The International Ultraviolet Explorer: Origins and Legacy

Total Page:16

File Type:pdf, Size:1020Kb

The International Ultraviolet Explorer: Origins and Legacy Organizations, People and Strategies in Astronomy 2 (OPSA 2), 395-416 Ed. A. Heck, © 2013 Venngeist. THE INTERNATIONAL ULTRAVIOLET EXPLORER: ORIGINS AND LEGACY ALLAN J. WILLIS Department of Physics and Astronomy University College London Gower Street London WC1E 6B, U.K. [email protected] Abstract. The International Ultraviolet Explorer (IUE) satellite was launched on 26 January 1978, and operated as a Guest Observer space observatory for nearly 19 years. IUE was, without doubt, one of the most successful astronomical facilities ever developed. Used by thousands of as- tronomers worldwide, it yielded over 100,000 UV spectra (in the wavelength range 1150-3250A),˚ covering stars of all types, the interstellar medium in our own galaxy and other local galaxies, the galactic halo, normal and ac- tive galaxies and QSO’s, X-ray binaries, novae and supernovae, and in our solar system comets, planets and their moons. Over 3500 refereed papers have been published based on IUE results, and a similar number of papers in conference proceedings. Over 600 PhD theses have been produced based on IUE data. All IUE data are available in archives maintained by the three agencies involved in the mission: NASA, ESA and the UK Science Research Council. In this paper I will discuss the origins of the IUE mission, the spe- cial design and operation which led to its spectacular success and the legacy it left for UV astronomy. 1. Introduction The wavelength range from 3250-912A˚ is referred to in astrophysics as the vacuum ultraviolet (UV) region. The upper bound reflects the approximate cut-off in the transmission of the Earth’s atmosphere due to absorption by Ozone, whilst the lower bound corresponds to the ionisation energy of the neutral Hydrogen atom – below which interstellar H largely absorbs back- ground radiation from distant sources. With suitable reflecting coatings 396 ALLAN J. WILLIS Figure 1. Sir Robert Wilson (1927-2002). Wilson led the initial LAS and UVAS proposals to ESRO for an Ultraviolet Space Observatory, which led to the development with NASA of the IUE mission. (Courtesy D. Rooks/UCL) the optical elements for UV instrumentation are similar to those which are generally used at visible wavelengths: i.e. normal-incidence telescopes, photometers and spectrographs, with either photographic or electronic de- tectors. The UV region is one of the richest in spectral lines in the electromag- netic spectrum, encompassing a very large number of resonance lines of many common elements, covering many of their ionisation stages, e.g. HI, CI, CII, CIII, CIV, NI, NII, NIII, NV, OI, OII, OIII, OV, OVI, PIV, PV, SiI, SiII, SiIII, SiIV, SI, SII, SIII, SIV, FeI, FeII, MgI, MgII. These lines provide crucial diagnostics for low-excitation plasmas covering a range of temperatures from a few degrees up to about 1 million degrees, found in the interstellar medium, stellar atmospheres, galaxies and AGN and plan- ets and comets. For these reasons, the UV was a natural spectral range for development in the early phases of space science. For nearly 20 years one such UV mission formed a cornerstone of modern astrophysics – the International Ultraviolet Explorer (IUE) satellite. In this paper I will discuss the historical origin of IUE, its unique design and operation which led to its stupendous success and the legacy it has © 2013 Venngeist. THE INTERNATIONAL ULTRAVIOLET EXPLORER 397 left. I was fortunate to become involved with the IUE mission some years before launch through my association at UCL with Robert Wilson – then Project Director of the UK involvement in the satellite (Fig. 1). Although, of course, IUE owed its success to many hundreds of scientist and engineers, there can be little doubt the Wilson played an absolutely seminal role in getting the mission developed – see below – and is generally regarded as the “father of IUE”. My own involvement included pre-launch preparations for the commissioning phase, the UK High Priority Observing programme conducted a few months after launch, as a Guest Observer (GO) with IUE over many years, as a member of the UK TAC and as Chairman of the European IUE Time Allocation Committee. 