Lab 6. Rotational Motion Experiment Type: Open-Ended

Total Page:16

File Type:pdf, Size:1020Kb

Lab 6. Rotational Motion Experiment Type: Open-Ended Lab 6. Rotational Motion Experiment Type: Open-Ended Overview In this experiment, students will determine the moment of inertia (or called rotational inertia) of an object about an axis of rotation using two methods: (1) calculate the moment of inertia from the mass and geometric dimensions, (2) determine the moment of inertia from the equation, net "r = I#r , by measuring the torque and the angular acceleration. Objectives On completion of this experim!e nt, students should have learned how to: 1) measure the angular acceleration of a rotating object 2) determine the moment of inertia of a rotating object Review of concepts: Moment of Inertia (or rotational inertia) r Analogous to net F = mar for linear motion, rotational motion is governed by r net "r = I#r , where "r = r # F = torque, I = rotational inertia, $r = angular acceleration. Mass (or linear inertia) is the object’s “resistance” to change in its linear motion. ! The moment of inertia is the object's resistance to change in its rotational motion. ! ! Unlike mass, the moment of inertia is not a single number for a particular object. The moment of inertia of an object depends on the axis of rotation and the mass distribution of the object. Which do you think has the greater moment of inertia, a ruler rotated about an axis going down its length or a ruler rotated about an axis which goes perpendicular through the face? In our experiment, we would like to measure the moment of inertia of an object that is composed of three cylinders of metal. Figure 0-1 We wish to find the moment of inertia of this sandwich of cylinders Method 1: You can find the moment of inertia directly by measuring the mass and radius of each cylinder, since you know that the moment of inertia is Eq. (7-1). I = ! r 2dm (7-1) In this equation, r is the (radial) distance (in cylindrical coordinates) from the axis of rotation and dm is an infinitesimally small piece of mass at that distance. Solving equation (7-1) for the sandwich of cylinders, the moment of inertia is 1 1 1 I = m r 2 + m r 2 + m r 2 (7-2) 2 1 1 2 2 2 2 3 3 In Eq. (7-2) the subscripts 1, 2, and 3 indicate the individual cylinders as labeled in Fig. 7-1. The r1, r2, and r3 variables are the radii of the cylinders, and the m1, m2, and m3 variables are the masses of the individual cylinders. Unfortunately, the cylinders are stuck together, and there’s no way to measure each individual mass. However, we know that the cylinders are made out of the same material and we measure the total mass. Can we use these information to determine the mass of the individual cylinders? What assumptions are made in your technique for determining the masses? Method 2: “Newton’s Second Law” for rotational motion: net "r = I#r (7-4) relates the net torque, "r , to the product of the moment of inertia, I, and the angular r acceleration, " . We can measure the angular acceleration and we can measure the applied force and the “moment ar!m ” to determine the torque applied, so we can solve for the moment of inertia. The torque , τapplied, will be provided by hanging a mass, m , on the cyl!inde r sandwich, as shown in Fig. 7-2. h ! Figure 0-2 A string will be wrapped around one of the cylinders. A hanging mass will be attached to the string to apply a known force to the cylinder sandwich Of course, friction is also present, so we need to count the torque due to friction, τfriction. which acts in the opposite direction of the applied torque. Thus, the net torque is: " applied # " friction = I$ (7-5) Since we do not know how large is the frictional force, if we only do one measurement of the applied torque and the angular acceleration, we still cannot solve for the moment of inertia. H!o wever, if we assume that frictional torque is constant (independent of the magnitude of applied torque), then Eq. (7-5) is a linear equation when plotting applied torque vs, angular acceleration. By varying the applied torque (either changing the applied force or the “moment arm”) and measuring the corresponding angular acceleration, we should find a line whose slope is the moment of inertia and whose “y- intercept” is the torque due to friction. What if " friction is not a constant but linear proportional to the applied torque, now what would be the “y- intercept” of the applied torque vs. angular acceleration graph? Suppose the frictional torque occurs mainly at the contact points of the rotating axle with the end plates. How can you vary the applied torque without varying t!he frictional torque? (Remember that the applied torque can be varied by either changing the applied force or the “moment arm”. Which method of changing the applied torque will NOT change the amount of friction at the contact point?) This method requires you to measure the angular acceleration for different values of applied torque. You’ll have to figure that out on your own, but here’s a hint: is there a relation between the angular acceleration of the cylinders and the linear acceleration of the hanging mass (assuming the string is not slipping). In the first week of this lab, concentrate on developing a procedure that will allow you to determine the moment of inertia for the system using these two methods. You should try to complete the data collection this week, but it’s okay if that doesn’t happen. You should at least have preliminary data to test if your ideas work. If they do not work, modify your approach. In the second week you should refine your experiment. How can you get more accurate timing? Did you select the hanging masses that worked well in the experiment? What assumptions did you make that can be eliminated? You should think about all these questions (and more!) in the week between the two lab periods. .
