A New Lithium Borohydride Ammonia Borane Compound with a Novel Structure and Favorable Hydrogen Storage Properties

Total Page:16

File Type:pdf, Size:1020Kb

A New Lithium Borohydride Ammonia Borane Compound with a Novel Structure and Favorable Hydrogen Storage Properties international journal of hydrogen energy 37 (2012) 10750e10757 Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/he $ LiBH4 NH3BH3: A new lithium borohydride ammonia borane compound with a novel structure and favorable hydrogen storage properties Junhong Luo a, Hui Wu b,c,**, Wei Zhou b,c, Xiangdong Kang a, Zhanzhao Fang a, Ping Wang a,* a Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China b NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA c Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115, USA article info abstract Article history: Mechanically milling ammonia borane and lithium borohydride in equivalent molar ratio $ Received 17 February 2012 results in the formation of a new complex, LiBH4 NH3BH3. Its structure was successfully Received in revised form determined using combined X-ray diffraction and first-principles calculations. $ 17 March 2012 LiBH4 NH3BH3 was carefully studied in terms of its decomposition behavior and reversible Accepted 8 April 2012 dehydrogenation property, particularly in comparison with the component phases. In Available online 5 May 2012 parallel to the property examination, X-ray diffraction and Fourier transformation infrared spectroscopy techniques were employed to monitor the phase evolution and bonding $ Keywords: structure changes in the reaction process. Our study found that LiBH4 NH3BH3 first $ Hydrogen storage disproportionates into (LiBH4)2 NH3BH3 and NH3BH3, and the resulting mixture exhibits Ammonia borane a three-step decomposition behavior upon heating to 450 C, totally yielding w15.7 wt% Lithium borohydride hydrogen. Interestingly, it was found that h-BN was formed at such a moderate tempera- $ Dehydrogenation ture. And owing to the in situ formation of h-BN, LiBH4 NH3BH3 exhibits significantly BN improved reversible dehydrogenation properties in comparison with the LiBH4 phase. Copyright ª 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. 1. Introduction hydrogen content (19.6 wt%), moderate thermal stability, and satisfactory air-stability. But on the other hand, the H2 release The development of hydrogen-fueled vehicles and portable from AB is severely kinetically restricted and is entangled by electronics requires advanced hydrogen storage materials the concurrent evolution of diverse volatile byproducts. In the that can store and deliver large amounts of hydrogen at past decade, several strategies have been employed to moderate temperature with fast kinetics. Recently, ammonia improve the dehydrogenation properties of AB. Addition of e borane (NH3BH3, AB for short) has received extensive atten- selected metal catalysts [4 10] or acids [11,12] enables rapid e tion as a promising hydrogen storage material [1 3]. This is H2 release from the solvolysis reactions of AB at ambient a result of its many appealing attributes, such as high temperatures. Confinement of AB in nanoscaffolds [13e15] or * Corresponding author. Tel.: þ1 86 24 2397 1622; fax: þ1 86 24 2389 1320. ** Corresponding author. NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899- 6102, USA. Tel.: þ86 301 975 2387; fax: þ86 301 921 9847. E-mail addresses: [email protected] (H. Wu), [email protected] (P. Wang). 