laboratory evidence of Kallmann syndrome (KS), a genetic disorder of olfactory and gonadal development. In patients with KS, cells that normally express luteinizing hormone-releasing hormone fail to migrate from the medial olfactory placode along the terminalis nerves into the forebrain. In addition, failed neuronal migration from the lateral olfactory placode along the olfactory fila to the forebrain results in aplasia or hypoplasia of the olfactory bulbs and tracts. Patients with KS, therefore, suffer both reproductive and olfactory dysfunction. METHODS: Nine patients with KS underwent direct coronal MR of their olfactory regions in order to assess the olfactory sulci, bulbs, and tracts. A lOth patient had MR findings of KS, although the diagnosis is not yet confirmed by laboratory tests. RESULTS: Abnormalities of the olfactory system were identified in all patients. In particular, the anterior portions of the olfactory sulci were uniformly hypoplastic. The olfactory bulbs and tracts appeared hypoplastic or aplastic in all patients in whom the bulb/ tract region was satisfactorily imaged. In two (possibly three) patients, prominent soft tissue in the region of the bulbs suggests radiographic evidence of neurons that have been arrested before migration. CONCLUSIONS: Previous investigators of patients with KS used axial MR images to demonstrate hypoplasia of the olfactory sulci but offered no assessment of the olfactory bulbs.
    [Show full text]
  • Loss-Of-Function Mutation in the Prokineticin 2 Gene Causes
    Loss-of-function mutation in the prokineticin 2 gene SEE COMMENTARY causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism Nelly Pitteloud*†, Chengkang Zhang‡, Duarte Pignatelli§, Jia-Da Li‡, Taneli Raivio*, Lindsay W. Cole*, Lacey Plummer*, Elka E. Jacobson-Dickman*, Pamela L. Mellon¶, Qun-Yong Zhou‡, and William F. Crowley, Jr.* *Reproductive Endocrine Unit, Department of Medicine and Harvard Reproductive Endocrine Science Centers, Massachusetts General Hospital, Boston, MA 02114; ‡Department of Pharmacology, University of California, Irvine, CA 92697; §Department of Endocrinology, Laboratory of Cellular and Molecular Biology, Institute of Molecular Pathology and Immunology, University of Porto, San Joa˜o Hospital, 4200-465 Porto, Portugal; and ¶Departments of Reproductive Medicine and Neurosciences, University of California at San Diego, La Jolla, CA 92093 Communicated by Patricia K. Donahoe, Massachusetts General Hospital, Boston, MA, August 14, 2007 (received for review May 8, 2007) Gonadotropin-releasing hormone (GnRH) deficiency in the human associated with KS, although no functional data on the mutant presents either as normosmic idiopathic hypogonadotropic hypo- proteins were provided (17). Herein, we demonstrate that homozy- gonadism (nIHH) or with anosmia [Kallmann syndrome (KS)]. To gous loss-of-function mutations in the PROK2 gene cause IHH in date, several loci have been identified to cause these disorders, but mice and humans. only 30% of cases exhibit mutations in known genes. Recently, murine studies have demonstrated a critical role of the prokineticin Results pathway in olfactory bulb morphogenesis and GnRH secretion. Molecular Analysis of PROK2 Gene. A homozygous single base pair Therefore, we hypothesize that mutations in prokineticin 2 deletion in exon 2 of the PROK2 gene (c.[163delA]ϩ [163delA]) (PROK2) underlie some cases of KS in humans and that animals was identified in the proband, in his brother with KS, and in his deficient in Prok2 would be hypogonadotropic.