2. Ultraviolet Astronomy in the pre-IUE Years The development of UV astronomy during the 1960’s followed a similar pattern in both the USA and (to a smaller extent) in Europe, with groups at Universities and Government establishments pioneering, ever-more so- phisticated experiments using rocket-borne instrumentation, followed by longer-lived and more massive satellite payloads. In the US the Aerobee rockets could deliver payloads of up to 100Kg to altitudes of around 180km. Groups at the Goddard Space Flight Center (GSFC), Universities of Wis- consin, Princeton and Johns Hopkins, together with the Naval Research laboratory, produced a range of spectrometers to yield the first detailed UV spectra of early-type OB stars at sufficient spectral resolution to detect and measure individual spectral lines, particularly with the development of a 3-axis stabilisation system for the Aerobee rockets. These programmes led, inter alia, to the first measurements of UV P-Cygni profiles of Zeta Puppis and other OB stars, yielding estimates of wind velocities and mass- loss rates (Morton 1967), and analyses of interstellar lines in atomic species and molecular Hydrogen (e.g. Caruthers 1970). In addition the first mea- surements of the UV interstellar extinction curve, including the discovery of the broad 2200A˚ band, were secured. In Europe, and particularly in the UK, university-based teams were also developing UV spectrometers. The UK group at the Culham Laboratory led by Robert Wilson, used Skylark rockets to launch 3-axis stabilised pay- loads from Woomera, South Australia, to secure high-resolution spectra of the Sun, to identify and study lines formed in the solar chromosphere tran- sition region and corona at both UV and soft-X-ray wavelengths (Burton et al. 1967). These programmes included an echelle-spectrum of the solar limb during a total eclipse in 1970 (Gabriel et al. 1971) and high-resolution spectra of Zeta Puppis and the Wolf-Rayet star Gamma Velorum covering the wavelength range 900-3200A˚ at 0.3A˚ resolution. Since the duration of a © 2013 Venngeist. 398 ALLAN J. WILLIS typical rocket flight was limited to about 5 minutes or less, each flight could only yield data on one or at best 2-3 objects. Over time successive flights built up data for many of the bright OB stars, some late-type stars, and planets. They had demonstrated the importance of the UV spectral region in furthering astrophysics in the solar, stellar and interstellar fields, and pointed to the potential for further advances if fainter and more diverse ob- jects could be observed with larger instruments and longer exposure times, which required the use of stabilised satellite platforms. This recognition led NASA to embark on a long-range programme of de- velopment of ultraviolet satellites, which was to culminate with the Hubble Space Telescope. Starting in the mid-1960’s this programme centred around the NASA Orbiting Astronomical Observatories (OAO-series). OAO-1 was launched in 1966, but due to a power failure was terminated after only 3 days. Its spare parts were used to develop OAO-2, launched in 1968, with a spectrometer developed by the Goddard Space Flight Center yielding medium-resolution spectrophotometry, at about 10A˚ resolution, covering the wavelength range 1100-3200A.˚ This instrument was highly successful, obtaining data on hundreds of early-type stars and measurements of UV interstellar extinction curves, as well as photometry of some galaxies (Code et al. 1970; Davies et al. 1972). OAO-3 (re-named Copernicus) was launched in 1972, with an 80cm telescope feeding a high-resolution UV spectrograph provided by Prince- ton University (Rogerson et al. 1973). Scanning photomultiplier detectors were used to record spectra at either 0.05A˚ or 0.2A˚ resolution, yielding line strength and profile measurements of the plethora of atomic and molecular species in the wavelength range of 900-3200A.˚ Rather long exposure times were needed to record the spectra, such that the higher resolution mode was restricted to observations of OB stars with V<∼2, and about 6th mag for the lower resolution mode. The mission was a huge success, providing data on stellar mass-loss rates in the upper HR diagram, the effective tem- perature scale for OB stars, the discovery of OVI in the galactic halo, and the distribution of molecular hydrogen and chemical composition of the atomic gas in the ISM. Copernicus was also what one might term the first “long-lived” space observatory, continuing operations until about 1980. In Europe the fledgling European Space Research Organisation (ESRO) launched its first 3-axis stabilised satellite – TD-1 – in 1972, which car- ried two UV instruments. The