0360-3199/$ e see front matter Copyright ª 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.ijhydene.2012.04.049 international journal of hydrogen energy 37 (2012) 10750e10757 10751 addition of chemical promoters [16e21] has proved to be started from the moment when the sample chamber was effective means for promoting solid-state thermolysis of AB. pushed into the preheated furnace. The solid residuals at In particular, reacting AB with alkali or alkaline-earth metal different decomposition stages were collected after heating hydrides (with an exception of MgH2) has been established as the sample to preset temperatures and then fan-cooling to a general approach for preparation of mono- or mixed-metal room temperature. Rehydrogenation of the sample was con- amidoboranes, which exhibit favorable combination of high ducted at 400 C under an initial hydrogen pressure of 10 MPa hydrogen capacity, fast hydrogen release rate and suppressed for 12 h. e volatile byproducts [22 31]. This progress stimulated further The post-milled xLiBH4/AB and the relevant neat AB and investigations on the chemical modification of AB using LiBH4 samples at varied states were characterized by XRD À À a complex anionic hydrides containing [NH2 ] or [BH4 ]. (Rigaku D/max 2500, Cu K radiation), Fourier transformation À1 Lithium borohydride (LiBH4) is a salt-like ionic crystal infrared (FTIR) spectroscopy (Bruker TENSOR 27, 4 cm containing a high density of hydrogen (18.4 wt%). Due to the resolution). Special measures were taken to minimize H2O/O2 thermodynamic and kinetic limitations that are imposed by contamination during the sample transfer process. In the the strong chemical bonds, LiBH4 exhibits high temperature routine XRD analysis, the powder samples were protected by > threshold ( 400 C) for H2 release and poor reversibility even a polymeric tape to minimize the air- and moisture- under rigorous temperature and pressure conditions [32,33].A contamination. In the study of crystal structure, the sample recent study by Wu et al. found that two H-rich materials, AB was sealed inside a 1 mm quartz glass capillary and analyzed q and LiBH4, can readily combine together to form a new layered in a continuous scan mode for over 12 h in the 2 range of $ e borohydride ammonia borane complex (LiBH4)2 NH3BH3 5 70 with a step size of 0.02 . FTIR spectra of the samples $ ((LiBH)2 AB for short) [34]. In comparison with the component were collected using the KBr-pellets method, and the obtained $ phases (LiBH)2 AB exhibits small but significant improvement spectra were normalized using OPUS 6.5 software. on the dehydrogenation properties. This material discovery, First-principles calculations based on density-functional together with the recent findings of metal amidoborane theory (DFT) were performed by using the PWSCF package ammoniates [35e39], offers new opportunities for developing [41]. We used a Vanderbilt-type ultrasoft potential with a practical source for generating molecular hydrogen. In this Perdew-Burke-Ernzerhof exchange correlation. A cutoff paper, we report the synthesis, structure, and hydrogen energy of 544 eV was found to be enough for the total energy to storage properties of a new lithium borohydride ammonia converge within 0.5 meV/atom. Car-Parrinello molecular $ $ borane compound, LiBH4 NH3BH3 (LiBH AB for short). In dynamics simulations [42] were used to help in searching for $ comparison with its analogue (LiBH)2 AB, the newly devel- the most likely crystal structures. The conventional unit cells oped LiBH$AB adopts a completely different crystal structure were used, with the cell dimensions fixed at the experimental and can deliver much more H2 via a three-step decomposition values. The initial system temperature was set to 600 K. The reaction. system was first allowed to evolve and equilibrate for 20 ps, and then the system temperature was slowly decreased to 0 K in a period of 20 ps. Structure optimizations on the resulting 2. Experimental candidate structures at 0 K were further performed with respect to atomic positions. This information was used in AB (97% purity), LiBH4 (90% purity) and sodium borohydride