Local Knowledge About Sustainable Harvesting and Availability of Wild Medicinal Plant Species in Lemnos Island, Greece Dimitrios Papageorgiou1, Penelope J

Total Page:16

File Type:pdf, Size:1020Kb

Local Knowledge About Sustainable Harvesting and Availability of Wild Medicinal Plant Species in Lemnos Island, Greece Dimitrios Papageorgiou1, Penelope J Papageorgiou et al. Journal of Ethnobiology and Ethnomedicine (2020) 16:36 https://doi.org/10.1186/s13002-020-00390-4 RESEARCH Open Access Local knowledge about sustainable harvesting and availability of wild medicinal plant species in Lemnos island, Greece Dimitrios Papageorgiou1, Penelope J. Bebeli2, Maria Panitsa3 and Christoph Schunko1* Abstract Background: In Europe and the Mediterranean, over-exploitation and destructive harvesting techniques have been identified as two critical threats affecting the sustainable harvesting of wild medicinal plant (WMP) species. However, unsustainable harvesting is not an issue everywhere and localized assessments are needed. Local knowledge has been praised for its potential for local short-term assessments. In this study, we aimed to register the known, harvested, and locally utilized WMP species and understand local knowledge of harvesters about the ecological sustainability of WMP harvesting and the perceived changes of WMP availability. Materials and methods: This study was conducted on Lemnos island, Greece, in July and August 2018. Sixteen harvesters knowledgeable about gathering and using WMP were chosen through purposeful and snowball sampling. Successive free-lists provided insights on the taxa known, harvested, and utilized by harvesters and subsequent semi-structured interviews served to understand harvesting practices and perceived changes of WMP availability. Participant observation during seven harvesting walks allowed for additional insights and facilitated the collection of voucher specimens. Results: In total, 144 different plant taxa were listed as useful and 81 had been harvested in the prior 4 years. Medicinal applications were mainly related to digestive and respiratory system issues. A number of favorable harvesting practices suggested a high potential towards an ecologically sustainable harvest. Although, a decreased availability for certain plant taxa and harvesting sites was reported and mainly attributed to external factors such as pollution, unusually dry weather, intentional pastureland burning or chemicals in agriculture, but also destructive harvesting by less knowledgeable harvesters. (Continued on next page) * Correspondence: [email protected] 1Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendel-Straße 33, 1180 Vienna, Austria Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Papageorgiou et al. Journal of Ethnobiology and Ethnomedicine (2020) 16:36 Page 2 of 23 (Continued from previous page) Conclusions: Knowledgeable harvesters of Lemnos gather and use a considerable number of WMP taxa and possess local knowledge that supports an ecologically sustainable harvest. However, certain plant taxa and areas of the island were indicated to be under pressure from harvesting, unusual climatic conditions, and agricultural practices. Our approach confirmed that local knowledge should be taken into account for assessing the sustainability of WMP harvesting. Keywords: Ethnobotany, Ethnopharmacology, Folk medicine, Foraging, Near east, Plant conservation, Traditional medicine, Wild plant gathering Background groundwork for developing scientific monitoring for In Europe and the Mediterranean, over-exploitation and conservation [11]. destructive harvesting techniques have been identified as In this study, we built on these insights and make use two critical threats directly or indirectly affecting medi- of local knowledge for assessing the sustainability of har- cinal plant species [1, 2]. The main direct environmental vesting activities. We aimed to (a) register the known, consequence of unsustainable harvesting