Dutch/Utrecht S59 instrument comprised a low-resolution spectrometer covering 3 bands in the 2160-2870A˚ range (Hoekstra et al. 1973). The second instrument – S2/68 – was developed by a joint UK/Belgium team, from Culham-UCL/ROE/Li`ege, and comprised a 27cm telescope feeding a scanning spectrophotometer. This covered the wavelength range 1350-2740A˚ at about 35A˚ spectral resolution, and per- © 2013 Venngeist. THE INTERNATIONAL ULTRAVIOLET EXPLORER 399 formed an all-sky UV survey yielding data on stars of all types down to about 9th magnitude (Boksenberg et al. 1973). The data from S2/68 were put in the public domain through its Bright Star and Faint Star Catalogues (Thompson et al. 1978), and the high photometric integrity of the S2/68 calibraton formed the basis of the calibrations for succeeding UV missions, including IUE and the HST. The ANS satellite (Astronomical Netherlands Satellite) launched in 1974, provided broad-band UV photometry in 5 bands covering 1540-3340A˚ of a range of sources including white dwarfs, planetary nebulae, stars, clusters and galaxies.
Recommended publications
  • Pushing the Limits of the Coronagraphic Occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph
    Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes Bin Ren Glenn Schneider John H. Debes, Bin Ren, Glenn Schneider, “Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph,” J. Astron. Telesc. Instrum. Syst. 5(3), 035003 (2019), doi: 10.1117/1.JATIS.5.3.035003. Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 02 Jul 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Journal of Astronomical Telescopes, Instruments, and Systems 5(3), 035003 (Jul–Sep 2019) Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes,a,* Bin Ren,b,c and Glenn Schneiderd aSpace Telescope Science Institute, AURA for ESA, Baltimore, Maryland, United States bJohns Hopkins University, Department of Physics and Astronomy, Baltimore, Maryland, United States cJohns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, Maryland, United States dUniversity of Arizona, Steward Observatory and the Department of Astronomy, Tucson Arizona, United States Abstract. The Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) contains the only currently operating coronagraph in space that is not trained on the Sun. In an era of extreme-adaptive- optics-fed coronagraphs, and with the possibility of future space-based coronagraphs, we re-evaluate the con- trast performance of the STIS CCD camera. The 50CORON aperture consists of a series of occulting wedges and bars, including the recently commissioned BAR5 occulter. We discuss the latest procedures in obtaining high-contrast imaging of circumstellar disks and faint point sources with STIS.
    [Show full text]
  • Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
    Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S.
    [Show full text]
  • Interstellar Extinction in Orion. Variation of the Strength of the UV
    MNRAS 000, 1–9 (2017) Preprint 9 July 2018 Compiled using MNRAS LATEX style file v3.0 Interstellar extinction in Orion. Variation of the strength of the UV bump across the complex. Leire Beitia-Antero,1⋆ Ana I. G´omez de Castro,1† 1AEGORA Research Group, Universidad Complutense de Madrid, Facultad de CC. Matem´aticas, Plaza de Ciencias 3, E-28040 Madrid Accepted XXX. Received YYY; in original form ZZZ ABSTRACT There is growing observational evidence of dust coagulation in the dense filaments within molecular clouds. Infrared observations show that the dust grains size distri- bution gets shallower and the relative fraction of small to large dust grains decreases as the local density increases. Ultraviolet (UV) observations show that the strength of the 2175 A˚ feature, the so-called UV bump, also decreases with cloud density. In this work, we apply the technique developed for the Taurus study to the Orion molecular cloud and confirm that the UV bump decreases over the densest cores of the cloud as well as in the heavily UV irradiated λ Orionis shell. The study has been extended to the Rosette cloud with uncertain results given the distance (1.3 kpc). Key words: ISM: dust, extinction 1 INTRODUCTION feature of the extinction curve, the so-called UV bump. The UV bump is, by far, the strongest spectral feature in the ex- The Interstellar Medium (ISM) is a complex ensemble of tinction curve but its source remains uncertain (see e.g. the gas, large molecules and dust coupled through the action of review by Draine (2003)).