combination with XRD pattern matching to derive the best e $ (NaBH4, 98% purity) powders from Sigma Aldrich [40] were crystal structure solution of LiBH AB. used as received. The xLiBH4/AB mixtures in varied molar ratios (x ¼ 0.5e2) were mechanically milled under an argon (99.999% purity) atmosphere using a Fritsch 7 Planetary mill at 3. Results and discussion 200 rpm for 3 h. In the control experiment, the 1:1 NaBH4/AB was milled under identical conditions. All sample handlings 3.1. Synthesis and structure of LiBH4$NH3BH3 were carried out in an argon (99.999% purity)-filled glovebox equipped with a circulative purification system, in which the A systematic study of the series of xLiBH4/AB samples < ¼ e H2O/O2 levels were typically 0.1 ppm. (x 0.5 2) found that different lithium borohydride ammonia The decomposition behaviour of the post-milled xLiBH4/AB borane complexes might be formed upon changing the molar samples was examined by synchronous thermogravimetry, ratio of the component phases. As shown in Fig. 1, mechanical ¼ $ differential scanning calorimetry, mass spectroscopy (TG, milling the mixtures of x 2 molar ratio produces (LiBH)2 AB, DSC, MS, Netzsch 449C Jupiter/QMS 403C) and volumetric which agrees well with the early finding [34]. But for the 1:1 method. In the thermal analyses, the samples with a typical LiBH4/AB sample, milling-induced solid-phase reaction amount of w2 mg were heated to 450 C at a ramping rate of produces a new crystalline phase. Here, the nearly complete À 2 Cmin 1 under a flowing argon (99.999% purity) atmosphere. consumption of the starting materials suggests its formula of The temperature-programmed desorption (TPD) and LiBH$AB. When 1 < x < 2 applied, the post-milled sample for $ $ isothermal measurements were carried out in a carefully 3 h is a mixture of (LiBH)2 AB and LiBH AB phases. To gain calibrated Sievert’s type apparatus under an initial pressure insight into the formation of the new LiBH$AB phase, we <100 Pa. In a typical TPD run, the sample with an amount of further examined the phase evolution in the milling process of w À1 100 mg was heated to 450 C at a ramping rate of 2 C min the 1:1 LiBH4/AB sample. As shown in Fig. 2, the XRD pattern of and held at this temperature until hydrogen desorption the post-milled LiBH4/AB sample for 0.5 h showed the $ $ completed.
Recommended publications
  • Herbert Charles Brown, a Biographical Memoir
    NATIONAL ACADEMY OF SCIENCES H E R B E R T Ch ARLES BROWN 1 9 1 2 — 2 0 0 4 A Biographical Memoir by E I-I CH I N EGIS HI Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Credit Here. HERBERT CHARLES BROWN May 22, 1912–December 19, 2004 BY EI -ICH I NEGISHI ERBERT CHARLES BROWN, R. B. Wetherill Research Profes- Hsor Emeritus of Purdue University and one of the truly pioneering giants in the field of organic-organometallic chemistry, died of a heart attack on December 19, 2004, at age 92. As it so happened, this author visited him at his home to discuss with him an urgent chemistry-related matter only about 10 hours before his death. For his age he appeared well, showing no sign of his sudden death the next morn- ing. His wife, Sarah Baylen Brown, 89, followed him on May 29, 2005. They were survived by their only child, Charles A. Brown of Hitachi Ltd. and his family. H. C. Brown shared the Nobel Prize in Chemistry in 1979 with G. Wittig of Heidelberg, Germany. Their pioneering explorations of boron chemistry and phosphorus chemistry, respectively, were recognized. Aside from several biochemists, including V. du Vigneaud in 1955, H. C. Brown was only the second American organic chemist to win a Nobel Prize behind R. B. Woodward, in 1965. His several most significant contribu- tions in the area of boron chemistry include (1) codiscovery of sodium borohyride (1972[1], pp.