Recommended publications
  • The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected]
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Fall 2017 The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Aerospace Engineering Commons, Aviation Commons, Civil and Environmental Engineering Commons, Mechanical Engineering Commons, and the Physics Commons Recommended Citation Koken, Michael, "The Experimental Determination of the Moment of Inertia of a Model Airplane" (2017). Honors Research Projects. 585. http://ideaexchange.uakron.edu/honors_research_projects/585 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. 2017 THE EXPERIMENTAL DETERMINATION OF A MODEL AIRPLANE KOKEN, MICHAEL THE UNIVERSITY OF AKRON Honors Project TABLE OF CONTENTS List of Tables ................................................................................................................................................
    [Show full text]
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • The Stress Tensor
    An Internet Book on Fluid Dynamics The Stress Tensor The general state of stress in any homogeneous continuum, whether fluid or solid, consists of a stress acting perpendicular to any plane and two orthogonal shear stresses acting tangential to that plane. Thus, Figure 1: Differential element indicating the nine stresses. as depicted in Figure 1, there will be a similar set of three stresses acting on each of the three perpendicular planes in a three-dimensional continuum for a total of nine stresses which are most conveniently denoted by the stress tensor, σij, defined as the stress in the j direction acting on a plane normal to the i direction. Equivalently we can think of σij as the 3 × 3 matrix ⎡ ⎤ σxx σxy σxz ⎣ ⎦ σyx σyy σyz (Bha1) σzx σzy σzz in which the diagonal terms, σxx, σyy and σzz, are the normal stresses which would be equal to −p in any fluid at rest (note the change in the sign convention in which tensile normal stresses are positive whereas a positive pressure is compressive). The off-digonal terms, σij with i = j, are all shear stresses which would, of course, be zero in a fluid at rest and are proportional to the viscosity in a fluid in motion. In fact, instead of nine independent stresses there are only six because, as we shall see, the stress tensor is symmetric, specifically σij = σji. In other words the shear stress acting in the i direction on a face perpendicular to the j direction is equal to the shear stress acting in the j direction on a face perpendicular to the i direction.
    [Show full text]
  • Pierre Simon Laplace - Biography Paper
    Pierre Simon Laplace - Biography Paper MATH 4010 Melissa R. Moore University of Colorado- Denver April 1, 2008 2 Many people contributed to the scientific fields of mathematics, physics, chemistry and astronomy. According to Gillispie (1997), Pierre Simon Laplace was the most influential scientist in all history, (p.vii). Laplace helped form the modern scientific disciplines. His techniques are used diligently by engineers, mathematicians and physicists. His diverse collection of work ranged in all fields but began in mathematics. Laplace was born in Normandy in 1749. His father, Pierre, was a syndic of a parish and his mother, Marie-Anne, was from a family of farmers. Many accounts refer to Laplace as a peasant. While it was not exactly known the profession of his Uncle Louis, priest, mathematician or teacher, speculations implied he was an educated man. In 1756, Laplace enrolled at the Beaumont-en-Auge, a secondary school run the Benedictine order. He studied there until the age of sixteen. The nest step of education led to either the army or the church. His father intended him for ecclesiastical vocation, according to Gillispie (1997 p.3). In 1766, Laplace went to the University of Caen to begin preparation for a career in the church, according to Katz (1998 p.609). Cristophe Gadbled and Pierre Le Canu taught Laplace mathematics, which in turn showed him his talents. In 1768, Laplace left for Paris to pursue mathematics further. Le Canu gave Laplace a letter of recommendation to d’Alembert, according to Gillispie (1997 p.3). Allegedly d’Alembert gave Laplace a problem which he solved immediately.
    [Show full text]
  • Magnetism, Angular Momentum, and Spin
    Chapter 19 Magnetism, Angular Momentum, and Spin P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin In 1820 Hans Christian Ørsted discovered that electric current produces a magnetic field that deflects compass needle from magnetic north, establishing first direct connection between fields of electricity and magnetism. P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Biot-Savart Law Jean-Baptiste Biot and Félix Savart worked out that magnetic field, B⃗, produced at distance r away from section of wire of length dl carrying steady current I is 휇 I d⃗l × ⃗r dB⃗ = 0 Biot-Savart law 4휋 r3 Direction of magnetic field vector is given by “right-hand” rule: if you point thumb of your right hand along direction of current then your fingers will curl in direction of magnetic field. current P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Microscopic Origins of Magnetism Shortly after Biot and Savart, Ampére suggested that magnetism in matter arises from a multitude of ring currents circulating at atomic and molecular scale. André-Marie Ampére 1775 - 1836 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Magnetic dipole moment from current loop Current flowing in flat loop of wire with area A will generate magnetic field magnetic which, at distance much larger than radius, r, appears identical to field dipole produced by point magnetic dipole with strength of radius 휇 = | ⃗휇| = I ⋅ A current Example What is magnetic dipole moment induced by e* in circular orbit of radius r with linear velocity v? * 휋 Solution: For e with linear velocity of v the time for one orbit is torbit = 2 r_v.