    [Show full text]
  • Kallmann Syndrome
    Kallmann syndrome Author: DoctorJean-Pierre Hardelin1 Creation date: July 1997 Updates: May 2002 December 2003 February 2005 Scientific editor: Professor Philippe Bouchard 1 Unité de Génétique des Déficits Sensoriels (INSERM U587), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France. [email protected] Abstract Keywords Disease name and synonyms Excluded diseases Diagnostic criteria / Definition Differential diagnosis Incidence Clinical description Management including treatment Etiology Diagnostic methods Genetic counseling Prenatal diagnosis Unresolved questions and comments References Abstract Kallmann syndrome combines hypogonadotropic hypogonadism due to GnRH deficiency, with anosmia or hyposmia. Magnetic resonance imaging (MRI) shows hypoplasia or aplasia of the olfactory bulbs. The incidence is estimated at 1 case in 10,000 males and 1 case in 50,000 females. The main clinical features consist of the association of micropenis and cryptorchidism in young boys, the absence of spontaneous puberty, a partial or total loss of the sense of smell (anosmia). Other possible signs include mirror movements of the upper limbs (synkinesis), unilateral or bilateral renal aplasia, cleft lip/palate, dental agenesis, arched feet, deafness. Diagnostic methods consist of hormones evaluation (GnRH stimulation test) as well as qualitative and quantitative olfactometric evaluation. Hormonal replacement is used to induce puberty, and later, fertility. Kallmann syndrome is due to an impaired embryonic development of the olfactory system and the GnRH-synthesizing neurons. Sporadic cases have been predominantly reported. Three modes of inheritance have been described in familial forms: X-linked recessive, autosomal dominant, or more rarely autosomal recessive. To date, only two of the genes responsible for this genetically heterogeneous disease have been identified: KAL-1, responsible for the X-linked form and FGFR1, involved in the autosomal dominant form (KAL-2).
    [Show full text]
  • Dental-Craniofacial Manifestation and Treatment of Rare Diseases
    International Journal of Oral Science www.nature.com/ijos REVIEW ARTICLE OPEN Dental-craniofacial manifestation and treatment of rare diseases En Luo1, Hanghang Liu1, Qiucheng Zhao1, Bing Shi1 and Qianming Chen1 Rare diseases are usually genetic, chronic and incurable disorders with a relatively low incidence. Developments in the diagnosis and management of rare diseases have been relatively slow due to a lack of sufficient profit motivation and market to attract research by companies. However, due to the attention of government and society as well as economic development, rare diseases have been gradually become an increasing concern. As several dental-craniofacial manifestations are associated with rare diseases, we summarize them in this study to help dentists and oral maxillofacial surgeons provide an early diagnosis and subsequent management for patients with these rare diseases. International Journal of Oral Science (2019) 11:9 ; https://doi.org/10.1038/s41368-018-0041-y INTRODUCTION In this review, we aim to summarize the related manifestations Recently, the National Health and Health Committee of China first and treatment of dental-craniofacial disorders related to rare defined 121 rare diseases in the Chinese population. The list of diseases, thus helping to improve understanding and certainly these rare diseases was established according to prevalence, diagnostic capacity for dentists and oral maxillofacial surgeons. disease burden and social support, medical technology status, and the definition of rare diseases in relevant international institutions. Twenty million people in China were reported to suffer from these DENTAL-CRANIOFACIAL DISORDER-RELATED RARE DISEASES rare diseases. Tooth dysplasia A rare disease is any disease or condition that affects a small Congenital ectodermal dysplasia.
    [Show full text]
  • Case Report Kallmann's Syndrome: Clues to Clinical Diagnosis
    International Journal of Impotence Research (2000) 12, 121±123 ß 2000 Macmillan Publishers Ltd All rights reserved 0955-9930/00 $15.00 www.nature.com/ijir Case Report Kallmann's Syndrome: clues to clinical diagnosis H John1* and C Schmid2 Departments of 1Urology and 2Medicine (Division of Endocrinology), ZuÈrich University Hospital, Switzerland Hypogonadotropic patients may visit pediatricians, general practitioners, endocrinologists or urologists, presenting with microphallus, cryptochidism or pubertas tarda and delayed bone maturation. Congenital hypogonadotropic hypogonadism is characterized, apart from small testes, by the constellation of low serum levels of testosterone, LH and FSH. Kallman's syndrome is characterized by congenital hypogonadotropic hypogonadism with midline defects such as anosmia (a de®ciency of the sense of smell).1 The ®rst case report dates back to 1856,2 and genetic defects causing the syndrome have been recently described.3 The diagnosis can be clinically suspected and is established by con®rming hormonal studies. International Journal of Impotence Research (2000) 12, 121±123. Case Reports Case 2 Case 1 A 24-year-old patient consulted a general practi- tioner (the ®rst to address the problem of delayed puberty) for upper airway disease. He presented A 26-year old man fell on his right hand. The X-ray with an unbroken voice and sparse axillary and of the wrist (Figure 1) not only demonstrated the pubic body hair. He had a microphallus and fracture of the ®fth metacarpus but also an open testicular volumes of 2 ml, and a bone age of 17 epiphyseal line, thus revealing markedly delayed years. He did not smell garlic or curry.