practices is the harvested, and locally utilized wild medicinal plant reduced reproduction, growth, and survival rates of the (WMP) species, (b) understand the local knowledge of targeted species [3]. Such changes can consecutively de- harvesters about an ecologically sustainable WMP har- struct the ecosystem balances and influence the dynam- vesting, and (c) understand perceived changes of har- ics and structure of populations or even drive species to vesters of WMP availability. We thereby regard local the brink of extinction [2–4]. knowledge as epistemologically distinct from scientific However, unsustainable harvesting is not an issue knowledge and being valuable on its own rather than everywhere [5] and, in contrary to that, most plant spe- searching for its validation with scientific methods [15]. cies have been found to be harvested sustainably [6]. Tolerance to the harvesting of wild plants varies and de- pends on several factors, including a plants’ lifespan, the Methods part of the plant that is harvested, species abundance, Study area — the habitat where it is harvested, or species growth rate. The study was conducted on Lemnos island in contem- porary sources also spelled Limnos—Greece, occupying For example, slow-growing plants are particularly sus- 2 ceptible to heavy harvesting, while those of weedy nature about 482 km and biogeographically belonging to the are less vulnerable [7, 8]. The assessment of ecological North Aegean Sea [16, 17] (Fig. 1). It resides in the Pre- ′– ′ ′– ′ sustainability of harvesting thus needs to be based on fecture of Lesvos (39° 46 40° 02 N, 25° 02 25° 26 E) the consideration of several factors together, most im- [16, 18] and the climate of the area is the Mediterranean portantly the plant parts collected and its life form [9]. with mild winters, dry hot summers, and mean annual Estimating the sustainability of a harvested population precipitation of about 500 mm [19, 20]. and the effect of wild plant harvesting on other elements From an ecological perspective, the island is character- of the ecosystem requires long-lasting studies and can ized by a variety of habitat types including flat coastlines, be hard to isolate and monitor. lagoons, wetlands, marshes, sand dunes, remnants of a Local people however many times rely on local know- Valonia oak (Quercus ithaburensis Decne. subsp. macro- ledge to effectively and sustainably manage the harvest lepis (Kotschy) Hedge & Yalt.) forest, agricultural crops, of wild plants [10–12]. Consequently, the involvement of and extended phrygana [16, 18]. Despite its diverse envi- local people in natural resource and harvesting monitor- ronments, the flora of the island is rather poor com- ing regimes is considered key for its success [13, 14]. For pared to neighboring islands, with regard to the number short-term studies, research into the local knowledge of plant species, but still maintains significant ecological about the sustainability of wild plant harvesting may be value due to its multifarious vegetation formations [17]. a promising approach to understand the sustainability of Despite its high ecological and cultural value land- ’ harvesting activities. For example, this includes the har- scapes, the island s natural ecosystems have been greatly vesting techniques and management practices, not only degraded [18, 21]. The smooth topography with medium the specific methods used by the harvesters prior, dur- inclinations allowed intense human activities to take ing, or after harvesting, but also observations of plant place on almost the entire island. Extended agriculture, populations and harvesting activities of other harvesters. tourism facilities, and the traditional agropastoral prac- It may also act as a tool in detecting early signs of tice of burning and intense grazing (sheep and goats) changes in species and population trends and create the have drastically affected the formation of natural ecosys- tems and their vegetative composition [18]. Papageorgiou et al. Journal of Ethnobiology and Ethnomedicine (2020) 16:36 Page 3 of 23 Fig. 1 Map and location of Lemnos island. Village names indicate places where interviews and/or harvesting walks were conducted (figure adapted from [17, 18]) Nationwide restrictions for gathering WMP species new information coming out from the last five inter- apply in Lemnos. Current Greek legislation allows the views and no more knowledgeable WMP harvesters extraction of two kilos of fresh plant material per plant could be identified. Respondents’ ages varied from 32 to species and person. Uprooting, underground plant part 78 years, with an arithmetic mean of 57 years. Fifteen of removal, and orchid harvesting are completely forbidden the respondents were permanent residents
Recommended publications
  • The Maiwa Guide to NATURAL DYES W H at T H Ey a R E a N D H Ow to U S E T H E M
    the maiwa guide to NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM WA L NUT NATURA L I ND IG O MADDER TARA SYM PL O C OS SUMA C SE Q UO I A MAR IG O L D SA FFL OWER B U CK THORN LIVI N G B L UE MYRO B A L AN K AMA L A L A C I ND IG O HENNA H I MA L AYAN RHU B AR B G A LL NUT WE L D P OME G RANATE L O G WOOD EASTERN B RA ZIL WOOD C UT C H C HAMOM IL E ( SA PP ANWOOD ) A LK ANET ON I ON S KI NS OSA G E C HESTNUT C O C H I NEA L Q UE B RA C HO EU P ATOR I UM $1.00 603216 NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM Artisans have added colour to cloth for thousands of years. It is only recently (the first artificial dye was invented in 1857) that the textile industry has turned to synthetic dyes. Today, many craftspeople are rediscovering the joy of achieving colour through the use of renewable, non-toxic, natural sources. Natural dyes are inviting and satisfying to use. Most are familiar substances that will spark creative ideas and widen your view of the world. Try experimenting. Colour can be coaxed from many different sources. Once the cloth or fibre is prepared for dyeing it will soak up the colour, yielding a range of results from deep jew- el-like tones to dusky heathers and pastels.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Medicinal Plants in the High Mountains of Northern Jordan
    Vol. 6(6), pp. 436-443, June 2014 DOI: 10.5897/IJBC2014.0713 Article Number: 28D56BF45309 ISSN 2141-243X International Journal of Biodiversity Copyright © 2014 Author(s) retain the copyright of this article and Conservation http://www.academicjournals.org/IJBC Full Length Research Paper Medicinal plants in the high mountains of northern Jordan Sawsan A. Oran and Dawud M. Al- Eisawi Department of Biological Sciences, Faculty of Sciences, University of Jordan, Amman, Jordan. Receive 10 April, 2014; Accepted 24 April, 2014 The status of medicinal plants in the high mountains of northern Jordan was evaluated. A total of 227 plant species belonging to 54 genera and 60 families were recorded. The survey is based on field trips conducted in the areas that include Salt, Jarash, Balka, Amman and Irbid governorates. Line transect method was used; collection of plant species was done and voucher specimens were deposited. A map for the target area was provided; the location of the study area grids in relation to their governorate was included. Key words: Medicinal plants, high mountains of northern Jordan, folk medicine. INTRODUCTION Human beings have always made use of their native cinal plant out of 670 flowering plant species identified in flora, not just as a source of nutrition, but also for fuel, the same area in Jordan. Recent studies are published medicines, clothing, dwelling and chemical production. on the status of medicinal plants that are used fofolk Traditional knowledge of plants and their properties has medicine by the local societies (Oran, 2014). always been transmitted from generation to generation Medicinal plants in Jordan represent 20% of the total through the natural course of everyday life (Kargıoğlu et flora (Oran et al., 1998).