    [Show full text]
  • Reductions and Reducing Agents
    REDUCTIONS AND REDUCING AGENTS 1 Reductions and Reducing Agents • Basic definition of reduction: Addition of hydrogen or removal of oxygen • Addition of electrons 9:45 AM 2 Reducible Functional Groups 9:45 AM 3 Categories of Common Reducing Agents 9:45 AM 4 Relative Reactivity of Nucleophiles at the Reducible Functional Groups In the absence of any secondary interactions, the carbonyl compounds exhibit the following order of reactivity at the carbonyl This order may however be reversed in the presence of unique secondary interactions inherent in the molecule; interactions that may 9:45 AM be activated by some property of the reacting partner 5 Common Reducing Agents (Borohydrides) Reduction of Amides to Amines 9:45 AM 6 Common Reducing Agents (Borohydrides) Reduction of Carboxylic Acids to Primary Alcohols O 3 R CO2H + BH3 R O B + 3 H 3 2 Acyloxyborane 9:45 AM 7 Common Reducing Agents (Sodium Borohydride) The reductions with NaBH4 are commonly carried out in EtOH (Serving as a protic solvent) Note that nucleophilic attack occurs from the least hindered face of the 8 carbonyl Common Reducing Agents (Lithium Borohydride) The reductions with LiBH4 are commonly carried out in THF or ether Note that nucleophilic attack occurs from the least hindered face of the 9:45 AM 9 carbonyl. Common Reducing Agents (Borohydrides) The Influence of Metal Cations on Reactivity As a result of the differences in reactivity between sodium borohydride and lithium borohydride, chemoselectivity of reduction can be achieved by a judicious choice of reducing agent. 9:45 AM 10 Common Reducing Agents (Sodium Cyanoborohydride) 9:45 AM 11 Common Reducing Agents (Reductive Amination with Sodium Cyanoborohydride) 9:45 AM 12 Lithium Aluminium Hydride Lithium aluminiumhydride reacts the same way as lithium borohydride.
    [Show full text]
  • SAFETY DATA SHEET Revision Date 15.09.2021 According to Regulation (EC) No
    Version 6.6 SAFETY DATA SHEET Revision Date 15.09.2021 according to Regulation (EC) No. 1907/2006 Print Date 24.09.2021 GENERIC EU MSDS - NO COUNTRY SPECIFIC DATA - NO OEL DATA SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name : Lithium borohydride Product Number : 222356 Brand : Aldrich REACH No. : A registration number is not available for this substance as the substance or its uses are exempted from registration, the annual tonnage does not require a registration or the registration is envisaged for a later registration deadline. CAS-No. : 16949-15-8 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Manufacture of substances 1.3 Details of the supplier of the safety data sheet Company : Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES Telephone : +1 314 771-5765 Fax : +1 800 325-5052 1.4 Emergency telephone Emergency Phone # : 800-424-9300 CHEMTREC (USA) +1-703- 527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 Substances and mixtures which in contact with water emit flammable gases (Category 1), H260 Acute toxicity, Oral (Category 3), H301 Skin corrosion (Sub-category 1B), H314 For the full text of the H-Statements mentioned in this Section, see Section 16. Aldrich- 222356 Page 1 of 8 The life science business of Merck operates as MilliporeSigma in the US and Canada 2.2 Label elements Labelling according Regulation (EC) No 1272/2008 Pictogram Signal word Danger Hazard statement(s) H260 In contact with water releases flammable gases which may ignite spontaneously.
    [Show full text]
  • Electroless Nickel, Alloy, Composite and Nano Coatings - a Critical Review
    Electroless nickel, alloy, composite and nano coatings - A critical review Sudagar, J., Lian, J., & Sha, W. (2013). Electroless nickel, alloy, composite and nano coatings - A critical review. Journal of Alloys and Compounds, 571, 183–204. https://doi.org/10.1016/j.jallcom.2013.03.107 Published in: Journal of Alloys and Compounds Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2013 Elsevier. This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:02. Oct. 2021 ELECTROLESS NICKEL, ALLOY, COMPOSITE AND NANO COATINGS - A CRITICAL REVIEW Jothi Sudagar Department of Metallurgical and Materials Engineering, Indian Institute of Technology- Madras (IIT-M), Chennai - 600 036, India Jianshe Lian College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
    [Show full text]
  • Lithium Hydride Powered PEM Fuel Cells for Long-Duration Small Mobile Robotic Missions
    Lithium Hydride Powered PEM Fuel Cells for Long-Duration Small Mobile Robotic Missions Jekanthan Thangavelautham, Daniel Strawser, Mei Yi Cheung Steven Dubowsky Abstract— This paper reports on a study to develop power supplies for small mobile robots performing long duration missions. It investigates the use of fuel cells to achieve this objective, and in particular Proton Exchange Membrane (PEM) fuel cells. It is shown through a representative case study that, in theory, fuel cell based power supplies will provide much longer range than the best current rechargeable battery technology. It also briefly discusses an important limitation that prevents fuel cells from achieving their ideal performance, namely a practical method to store their fuel (hydrogen) in a form that is compatible with small mobile field robots. A very efficient Fig. 1. Example of small robots (Left) A ball shaped hopping robot concept fuel storage concept based on water activated lithium hydride for exploration of extreme terrains and caves developed for NASA. (Right) (LiH) is proposed that releases hydrogen on demand. This iRobot 110 Firstlook used for observation, security and search and rescue. concept is very attractive because water vapor from the air is passively extracted or waste water from the fuel cell is recycled and transferred to the lithium hydride where the hydrogen is the near future. Hence, new means for powering field robots “stripped” from water and is returned to the fuel cell to form more water. This results in higher hydrogen storage efficiencies need to be considered. than conventional storage methods. Experimental results are This paper explores the use of fuel cells, and in particular presented that demonstrate the effectiveness of the approach.