    [Show full text]
  • Rotational Motion of Electric Machines
    Rotational Motion of Electric Machines • An electric machine rotates about a fixed axis, called the shaft, so its rotation is restricted to one angular dimension. • Relative to a given end of the machine’s shaft, the direction of counterclockwise (CCW) rotation is often assumed to be positive. • Therefore, for rotation about a fixed shaft, all the concepts are scalars. 17 Angular Position, Velocity and Acceleration • Angular position – The angle at which an object is oriented, measured from some arbitrary reference point – Unit: rad or deg – Analogy of the linear concept • Angular acceleration =d/dt of distance along a line. – The rate of change in angular • Angular velocity =d/dt velocity with respect to time – The rate of change in angular – Unit: rad/s2 position with respect to time • and >0 if the rotation is CCW – Unit: rad/s or r/min (revolutions • >0 if the absolute angular per minute or rpm for short) velocity is increasing in the CCW – Analogy of the concept of direction or decreasing in the velocity on a straight line. CW direction 18 Moment of Inertia (or Inertia) • Inertia depends on the mass and shape of the object (unit: kgm2) • A complex shape can be broken up into 2 or more of simple shapes Definition Two useful formulas mL2 m J J() RRRR22 12 3 1212 m 22 JRR()12 2 19 Torque and Change in Speed • Torque is equal to the product of the force and the perpendicular distance between the axis of rotation and the point of application of the force. T=Fr (Nm) T=0 T T=Fr • Newton’s Law of Rotation: Describes the relationship between the total torque applied to an object and its resulting angular acceleration.
    [Show full text]
  • Finite Element Model Calibration of an Instrumented Thirteen-Story Steel Moment Frame Building in South San Fernando Valley, California
    Finite Element Model Calibration of An Instrumented Thirteen-story Steel Moment Frame Building in South San Fernando Valley, California By Erol Kalkan Disclamer The finite element model incuding its executable file are provided by the copyright holder "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. Acknowledgments Ground motions were recorded at a station owned and maintained by the California Geological Survey (CGS). Data can be downloaded from CESMD Virtual Data Center at: http://www.strongmotioncenter.org/cgi-bin/CESMD/StaEvent.pl?stacode=CE24567. Contents Introduction ..................................................................................................................................................... 1 OpenSEES Model ........................................................................................................................................... 3 Calibration of OpenSEES Model to Observed Response
    [Show full text]
  • Exploring Robotics Joel Kammet Supplemental Notes on Gear Ratios
    CORC 3303 – Exploring Robotics Joel Kammet Supplemental notes on gear ratios, torque and speed Vocabulary SI (Système International d'Unités) – the metric system force torque axis moment arm acceleration gear ratio newton – Si unit of force meter – SI unit of distance newton-meter – SI unit of torque Torque Torque is a measure of the tendency of a force to rotate an object about some axis. A torque is meaningful only in relation to a particular axis, so we speak of the torque about the motor shaft, the torque about the axle, and so on. In order to produce torque, the force must act at some distance from the axis or pivot point. For example, a force applied at the end of a wrench handle to turn a nut around a screw located in the jaw at the other end of the wrench produces a torque about the screw. Similarly, a force applied at the circumference of a gear attached to an axle produces a torque about the axle. The perpendicular distance d from the line of force to the axis is called the moment arm. In the following diagram, the circle represents a gear of radius d. The dot in the center represents the axle (A). A force F is applied at the edge of the gear, tangentially. F d A Diagram 1 In this example, the radius of the gear is the moment arm. The force is acting along a tangent to the gear, so it is perpendicular to the radius. The amount of torque at A about the gear axle is defined as = F×d 1 We use the Greek letter Tau ( ) to represent torque.
    [Show full text]
  • Moment of Inertia
    MOMENT OF INERTIA The moment of inertia, also known as the mass moment of inertia, angular mass or rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis; similar to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rotation rate. It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the rotation axis. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). Its simplest definition is the second moment of mass with respect to distance from an axis. For bodies constrained to rotate in a plane, only their moment of inertia about an axis perpendicular to the plane, a scalar value, and matters. For bodies free to rotate in three dimensions, their moments can be described by a symmetric 3 × 3 matrix, with a set of mutually perpendicular principal axes for which this matrix is diagonal and torques around the axes act independently of each other. When a body is free to rotate around an axis, torque must be applied to change its angular momentum. The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body.