    [Show full text]
  • LIMNOS Letecké Zájezdy Na 7, 10, 11 Nocí
    LIMNOS Letecké zájezdy na 7, 10, 11 nocí Odletové místo Praha Let na Limnos je s mezipřistáním v Kavale, let zpět je přímý. LIMNOS DOMOV ŘECKÉHO BOHA OHNĚ HÉFAISTA OSTROV TISÍCE POCITŮ Limnos je jedinečný, malebný a turismem V restauraci ochutnejte místní domácí těstoviny ještě neobjevený ostrov v severovýchodní (valanes, aftoudia, fiongakia, flomaria), DOPORUČUJEME části Egejského moře. Osmý největší ostrov kaspakno (jehněčí), afkos (luštěnina) a čerstvé nebojte se pronajmout si auto Řecka. V řecké mytologii je právě tento rybí speciality. nebo motorku a vyražte za poznáním ostrov domovem řeckého boha ohně panenské přírody na ostrově, Héfaista a nalézá se zde jeho pověstná dílna. Ostrov Limnos je ideálním cílem pro klidnou narazíte na úžasné přírodní skvosty, dovolenou – najdete tu „sváteční“ tempo života, místa s dech beroucími Ostrov čítá asi 35 vesnic a měst. Nejbližším relaxaci, odpočinek, krásnou přírodu, nádherné a nezapomenutelnými výhledy bodem k řecké pevnině je tzv. „třetí prst“ pláže, vynikající kuchyni, přátelské místní jako milou pozornost, dáreček poloostrova Chalkidiki a to výběžek Athos. obyvatele a velmi zajímavá místa k poznávání. nebo suvenýr můžete pořídit Za jasného slunného počasí je z Limnosu na ostrově zdejší vínko, tsipouro, na Athos velice dobrá viditelnost. Na 259 km Pokud máte v plánu pronajmout si auto nebo med a sýry z kozího i ovčího mléka se rozkládá členité pobřeží plné nádherných motorku na více dnů a poznat ostrov důkladně, dle prastarých receptur zálivů a mysů, na druhé straně i dvou rozlehlých označte si na mapě tato zajímavá místa: Atsiki, navštivte během pobytu tradiční propastí – Bourni na severu a Moudros na jihu. Agios Demetrios, Agia Sofia, Agios Efstratios, tavernu či restauraci a dopřejte Agaryones, Dafni, Fysini, Kaspakas, Kontias, si typické řecké meze, nejlepší tavernu Na ostrově se nachází několik znamenitých Kontopouli, Kaminia, Kalliopi, Kotsinas, Kornos, poznáte vždy podle toho, kde je nejvíce zlatých pláží, celé pobřeží ostrova jich lemuje Kallithea, Karpasi, Katalakko, Livadochori, místních lidí.
    [Show full text]
  • Brozura Alkana Anglicka Zlom.Indd
    Text: Ing. Marta Mútňanová Ing. Libor Ulrych, PhD. Translati on: RNDr. Radoslav Považan, Mgr. Mária Gréčová Graphic: Ing. Viktória Ihringová Photographs by (see pictures): Ing. Marta Mútňanová (No. 1 – the plant, 2, 3, 4, 9, 12, 13, 14, 15, 17) Ing. Libor Ulrych, PhD. (No. 1 – detail of infl orescence, 5, 6, 7, 8, 11) RNDr. Alžbeta Szabóová (No. 10, 16) Published by the State Nature Conservancy of the Slovak Republic 2010 introduction In 2009 the State Nature Conservancy of the Slovak Republic applied for a non-re- fundable subsidy from the Ministry of Environment of the Slovak Republic within the Operati onal Programme Environment, priority axis 5. Protecti on and Regenerati on of Natural Environment and Landscape, in order to ensure implementati on of program- mes to preserve alkanet. Operati onal Programme Environment aims at use of fi nancial resources from the Euro- pean Regional Development Fund and the Cohesion Fund in the environment protecti - on in the period 2007 – 2013. Its objecti ve is to improve environmental status as well as the rati onal use of natural resources. The project enti tled Implementati on of programmes to preserve criti cally endange- red plant species was approved in September 2009. It focused on preservati on of two criti cally endangered plant species: alkanet – Alkanna ti nctoria and autumn crocus – Colchicum arenarium. The State Nature Conservancy of the Slovak Republic elabora- ted conservati on programmes for both species. On February 25, 2009 the programmes were approved by the Ministry of Environment at an operati ve session of the Minister of Environment in Decree No.
    [Show full text]
  • ISTA List of Stabilized Plant Names 7Th Edition
    ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations ..........................................................................................................................