    [Show full text]
  • Update on New GH-IGF Axis Genetic Defects
    review Update on new GH-IGF axis genetic defects Gabriela A. Vasques1,2 1 Unidade de Endocrinologia https://orcid.org/0000-0002-6455-8682 Genética, Laboratório de Endocrinologia Celular e Nathalia L. M. Andrade1,2 https://orcid.org/0000-0002-1628-7881 Molecular (LIM25), Hospital das Clínicas, Faculdade de Fernanda A. Correa2 Medicina, Universidade de São https://orcid.org/0000-0003-2107-9494 Paulo, São Paulo, SP, Brasil 2 Alexander A. L. Jorge1,2 Unidade de Endocrinologia do https://orcid.org/0000-0003-2567-7360 Desenvolvimento, Laboratório de Hormônios e Genética Molecular (LIM42), Hospital das Clínicas, Faculdade de ABSTRACT Medicina, Universidade de São The somatotropic axis is the main hormonal regulator of growth. Growth hormone (GH), also known Paulo, São Paulo, SP, Brasil as somatotropin, and insulin-like growth factor 1 (IGF-1) are the key components of the somatotropic axis. This axis has been studied for a long time and the knowledge of how some molecules could Correspondence to: promote or impair hormones production and action has been growing over the last decade. The Alexander A. L. Jorge Laboratório de Endocrinologia enhancement of large-scale sequencing techniques has expanded the spectrum of known genes and Celular e Molecular (LIM25), several other candidate genes that could affect the GH-IGF1-bone pathway. To date, defects in more Faculdade de Medicina, than forty genes were associated with an impairment of the somatotropic axis. These defects can Universidade de São Paulo Av. Dr. Arnaldo, 455, affect from the secretion of GH to the bioavailability and action of IGF-1. Affected patients present a 5º andar, sala 5.340 large heterogeneous group of conditions associated with growth retardation.
    [Show full text]
  • Genetic Disorder
    Genetic disorder Single gene disorder Prevalence of some single gene disorders[citation needed] A single gene disorder is the result of a single mutated gene. Disorder Prevalence (approximate) There are estimated to be over 4000 human diseases caused Autosomal dominant by single gene defects. Single gene disorders can be passed Familial hypercholesterolemia 1 in 500 on to subsequent generations in several ways. Genomic Polycystic kidney disease 1 in 1250 imprinting and uniparental disomy, however, may affect Hereditary spherocytosis 1 in 5,000 inheritance patterns. The divisions between recessive [2] Marfan syndrome 1 in 4,000 and dominant types are not "hard and fast" although the [3] Huntington disease 1 in 15,000 divisions between autosomal and X-linked types are (since Autosomal recessive the latter types are distinguished purely based on 1 in 625 the chromosomal location of Sickle cell anemia the gene). For example, (African Americans) achondroplasia is typically 1 in 2,000 considered a dominant Cystic fibrosis disorder, but children with two (Caucasians) genes for achondroplasia have a severe skeletal disorder that 1 in 3,000 Tay-Sachs disease achondroplasics could be (American Jews) viewed as carriers of. Sickle- cell anemia is also considered a Phenylketonuria 1 in 12,000 recessive condition, but heterozygous carriers have Mucopolysaccharidoses 1 in 25,000 increased immunity to malaria in early childhood, which could Glycogen storage diseases 1 in 50,000 be described as a related [citation needed] dominant condition. Galactosemia
    [Show full text]
  • Diagnosis and Treatment of Hypopituitarism
    Review Endocrinol Metab 2015;30:443-455 http://dx.doi.org/10.3803/EnM.2015.30.4.443 Article pISSN 2093-596X · eISSN 2093-5978 Diagnosis and Treatment of Hypopituitarism Seong Yeon Kim Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea Hypopituitarism is a chronic endocrine illness that caused by varied etiologies. Clinical manifestations of hypopituitarism are variable, often insidious in onset and dependent on the degree and severity of hormone deficiency. However, it is associated with increased mortality and morbidity. Therefore, early diagnosis and prompt treatment is necessary. Hypopituitarism can be easily diagnosed by measuring basal pituitary and target hormone levels except growth hormone (GH) and adrenocorticotropic hor- mone (ACTH) deficiency. Dynamic stimulation tests are indicated in equivocal basal hormone levels and GH/ACTH deficiency. Knowledge of the use and limitations of these stimulation tests is mandatory for proper interpretation. It is necessary for physi- cians to inform their patients that they may require lifetime treatment. Hormone replacement therapy should be individualized ac- cording to the specific needs of each patient, taking into account possible interactions. Long-term endocrinological follow-up of hypopituitary patients is important to monitor hormonal replacement regimes and avoid under- or overtreatment. Keywords: Hypopituitarism; Adrenocorticotropic hormone deficiency; Thyrotropin deficiency; Gonadotropin deficiency; Growth hormone deficiency; Anti-diuretic hormone deficiency INTRODUCTION mone secretion results in an emergency situation that requires immediate medical attention [2]. The treatment of hypopituita- Hypopituitarism is defined as the total or partial loss of anterior rism typically involves a replacement of the deficient hormone and posterior pituitary gland function that is caused by pituitary but care must be taken because several studies have reported an or hypothalamic disorders [1].