    [Show full text]
  • Detection of Large-Scale X-Ray Bubbles in the Milky Way Halo
    Detection of large-scale X-ray bubbles in the Milky Way halo P. Predehl1†, R. A. Sunyaev2,3†, W. Becker1,4, H. Brunner1, R. Burenin2, A. Bykov5, A. Cherepashchuk6, N. Chugai7, E. Churazov2,3†, V. Doroshenko8, N. Eismont2, M. Freyberg1, M. Gilfanov2,3†, F. Haberl1, I. Khabibullin2,3, R. Krivonos2, C. Maitra1, P. Medvedev2, A. Merloni1†, K. Nandra1†, V. Nazarov2, M. Pavlinsky2, G. Ponti1,9, J. S. Sanders1, M. Sasaki10, S. Sazonov2, A. W. Strong1 & J. Wilms10 1Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany. 2Space Research Institute of the Russian Academy of Sciences, Moscow, Russia. 3Max-Planck-Institut für Astrophysik, Garching, Germany. 4Max-Planck-Institut für Radioastronomie, Bonn, Germany. 5Ioffe Institute, St Petersburg, Russia. 6M. V. Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute, Moscow, Russia. 7Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia. 8Institut für Astronomie und Astrophysik, Tübingen, Germany. 9INAF-Osservatorio Astronomico di Brera, Merate, Italy. 10Dr. Karl-Remeis-Sternwarte Bamberg and ECAP, Universität Erlangen-Nürnberg, Bamberg, Germany. †e-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] The halo of the Milky Way provides a laboratory to study the properties of the shocked hot gas that is predicted by models of galaxy formation. There is observational evidence of energy injection into the halo from past activity in the nucleus of the Milky Way1–4; however, the origin of this energy (star formation or supermassive-black-hole activity) is uncertain, and the causal connection between nuclear structures and large-scale features has not been established unequivocally.
    [Show full text]
  • Cassiopeia a January2008
    CASSIOPEIA A JANUARY2008 Cassiopeia A is the youngest (about 300 years old) known supernova Su Mo Tu We Th Fr Sa remnant in the Milky Way. Astronomers have used Chandra’s long ob - 01 02 03 04 05 servations of this remnant to make a map of the acceleration of elec - trons in this supernova remnant. The analysis shows that the electrons 06 07 08 09 10 11 12 are being accelerated to almost the maximum theoretical limit in some 13 14 15 16 17 18 19 parts of Cassiopeia A (Cas A) in what can be thought of as a “relativistic pinball machine.” Protons and ions, which make up the bulk of cosmic 20 21 22 23 24 25 26 rays, are expected to be accelerated in a similar way to the electrons. The Cas A observations thus provide strong evidence that supernova 27 28 29 30 31 remnants are key sites for energizing cosmic rays. 3C442A FEBRUARY2008 X -ray data from NASA’s Chandra X -ray Observatory and radio obser - Su Mo Tu We Th Fr Sa vations from the NSF’s Very Large Array show that a role reversal is 01 02 taking place in the middle of 3C442A - a system with two merging gal - 03 04 05 06 07 08 09 axies in the center. Chandra detects hot gas (blue) that has been push - ing aside the radio -bright gas (orange). This is the opposite of what 10 11 12 13 14 15 16 is typically found in these systems when jets from the supermassive black hole in the center create cavities in the hot gas surrounding the 17 18 19 20 21 22 23 galaxy.