    [Show full text]
  • Boron- and Nitrogen-Based Chemical Hydrogen Storage Materials
    international journal of hydrogen energy 34 (2009) 2303–2311 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/he Review Boron- and nitrogen-based chemical hydrogen storage materials Tetsuo Umegaki, Jun-Min Yan, Xin-Bo Zhang, Hiroshi Shioyama, Nobuhiro Kuriyama, Qiang Xu* National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan article info abstract Article history: Boron- and nitrogen-based chemical hydrides are expected to be potential hydrogen Received 20 November 2008 carriers for PEM fuel cells because of their high hydrogen contents. Significant efforts have Accepted 4 January 2009 been devoted to decrease their dehydrogenation and hydrogenation temperatures and Available online 4 February 2009 enhance the reaction kinetics. This article presents an overview of the boron- and nitrogen-based compounds as hydrogen storage materials. Keywords: ª 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights Boron-based chemical hydrides reserved. Nitrogen-based chemical hydrides Hydrogen storage Dehydrogenation Hydrogenation Ammonia borane 1. Introduction in operating the system at high temperature poses an obstacle to its practical application. Chemical hydrogen Hydrogen is a globally accepted clean fuel. The use of storage materials, due to their high hydrogen contents, are hydrogen fuel cells in portable electronic devices or vehicles expected as potential hydrogen sources for fuel cells. Among requires lightweight
    [Show full text]
  • Boron-Based (Nano-)Materials: Fundamentals and Applications
    crystals Editorial Boron-Based (Nano-)Materials: Fundamentals and Applications Umit B. Demirci 1,*, Philippe Miele 1 and Pascal G. Yot 2 1 Institut Européen des Membranes (IEM), UMR 5635, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, CC047, F-34095 Montpellier, France; [email protected] 2 Institut Charles Gerhardt Montpellier (ICGM), UMR 5253 (UM-CNRS-ENSCM), Université de Montpellier, CC 15005, Place Eugène Bataillon, 34095 Montpellier cedex 05, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)4-6714-9160 Academic Editor: Helmut Cölfen Received: 6 September 2016; Accepted: 13 September 2016; Published: 19 September 2016 Abstract: The boron (Z = 5) element is unique. Boron-based (nano-)materials are equally unique. Accordingly, the present special issue is dedicated to crystalline boron-based (nano-)materials and gathers a series of nine review and research articles dealing with different boron-based compounds. Boranes, borohydrides, polyhedral boranes and carboranes, boronate anions/ligands, boron nitride (hexagonal structure), and elemental boron are considered. Importantly, large sections are dedicated to fundamentals, with a special focus on crystal structures. The application potentials are widely discussed on the basis of the materials’ physical and chemical properties. It stands out that crystalline boron-based (nano-)materials have many technological opportunities in fields such as energy storage, gas sorption (depollution), medicine, and optical and electronic devices. The present special issue is further evidence of the wealth of boron science, especially in terms of crystalline (nano-)materials. Keywords: benzoxaboronate; borane; borohydride; boron-based material; boron-treat steel; boron nitride; boronate; carborane; metallacarborane; polyborate 1. Introduction Boron (Z = 5) is one of the lightest elements of the periodic table, coming just before carbon (Z = 6).