    [Show full text]
  • Essential Genetics 5
    Essential genetics 5 Disease map on chromosomes 例 Gaucher disease 単一遺伝子病 天使病院 Prader-Willi syndrome 隣接遺伝子症候群,欠失が主因となる疾患 臨床遺伝診療室 外木秀文 Trisomy 13 複数の遺伝子の重複によって起こる疾患 挿画 Koromo 遺伝子の座位あるいは欠失等の範囲を示す Copyright (c) 2010 Social Medical Corporation BOKOI All Rights Reserved. Disease map on chromosome 1 Gaucher disease Chromosome 1q21.1 1p36 deletion syndrome deletion syndrome Adrenoleukodystrophy, neonatal Cardiomyopathy, dilated, 1A Zellweger syndrome Charcot-Marie-Tooth disease Emery-Dreifuss muscular Hypercholesterolemia, familial dystrophy Hutchinson-Gilford progeria Ehlers-Danlos syndrome, type VI Muscular dystrophy, limb-girdle type Congenital disorder of Insensitivity to pain, congenital, glycosylation, type Ic with anhidrosis Diamond-Blackfan anemia 6 Charcot-Marie-Tooth disease Dejerine-Sottas syndrome Marshall syndrome Stickler syndrome, type II Chronic granulomatous disease due to deficiency of NCF-2 Alagille syndrome 2 Copyright (c) 2010 Social Medical Corporation BOKOI All Rights Reserved. Disease map on chromosome 2 Epiphyseal dysplasia, multiple Spondyloepimetaphyseal dysplasia Brachydactyly, type D-E, Noonan syndrome Brachydactyly-syndactyly syndrome Peters anomaly Synpolydactyly, type II and V Parkinson disease, familial Leigh syndrome Seizures, benign familial Multiple pterygium syndrome neonatal-infantile Escobar syndrome Ehlers-Danlos syndrome, Brachydactyly, type A1 type I, III, IV Waardenburg syndrome Rhizomelic chondrodysplasia punctata, type 3 Alport syndrome, autosomal recessive Split-hand/foot malformation Crigler-Najjar
    [Show full text]
  • Modelling Kallmann Syndrome in the Zebrafish
    Modelling Kallmann Syndrome in the Zebrafish by Steven Mark Cadman A thesis submitted to University College London for the degree of Doctor of Philosophy December 2010 Centre for Neuroendocrinology University College London Medical School Royal Free Campus, London NW3 2PF Declaration I, Steven Mark Cadman, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. .................................................................... .............................. Steven Mark Cadman Date 2 Abstract Kallmann syndrome (KS) is a human genetic disorder characterised by delayed/absent pubertal development, associated with lack of olfaction. KS is proposed to result from disrupted migration and targeting of olfactory sensory axons and hypothalamic gonadotrophin releasing hormone (GnRH1) neurons during early embryogenesis. Mutations in anosmin-1 (KAL1), fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor 8 (FGF8) are responsible for some cases of KS. Previously, in ex vivo human GnRH neuroblast culture, anosmin-1 was shown to enhance FGFR1 signalling in an FGF-dependent manner. Here, using a zebrafish in vivo system, the biological functions of anosmin-1- and FGF-mediated signalling during olfactory and GnRH system development have been investigated. Characterisation of the zebrafish GnRH system, and the role of olfactory axonogenesis in its development, was aided by the generation of a transgenic reporter line: pGnRH3:mCherry.