    [Show full text]
  • REPORT on CROP LANDRACES, CROP WILD RELATIVES and WILD HERBS (Including Medicinal and Aromatic Plants) Terra Lemnia Project / Strategy 1.1 / Activity 1.1.2
    REPORT ON CROP LANDRACES, CROP WILD RELATIVES AND WILD HERBS (including medicinal and aromatic plants) terra lemnia project / STRATEGY 1.1 / ACTIVITY 1.1.2 Editors: Prof. Dr. PENELOPE BEBELI Agricultural University of Athens DIMITRA GRIGOROPOULOU Agronomist, MedINA Terra Lemnia collaborator SOFIA KYRIAKOULEA Ph.D. student, Agricultural University of Athens Updated Version DANAE SFAKIANOU Agronomist, MedINA Terra Lemnia collaborator December 2020 Dr. RICOS THANOPOULOS Agricultural University of Athens REPORT ON CROP LANDRACES, CROP WILD RELATIVES AND WILD HERBS (including medicinal and aromatic plants) terra lemnia project / STRATEGY 1.1 / ACTIVITY 1.1.2 Updated Version December 2020 EDITORS: Prof. Dr. PENELOPE BEBELI Agricultural University of Athens DIMITRA GRIGOROPOULOU Agronomist, MedINA Terra Lemnia collaborator SOFIA KYRIAKOULEA Ph.D. student, Agricultural University of Athens DANAE SFAKIANOU Agronomist, MedINA Terra Lemnia collaborator Dr. RICOS THANOPOULOS Agricultural University of Athens Coordinated by: Funded by: terra lemnia project | www.terra-lemnia.net MAVA 2017-2022 Mediterranean Strategy Outcome M6 Loss of biodiversity by abandonment of cultural practices Acknowledgements Professor Penelope Bebeli would like to acknowledge the support of Tilemachos Chatzigeorgiou, Aggeliki Petraki, Konstantina Argyropoulou and George Dimitropoulos in editing the text of this report. We acknowledge the contribution of Assistant Professor Maria Panitsa, Professor Erwin Bergmeier and Dr. Stefan Meyer in the identification of wild species as well as for providing the catalogue of the recorded Lemnian species. The authors would like to thank Ivy Nanopoulou and Dimitrios Papageorgiou for their participation in the expedition of 2018. The authors would also like to thank Anemoessa (Association for the Protection of the Environment and Architectural Heritage of Lemnos Island) and MedINA for their overall support in this endeavour.
    [Show full text]
  • Karadeniz Fen Bilimleri Dergisi Antimicrobial Activity and Cytotoxicity of Alkanna Tinctoria
    Karadeniz Fen Bilimleri Dergisi, 9(1), 176-185, 2019. DOI: 10.31466/kfbd.566276 Karadeniz Fen Bilimleri Dergisi KFBD The Black Sea Journal of Sciences ISSN (Online): 2564-7377 Araştırma Makalesi / Research Article Antimicrobial Activity and Cytotoxicity of Alkanna Tinctoria (L.) Tausch Root Extracts Hatice Aysun MERCIMEK TAKCI1*, Filiz UCAN TURKMEN2, Fatma Ceren ANLAS3, Fulya USTUN ALKAN3, Pemra BAKIRHAN4, Cihan DEMIR4, Nazim SEKEROGLU2 1Arts and Sciences Faculty, Department of Molecular Biology and Genetics, Kilis 7 Aralık University, 79000, Kilis, Turkey. [email protected] 2Engineering and Architecture Faculty, Department of Food Engineering, Kilis 7 Aralık University, 79000, Kilis, Turkey. [email protected]/[email protected] 3Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University, 34320, Avcilar, Istanbul, Turkey. [email protected], [email protected] 4The Institute for Graduate Studies in Sciences and Engineering, Kilis 7 Aralık University, Kilis, 79000, Turkey. [email protected] Received: 16.05.2019 *Corresponding Author: [email protected] Accepted: 03.06.2019 Abstract Alkanna tinctoria (L.) Tausch produced naphthoquinones known as DNA-topoisomerases inhibitors has been used as the traditional therapeutic agent, especially wound healing in Turkey. The antimicrobial activity against 9 clinical microorganisms and cytotoxicity on canine mammary carcinoma cell line (CMT-U27) of Alkanna tinctoria root extracts (methanol, ethanol and acetonitrile) were researched by using MTT analysis. Alkanet root extracts showed antimicrobial activity against 2 (Proteus spp. and S. haemolyticus) out of 9 microorganisms. In vitro study towards CMT-U27 cancer cells, acetonitrile root extract at 100 µg/mL concentration showed strong and significant anti- proliferative effect. Our results are manifested that the Alkanet acetonitrile root extract can be evaluated as potential therapeutic agent, immediately after identification of bio-active metabolits in extract.