    [Show full text]
  • Abundance Study of the Two Solar-Analogue Corot Targets HD 42618 and HD 43587 from HARPS Spectroscopy,
    A&A 552, A42 (2013) Astronomy DOI: 10.1051/0004-6361/201220883 & c ESO 2013 Astrophysics Abundance study of the two solar-analogue CoRoT targets HD 42618 and HD 43587 from HARPS spectroscopy, T. Morel1,M.Rainer2, E. Poretti2,C.Barban3, and P. Boumier4 1 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, Bât. B5c, 4000 Liège, Belgium e-mail: [email protected] 2 INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy 3 LESIA, CNRS, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, 92195 Meudon Cedex, France 4 Institut d’Astrophysique Spatiale, UMR 8617, Université Paris XI, Bâtiment 121, 91405 Orsay Cedex, France Received 11 December 2012 / Accepted 11 February 2013 ABSTRACT We present a detailed abundance study based on spectroscopic data obtained with HARPS of two solar-analogue main targets for the asteroseismology programme of the CoRoT satellite: HD 42618 and HD 43587. The atmospheric parameters and chemical com- position are accurately determined through a fully differential analysis with respect to the Sun observed with the same instrumental set-up. Several sources of systematic errors largely cancel out with this approach, which allows us to narrow down the 1-σ error bars to typically 20 K in effective temperature, 0.04 dex in surface gravity, and less than 0.05 dex in the elemental abundances. Although HD 42618 fulfils many requirements for being classified as a solar twin, its slight deficiency in metals and its possibly younger age indicate that, strictly speaking, it does not belong to this class of objects.
    [Show full text]
  • Herschel Space Observatory: Opening New Windows on the Universe
    The Herschel Space Observatory: Opening New Windows on the Universe William B. Latter Project Scientist and Task Lead for the NASA Herschel Science Center Herschel Space Observatory Carrying on Sir William’s Legacy • Herschel is an ESA Cornerstone mission, equivalent to a NASA Great Observatory in scientific and programmatic scope. • Herschel will be the largest single element space telescope for astronomical use launched to date. • Herschel will be the first long-duration, space-based observatory to open up the spectral window between 200 and 700 microns. • Herschel will be the only infrared/submillimeter space observatory to fill the gap between Spitzer and JWST. • Herschel will carry out important Spitzer follow-up. 2 1 Herschel in a nutshell • ESA Cornerstone Observatory instruments ‘nationally’ funded, int’l - NASA, CSA, Poland – collaboration ~1/3 guaranteed time, ~2/3 open time • FIR/Submm (57 - 670 µm) space facility large (3.5 m), low emissivity (< 4%), passively cooled (< 90 K) telescope 3 focal plane science instruments ≥3 years routine operational lifetime full spectral access low and stable background • Unique and complementary for λ < 200 µm larger aperture than cryogenically cooled telescopes (IRAS, ISO, Spitzer, Astro-F,…) more observing time than balloon- and/or air-borne instruments larger field of view than interferometers 3 4 2 Spatial Resolution: Spitzer vs. Herschel Spitzer Herschel Herschel offers same spatial resolution as Spitzer at ~4 times the wavelength 5 More about Herschel HIFI - Heterodyne Instrument for the Far- Infrared PI: T. de Grauuw, SRON, Groningen, The Netherlands Spectroscopy with 5 or 6 receiver bands 480 -1250 GHz and 1410-1910 GHz, λ/Δλ up to 107 (625-240 µm and 213-157 µm) SPIRE - Spectral and Photometric Imaging Receiver PI: M.
    [Show full text]
  • Observations of Comet IRAS-Araki-Alcock (1983D) at La Silla T
    - 12 the visual by 1.3 mag). Like for the other SOor variables we M explain this particular finding by the very high mass loss (M = Bol 5 6.10- M0 yr-') during outburst. The variations in the visual are caused by bolometric flux redistribution in the envelope whilst -10 the bolometric luminosity remains practically constant. The location of R127 in the Hertzsprung-Russell diagram together with the other two known SOor variables of the LMC -B are shown in fig. 8. We note that Walborn classified R127 as an Of or alterna­ tively as a late WN-type star. This indicates that the star is a late Of star evolving right now towards a WN star. Since we have -6 detected an SOor-type outburst of this star we conclude that this transition is not a smooth one but is instead accompanied '.8 '.6 4.0 3.6 by the occasional ejection of dense envelopes. Fig. 8: Location of the newly discovered S Dar variable R 127 in the References Hertzsprung-Russell diagram in comparison with the other two estab­ lished SOor variables of the LMG. Also included in the figure is the Conti, P. S.: 1976, Mem. Soc. Roy. Sei. Liege 9,193. upper envelope of known stellar absolute bolometric magnitudes as Dunean, J. C.: 1922, Publ. Astron. Soc. Pacific 34, 290. derived byHumphreys andDavidson (1979). The approximateposition Hubble, E., Sandage, A.: 1953, Astrophys. J. 118, 353. o( the late WN-type stars is also given. Humphreys, R. M., Davidson, K.: 1979, Astrophys. J. 232,409. Lamers, H.