    [Show full text]
  • Adrenal Hypoplasia Congenita with Hypogonadotropic Hypogonadism
    Adrenal Hypoplasia Congenita with Hypogonadotropic Hypogonadism Evidence That DAX-1 Mutations Lead to Combined Hypothalamic and Pituitary Defects in Gonadotropin Production Reema L. Habiby,* Paul Boepple,‡ Lisa Nachtigall,‡ Patrick M. Sluss,‡ William F. Crowley, Jr.,‡ and J. Larry Jameson* *Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611; and ‡Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114 Abstract tile GnRH is consistent with a pituitary defect in gonadotro- pin production. These two cases exemplify the phenotypic Adrenal hypoplasia congenita (AHC) is an X–linked disor- heterogeneity of AHC/HHG, and suggest that DAX-1 muta- der that typically presents with adrenal insufficiency during tions impair gonadotropin production by acting at both the infancy. Hypogonadotropic hypogonadism (HHG) has been hypothalamic and pituitary levels. (J. Clin. Invest. 1996. 98: identified as a component of this disorder in affected indi- 1055–1062.) Key words: adrenal gland • DAX-1 • gene mu- viduals who survive into childhood. Recently, AHC was tation • hypogonadotropic hypogonadism • GnRH • gonad- shown to be caused by mutations in DAX-1, a protein that is otropins structurally similar in its carboxyterminal region to orphan nuclear receptors. We studied two kindreds with clinical Introduction features of AHC and HHG. DAX-1 mutations were identi- fied in both families. In the JW kindred, a single base dele- Adrenal hypoplasia congenita (AHC)1 is an inherited disorder tion at nucleotide 1219 was accompanied by an additional which most often presents in infancy with adrenal insufficiency base substitution that resulted in a frameshift mutation at and severe salt-wasting. AHC occurs in two distinct forms; the codon 329 followed by premature termination.
    [Show full text]
  • Rare Syndromes Associated with Infertility Hempel M, Buchholz T J
    Journal für Reproduktionsmedizin und Endokrinologie – Journal of Reproductive Medicine and Endocrinology – Andrologie • Embryologie & Biologie • Endokrinologie • Ethik & Recht • Genetik Gynäkologie • Kontrazeption • Psychosomatik • Reproduktionsmedizin • Urologie Rare Syndromes Associated with Infertility Hempel M, Buchholz T J. Reproduktionsmed. Endokrinol 2009; 6 (1), 24-26 www.kup.at/repromedizin Online-Datenbank mit Autoren- und Stichwortsuche Offizielles Organ: AGRBM, BRZ, DVR, DGA, DGGEF, DGRM, D·I·R, EFA, OEGRM, SRBM/DGE Indexed in EMBASE/Excerpta Medica/Scopus Krause & Pachernegg GmbH, Verlag für Medizin und Wirtschaft, A-3003 Gablitz FERRING-Symposium digitaler DVR 2021 Mission possible – personalisierte Medizin in der Reproduktionsmedizin Was kann die personalisierte Kinderwunschbehandlung in der Praxis leisten? Freuen Sie sich auf eine spannende Diskussion auf Basis aktueller Studiendaten. SAVE THE DATE 02.10.2021 Programm 12.30 – 13.20Uhr Chair: Prof. Dr. med. univ. Georg Griesinger, M.Sc. 12:30 Begrüßung Prof. Dr. med. univ. Georg Griesinger, M.Sc. & Dr. Thomas Leiers 12:35 Sind Sie bereit für die nächste Generation rFSH? Im Gespräch Prof. Dr. med. univ. Georg Griesinger, Dr. med. David S. Sauer, Dr. med. Annette Bachmann 13:05 Die smarte Erfolgsformel: Value Based Healthcare Bianca Koens 13:15 Verleihung Frederik Paulsen Preis 2021 Wir freuen uns auf Sie! Rare Syndromes in Infertility Rare Syndromes Associated with Infertility M. Hempel, T. Buchholz Although rare syndromes seldomly are the reason for infertility, physicians for reproductive medicine should be aware of these syndromes. The majority of syndromes can be diagnosed clinically by thorough exploration of the personal and family histories and by extensive medical examination. To confirm a genetic diagnosis, specific tests have to be carried out.
    [Show full text]