    [Show full text]
  • Molecular Systematics of Genus Atractylodes (Compositae, Cardueae): Evidence from Internal Transcribed Spacer (ITS) and Trnl-F Sequences
    Int. J. Mol. Sci. 2012, 13, 14623-14633; doi:10.3390/ijms131114623 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Molecular Systematics of Genus Atractylodes (Compositae, Cardueae): Evidence from Internal Transcribed Spacer (ITS) and trnL-F Sequences Hua-Sheng Peng 1,2, Qing-Jun Yuan 1, Qian-Quan Li 1 and Lu-Qi Huang 1,* 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China; E-Mails: [email protected] (H.-S.P.); [email protected] (Q.-J.Y.); [email protected] (Q.-Q.L.) 2 Department of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230031, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-10-8404-4340. Received: 13 August 2012; in revised form: 26 October 2012 / Accepted: 30 October 2012 / Published: 9 November 2012 Abstract: To determine the evolutionary relationships among all members of the genus Atractylodes (Compositae, Cardueae), we conducted molecular phylogenetic analyses of one nuclear DNA (nrDNA) region (internal transcribed spacer, ITS) and one chloroplast DNA (cpDNA) region (intergenic spacer region of trnL-F). In ITS and ITS + trnL-F trees, all members of Atractylodes form a monophyletic clade. Atractylodes is a sister group of the Carlina and Atractylis branch. Atractylodes species were distributed among three clades: (1) A. carlinoides (located in the lowest base of the Atractylodes phylogenetic tree), (2) A. macrocephala, and (3) the A. lancea complex, including A. japonica, A. coreana, A. lancea, A. lancea subsp. luotianensis, and A. chinensis. The taxonomic controversy over the classification of species of Atractylodes is mainly concentrated in the A.
    [Show full text]
  • Liste Plantes
    Plantes Quantité Acacia angustissima (Fabaceae) Acacia farnesiana Acacia greggii Acanthophyllum pungens (Caryophyllaceae) Acanthus hirsurtus subsp.syriacus (Acanthaceae) Acanthus mollis Acanthus spinosus Acanthus spinosus subsp.spinosissimus Adenocarpus decorticans (Fabaceae) Adenostoma fasciculatum (Rosaceae) Agave parryi var. truncata (Agavaceae) Aloysia gratissima (Verbenaceae) Amygdalus orientalis (Rosaceae) Anisacanthus quadrifidus subsp. wrightii (Acanthaceae) Anisacanthus thurberii Anthirrhinum charidemi (Plantaginaceae) Anthyllis hermanniae (Fabaceae) Aphyllanthes monspeliensis (Liliaceae) Arbutus andrachne (Ericaceae) Arbutus menziesii Arbutus unedo Arbutus x andrachnoïdes Arbutus x thuretiana Arbutus xalapensis subsp. texana Arbutus-xalapensis-subsp. -arizonica Arctostaphylos (Ericaceae) Arctostaphylos canescens subsp. canescens Arctostaphylos glandulosa subsp. glandulosa Arctostaphylos glauca Arctostaphylos manzanita Arctostaphylos pringlei subsp. pringlei Arctostaphylos pungens Argania spinosa (Sapotaceae) Argyrocytisus battandieri ( Leguminosae) Aristolochia baetica ( Aristolochiaceae) Aristolochia californica Aristolochia chilensis Aristolochia parvifolia Aristolochia pistolochia Aristolochia rotunda Aristolochia sempervirens Artemisia alba (Compositae) Artemisia alba var. canescens Artemisia arborescens Artemisia caerulescens subsp. gallica Artemisia californica Artemisia cana Artemisia cana subsp. bolanderi Artemisia herba-alba Artemisia tridentata subsp. nova Artemisia tridentata subsp. tridentata Artemisia tridentata
    [Show full text]