    [Show full text]
  • Common Name: LITHIUM ALUMINUM HYDRIDE HAZARD
    Common Name: LITHIUM ALUMINUM HYDRIDE CAS Number: 16853-85-3 RTK Substance number: 1121 DOT Number: UN 1410 Date: April 1986 Revision: November 1999 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Lithium Aluminum Hydride can affect you when * Exposure to hazardous substances should be routinely breathed in. evaluated. This may include collecting personal and area * Contact can cause severe skin and eye irritation and burns. air samples. You can obtain copies of sampling results * Breathing Lithium Aluminum Hydride can irritate the from your employer. You have a legal right to this nose and throat. information under OSHA 1910.1020. * Breathing Lithium Aluminum Hydride can irritate the * If you think you are experiencing any work-related health lungs causing coughing and/or shortness of breath. Higher problems, see a doctor trained to recognize occupational exposures can cause a build-up of fluid in the lungs diseases. Take this Fact Sheet with you. (pulmonary edema), a medical emergency, with severe shortness of breath. WORKPLACE EXPOSURE LIMITS * Exposure can cause loss of appetite, nausea, vomiting, The following exposure limits are for Aluminum pyro powders diarrhea and abdominal pain. (measured as Aluminum): * Lithium Aluminum Hydride can cause headache, muscle weakness, loss of coordination, confusion, seizures and NIOSH: The recommended airborne exposure limit is coma. 5 mg/m3 averaged over a 10-hour workshift. * High exposure can affect the thyroid gland function resulting in an enlarged thyroid (goiter). ACGIH: The recommended airborne exposure limit is * Lithium Aluminum Hydride may damage the kidneys. 5 mg/m3 averaged over an 8-hour workshift. * Lithium Aluminum Hydride is a REACTIVE CHEMICAL and an EXPLOSION HAZARD.
    [Show full text]
  • Materials Chemistry Materials Chemistry
    Materials Chemistry Materials Chemistry by Bradley D. Fahlman Central Michigan University, Mount Pleasant, MI, USA A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-6119-6 (HB) ISBN 978-1-4020-6120-2 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Printed on acid-free paper First published 2007 Reprinted 2008 All Rights Reserved © 2008 Springer Science + Business Media B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. TABLE OF CONTENTS Preface ............................................................ ix Chapter 1. WHAT IS MATERIALS CHEMISTRY? .................... 1 1.1 HISTORICAL PERSPECTIVES . ............................ 2 1.2 CONSIDERATIONS IN THE DESIGN OF NEW MATERIALS . 5 1.3 DESIGN OF NEW MATERIALS THROUGH A “CRITICAL THINKING”APPROACH................................... 6 Chapter 2. SOLID-STATE CHEMISTRY ............................ 13 2.1 AMORPHOUS VS.CRYSTALLINESOLIDS.................. 13 2.2 TYPES OF BONDING IN SOLIDS . ..................... 14 2.2.1 IonicSolids......................................... 14 2.2.2 Metallic Solids . ................................ 16 2.2.3 Molecular Solids. ................................ 19 2.2.4 CovalentNetworkSolids.............................. 21 2.3 THECRYSTALLINESTATE................................ 21 2.3.1 Crystal Growth Techniques . ..................... 23 2.3.2 TheUnitCell ....................................... 25 2.3.3 CrystalLattices...................................... 28 2.3.4 CrystalImperfections................................. 41 2.3.5 Phase-Transformation Diagrams. ..................... 47 2.3.6 Crystal Symmetry and Space Groups .