    [Show full text]
  • Owner's Manual
    OWNER’S MANUAL GET TO KNOW YOUR SYSTEM 1-877-DRY-TIME 3 7 9 8 4 6 3 basementdoctor.com TABLE OF CONTENTS IMPORTANT INFORMATION 1 YOUR SYSTEM 2 WARRANTIES 2 TROUBLESHOOTING 6 ANNUAL MAINTENANCE 8 WHAT TO EXPECT 9 PROFESSIONAL DEHUMIDIFIER 9 ® I-BEAM/FORCE 10 ® POWER BRACES 11 DRY BASEMENT TIPS 12 REFERRAL PROGRAM 15 IMPORTANT INFORMATION Please read the following information: Please allow new concrete to cure (dry) completely before returning your carpet or any other object to the repaired areas. 1 This normally takes 4-6 weeks, depending on conditions and time of year. Curing time may vary. You may experience some minor hairline cracking and dampness 2 with your new concrete. This is normal and does not affect the functionality of your new system. When installing carpet over the new concrete, nailing tack strips 3 is not recommended. This may cause your concrete to crack or shatter. Use Contractor Grade Liquid Nails. It is the responsibility of the Homeowner to keep sump pump discharge lines and downspouts (if applicable) free of roof 4 materials and leaves. If these lines should become clogged with external material, The Basement Doctor® can repair them at an additional charge. If we applied Basement Doctor® Coating to your walls: • This should not be painted over unless the paint contains an anti-microbial for it is the make-up of the coating that prohibits 5 mold growth. • This product may not cover all previous colors on your wall. • It is OK to panel or drywall over the Basement Doctor® Coating.
    [Show full text]
  • Moment of Inertia – Rotating Disk
    ANGULAR ACCELERATION AND MOMENT OF INERTIA Introduction Rotating an object requires that one overcomes that object’s rotational inertia, better known as its moment of inertia. For highly symmetrical cases it is possible to develop formulas for calculating an object’s moment of inertia. The purpose of this lab is to compare two of these formulas with the moment of inertia measured experimentally for a disk and a ring. Equipment Computer with Logger Pro SW Bubble Level String PASCO Rotational Apparatus + Ring Vernier Caliper Mass Set Vernier Lab Pro Interface Triple Beam Balance Smart Pulley + Photogate Rubber Band Note: If you are also going to determine the moment of inertia of the ring then you need to perform the first portion of this lab with only a single disk. If you use both disks you will not be able to invert them and add the ring to the system. The second disk does not have mounting holes for the ring. Only the disk with the step pulley has these positioning holes for the ring. Theory If a force Ft is applied tangentially to the step pulley of radius r, mounted on top of the rotating disk, the disk will experience a torque τ τ = F t r = I α Equation 1. where I is the moment of inertia for the disk and α is the angular acceleration of the disk. We will solve for the moment of inertia I by using Equation 1 and then compare it 2 to the moment of inertia calculated from the following equation: Idisk = (1/2) MdR where R is the radius of the disk and Md is the mass of the disk.
    [Show full text]
  • Center of Mass Moment of Inertia
    Lecture 19 Physics I Chapter 12 Center of Mass Moment of Inertia Course website: http://faculty.uml.edu/Andriy_Danylov/Teaching/PhysicsI PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics IN THIS CHAPTER, you will start discussing rotational dynamics Today we are going to discuss: Chapter 12: Rotation about the Center of Mass: Section 12.2 (skip “Finding the CM by Integration) Rotational Kinetic Energy: Section 12.3 Moment of Inertia: Section 12.4 PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass (CM) PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass (CM) idea We know how to address these problems: How to describe motions like these? It is a rigid object. Translational plus rotational motion We also know how to address this motion of a single particle - kinematic equations The general motion of an object can be considered as the sum of translational motion of a certain point, plus rotational motion about that point. That point is called the center of mass point. PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Center of Mass: Definition m1r1 m2r2 m3r3 Position vector of the CM: r M m1 m2 m3 CM total mass of the system m1 m2 m3 n 1 The center of mass is the rCM miri mass-weighted center of M i1 the object Component form: m2 1 n m1 xCM mi xi r2 M i1 rCM (xCM , yCM , zCM ) n r1 1 yCM mi yi M i1 r 1 n 3 m3 zCM mi zi M i1 PHYS.1410 Lecture 19 Danylov Department of Physics and Applied Physics Example Center
    [Show full text]