    [Show full text]
  • EUCLID Mission Assessment Study
    EUCLID Mission Assessment Study Executive Summary ESA Contract. No. 5856/08/F/VS September 2009 EUCLID– Mapping the Dark Universe EUCLID is a mission to study geometry and nature of the dark universe. It is a medium-class mission candidate within ESA's Cosmic Vision 2015– 2025 Plan for launch around 2017. EUCLID has been derived by ESA from DUNE and SPACE, two complementary Cosmic Vision proposals addressing questions on the origin and the constitution of the Universe. 70% Dark Energy The observational methods applied by EUCLID are shape and redshift measure- ments of galaxies and clusters of galaxies. To 4% Baryonic Matter this end EUCLID is equipped with 3 scientific instruments: 26% Dark Matter • Visible Imager (VIS) • Near-Infrared Photometer (NIP) • Near-Infrared Spectrograph (NIS) The EUCLID Mission Assessment Study is the industrial part of the EUCLID assessment phase. The study has been performed by Astrium from September 2008 to September 2009 and is intended for space segment definition and programmatic evaluation. The prime responsibility is with Astrium GmbH (Friedrichshafen, Germany) with support from Astrium SAS (Toulouse, France) and Astrium Ltd (Stevenage, UK). EUCLID Mission EUCLID shall observe 20.000 deg2 of the extragalactic sky at galactic latitudes |b|>30 deg. The sky is sampled in step & b>30° stare mode with instantaneous fields of about 0.5 deg2 . Nominally a strip of about 20 deg in latitude is scanned per day (corresponding to about 1 deg in longitude). galactic plane step 1 b<30° step 2 step 3 The sky is nominally observed along great circles in planes perpendicular to the Sun- spacecraft axis (SAA=0).
    [Show full text]
  • Theoretical Limits of Star Sensor Accuracy †
    sensors Article Theoretical Limits of Star Sensor Accuracy † Marcio A. A. Fialho 1,* and Daniele Mortari 2 1 Divisão de Eletrônica Aeroespacial (DIDEA), National Institute for Space Research (INPE), Av. dos Astronautas, 1758, São José dos Campos, SP 12227, Brazil 2 Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA; [email protected] * Correspondence: marcio.fi[email protected]; Tel.: +55-12-3208-6145 † This paper is a revised and extended version of a work previously published as a doctoral thesis chapter. Received: 17 October 2019; Accepted: 25 November 2019; Published: 5 December 2019 Abstract: To achieve mass, power and cost reduction, there is a trend to reduce the volume of many instruments aboard spacecraft, especially for small spacecraft (cubesats or nanosats) with very limited mass, volume and power budgets. With the current trend of miniaturizing spacecraft instruments one could naturally ask if is there a physical limit to this process for star sensors. This paper shows that there is a fundamental limit on star sensor accuracy, which depends on stellar distribution, star sensor dimensions and exposure time. An estimate of this limit is given for our location in the galaxy. Keywords: star sensors; stellar distribution; photometry; astrometry; star catalogs; fundamental limits 1. Introduction Much progress in a variety of fields in science and technology could be accomplished thanks to the miniaturization obtained in microelectronics in the recent decades. One of the most remarkable examples is the prediction by Gordon Moore that the computational power would increase exponentially, an empirical observation that became known as Moore’s law [1–4].