    [Show full text]
  • A Passive Lithium Hydride Based Hydrogen Generator for Low Power Fuel Cells for Long-Duration Sensor Networks
    international journal of hydrogen energy 39 (2014) 10216e10229 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/he A passive lithium hydride based hydrogen generator for low power fuel cells for long-duration sensor networks D. Strawser, J. Thangavelautham*, S. Dubowsky Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA article info abstract Article history: This paper focuses on developing an efficient fuel storage and release method for hydrogen Received 7 November 2013 using lithium hydride hydrolysis for use in PEM fuel cells for low power sensor network Received in revised form modules over long durations. Lithium hydride has high hydrogen storage density and 2 April 2014 achieves up to 95e100% yield. It is shown to extract water vapor freely from the air to Accepted 17 April 2014 generate hydrogen and has a theoretical fuel specific energy of up to 4900 Wh/kg. A critical Available online 23 May 2014 challenge is how to package lithium hydride to achieve reaction completion. Experiments here show that thick layers of lithium hydride nearly chokes the reaction due to buildup of Keywords: lithium hydroxide impeding water transport and preventing reaction completion. A model Hydrogen generator has been developed that describes this lithium hydride hydrolysis behavior. The model Lithium hydride accurately predicts the performance of an experimental system than ran for 1400 h and PEM consists of a passive lithium hydride hydrogen generator and PEM fuel cells. These results Sensor networks power supply offer important design guidelines to enable reaction completion and build long-duration Hydrolysis lithium hydride hydrogen generators for low power applications.
    [Show full text]
  • A New Look at Lithium Hydride Chemical Biosensors Measure Brain Activity Recovering Infrastructure After a Biological Attack About the Cover
    Lawrence Livermore National Laboratory October/November 2016 Also in this issue: A New Look at Lithium Hydride Chemical Biosensors Measure Brain Activity Recovering Infrastructure after a Biological Attack About the Cover Through a historic partnership between the Department of Energy (DOE) and the National Cancer Institute (NCI), Lawrence Livermore is applying its expertise in high-performance computing (HPC) to advance cancer research and treatment. As the article beginning on p. 4 describes, the Laboratory plays a crucial role in the partnership’s three pilot programs. In particular, Livermore experts are working in collaboration with NCI and other DOE labroatories to develop more advanced algorithms for improving predictive models, computational tools for better understanding cancer intiation, and data analytics techniques to search for patterns in vast amounts of patient data. The cover art combines an artist’s rendering of circulating tumor cells in the blood of a cancer patient with computer circuitry (representing HPC) in the background. Cover design: Amy E. Henke E. Amy design: Cover About S&TR At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. The Laboratory is operated by Lawrence Livermore National Security, LLC (LLNS), for the Department of Energy’s National Nuclear Security Administration.
    [Show full text]
  • Lithium Aluminium Hydride.Pdf
    SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 5.0 Revision Date 03/12/2011 Print Date 09/12/2011 1. PRODUCT AND COMPANY IDENTIFICATION Product name : Aluminium lithium hydride Product Number : 531502 Brand : Aldrich Supplier : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +1 800-325-5832 Fax : +1 800-325-5052 Emergency Phone # (For : (314) 776-6555 both supplier and manufacturer) Preparation Information : Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards Water Reactive, Target Organ Effect, Toxic by ingestion, Corrosive Target Organs Kidney, Liver, Central nervous system GHS Classification Substances, which in contact with water, emit flammable gases (Category 1) Acute toxicity, Oral (Category 3) Skin corrosion (Category 1B) Serious eye damage (Category 1) GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H260 In contact with water releases flammable gases which may ignite spontaneously. H301 Toxic if swallowed. H314 Causes severe skin burns and eye damage. Precautionary statement(s) P223 Keep away from any possible contact with water, because of violent reaction and possible flash fire. P231 + P232 Handle under inert gas. Protect from moisture. P280 Wear protective gloves/ protective clothing/ eye protection/ face protection. P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P310 Immediately call a POISON CENTER or doctor/ physician. P370 + P378 In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for extinction. P422 Store contents under inert gas.
    [Show full text]