  • Nuclear and Plastid DNA Phylogeny of the Tribe Cardueae (Compositae
    1 Nuclear and plastid DNA phylogeny of the tribe Cardueae 2 (Compositae) with Hyb-Seq data: A new subtribal classification and a 3 temporal framework for the origin of the tribe and the subtribes 4 5 Sonia Herrando-Morairaa,*, Juan Antonio Callejab, Mercè Galbany-Casalsb, Núria Garcia-Jacasa, Jian- 6 Quan Liuc, Javier López-Alvaradob, Jordi López-Pujola, Jennifer R. Mandeld, Noemí Montes-Morenoa, 7 Cristina Roquetb,e, Llorenç Sáezb, Alexander Sennikovf, Alfonso Susannaa, Roser Vilatersanaa 8 9 a Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain 10 b Systematics and Evolution of Vascular Plants (UAB) – Associated Unit to CSIC, Departament de 11 Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de 12 Barcelona, ES-08193 Bellaterra, Spain 13 c Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 14 Chengdu, China 15 d Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA 16 e Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), FR- 17 38000 Grenoble, France 18 f Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014 University of Helsinki, 19 Finland; and Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 20 2, 197376 St. Petersburg, Russia 21 22 *Corresponding author at: Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s. n., ES- 23 08038 Barcelona, Spain. E-mail address: [email protected] (S. Herrando-Moraira). 24 25 Abstract 26 Classification of the tribe Cardueae in natural subtribes has always been a challenge due to the lack of 27 support of some critical branches in previous phylogenies based on traditional Sanger markers.
    [Show full text]
  • A Formal Classification of the Lygeum Spartum Vegetation of the Mediterranean Region
    DR. CORRADO MARCENÒ (Orcid ID : 0000-0003-4361-5200) Article type : Research article Florian Jansen Coordinating Editor: Prof. Florian Jansen A formal classification of the Lygeum spartum vegetation of the Mediterranean Region Corrado Marcenò1, Riccardo Guarino2, Ladislav Mucina3, Idoia Biurrun1, Ulrich Deil4, Kamal Shaltout5, Manfred Finckh6, Xavier Font 7, Javier Loidi1 1 Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, 48080, Spain 2 Department of Biological, Chemical and Pharmaceutical Sciences, and Technologies, University of Palermo, Palermo, 90128, Italy 3 Harry Butler Institute, Murdoch University, 90 South Street, Murdoch 6150, Perth, Australia; Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa 4 Department of Geobotany, Faculty of Biology, University of Freiburg, 79104 Freiburg i. Br., Germany 5 Faculty of Science, Tanta University, Tanta, 31527, Egypt 6 Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany 7Plant Biodiversity Resource Centre, University of Barcelona, 08028, Barcelona, Spain This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/avsc.12456 This article is protected by copyright. All rights reserved ORCID Corrado Marcenò: 0000-0003-4361-5200 Riccardo Guarino: 0000-0003-0106-9416 Ladislav Mucina: 0000-0003-0317-8886 Idoia Biurrun: 0000-0002-1454-0433 Manfred Finckh: 0000-0003-2186-0854 Xavier Font: 0000-0002-7253-8905 Javier Loidi: 0000-0003-3163-2409 Correspondence Corrado Marcenò, Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, 48080, Spain Email: [email protected] Funding information CM, IB and JL were funded by the Basque Government (IT936-16).
    [Show full text]