    [Show full text]
  • World Space Observatory %Uf02d Ultraviolet Remains Very Relevant
    WORLD SPACE OBSERVATORY-ULTRAVIOLET Boris Shustov, Ana Inés Gómez de Castro, Mikhail Sachkov UV observatories aperture pointing mode , Å OAO-2 1968.12 - 1973.01 20 sp is 1000-4250 TD-1A 1972.03 - 1974.05 28 s is 1350-2800+ OAO-3 1972.08 - 1981.02 80 p s 900-3150 ANS 1974.08 - 1977.06 22 p s 1500-3300+ IUE 1978.01 - 1996.09 45 p s 1150-3200 ASTRON 1983.03 - 1989.06 80 p s 1100-3500+ EXOSAT 1983.05 - 1986. 2x30 p is 250+ ROSAT 1990.06 - 1999.02 84 sp i 60- 200+ HST 1990.04 - 240 p isp 1150-10000 EUVE 1992.06 - 2001.01 12 sp is 70- 760 ALEXIS 1993.04 - 2005.04 35 s i 130- 186 MSX 1996.04 - 2003 50 s i 1100-9000+ FUSE 1999.06 - 2007.07 39х35 (4) p s 905-1195 XMM 1999.12 - 30 p is 1700-5500 GALEX 2003.04 - 2013.06 50 sp is 1350-2800 SWIFT 2004.11 - 30 p i 1700-6500 2 ASTROSAT/UVIT UVIT - UltraViolet Imaging Telescopes (on the ISRO Astrosat observatory, launch 2015); Two 40cm telescopes: FUV and NUV, FOV 0.5 degrees, resolution ~1” Next talk by John Hutchings! 3 4 ASTRON (1983 – 1989) ASTRON is an UV space observatory with 80 cm aperture telescope equipped with a scanning spectrometer:(λλ 110-350 nm, λ ~ 2 nm) onboard. Some significant results: detection of OH (H2O) in Halley comet, UV spectroscopy of SN1987a, Pb lines in stellar spectra etc. (Photo of flight model at Lavochkin Museum).5 “Spektr” (Спектр) missions Federal Space Program (2016-2025) includes as major astrophysical projects: Spektr-R (Radioastron) – launched in 2011.
    [Show full text]
  • THE GAMMA RAY EXPERIMENT for the SMALL ASTRONOMY SATELLITE B (SAS-B) C. E. Fichtel, C. H..~Hrmann, R. C. Hartman, D. A. Kniffen
    THE GAMMA RAY EXPERIMENT FOR THE SMALL ASTRONOMY SATELLITE B (SAS-B) C. E. Fichtel, C. H.. ~hrmann, R. C. Hartman, D. A. Kniffen, H. B. Ogelman*, and R. W. Ross Goddard Space Flight Center, Greenbelt, Md. 20771 Abstract A magnetic core digitized spark chamber gamma ray telescope has been developed for satellite use and will be flown on SAS-B in less than one year. The SAS-B detector will have the following characteristics: Effective area ~ 500 cm2 , solid angle = ~ SR; Efficiency (high energy) ~ 0.29; and time resolution of better than two milliseconds. A detailed picture of the galactic plane in gamma rays should be obtained with this experiment, and a study of point sources, including short bursts of gamma rays from supernovae explosions, will also be possible. 1. Introduction The SAS-B gamma ray telescope represents the first satellite version of a planned evolution of a gamma ray digitized spark chamber telescope which began with the development of a balloon borne instrument. The telescope is aimed at the study of gamma rays whose energy exceeds about 20 MeV. In the early 1960's, it was realized that the celestial gamma ray intensity was very low compared to the high background of cosmic ray particles and earth albedo. For this reason, a picture type detector seemed to be needed to identify unambiguously the electron pair produced by the gamma ray and to study its properties - particularly to obtain a measure of the energy and arrival direction of the gamma ray. In addition, the secondary gamma ray flux produced by cosmic rays in the atmosphere, even at the altitudes of the present large balloons, severely limits the gamma ray astronomy which can be accomplished with balloons and dictates that gamma ray ~stronomy must ultimately be accomplished with detector systems on satellites.
    [Show full text]