2017 Rules of Subsea Pipelines-Arial 1..158
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Register of Historic Places Multiple Property
NFS Form 10-900-b 0MB No. 1024-0018 (Jan. 1987) United States Department of the Interior National Park Service National Register of Historic Places Multipler Propertyr ' Documentation Form NATIONAL This form is for use in documenting multiple property groups relating to one or several historic contexts. See instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. For additional space use continuation sheets (Form 10-900-a). Type all entries. A. Name of Multiple Property Listing ____Iron and Steel Resources of Pennsylvania, 1716-1945_______________ B. Associated Historic Contexts_____________________________ ~ ___Pennsylvania Iron and Steel Industry. 1716-1945_________________ C. Geographical Data Commonwealth of Pennsylvania continuation sheet D. Certification As the designated authority under the National Historic Preservation Act of 1966, as amended, J hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requiremerytS\set forth iri36JCFR PafrfsBOfcyid the Secretary of the Interior's Standards for Planning and Evaluation. Signature of certifying official Date / Brent D. Glass Pennsylvania Historical & Museum Commission State or Federal agency and bureau I, hereby, certify that this multiple -
Humectants to Augment Current from Metallized Zinc Cathodic Protection Systems on Concrete
HUMECTANTS TO AUGMENT CURRENT FROM METALLIZED ZINC CATHODIC PROTECTION SYSTEMS ON CONCRETE Final Report SPR 384 HUMECTANTS TO AUGMENT CURRENT FROM METALLIZED ZINC CATHODIC PROTECTION SYSTEMS ON CONCRETE Final Report SPR 384 by Gordon R. Holcomb, Bernard S. Covino, Jr., Stephen D. Cramer, James H. Russell, Sophie J. Bullard, and W. Keith Collins Albany Research Center, U. S. Department of Energy, Albany OR 97321 Jack E. Bennett J. E. Bennett Consulting, Inc., Chardon OH 44024 Steven M. Soltesz and H. Martin Laylor Oregon Department of Transportation, Salem OR 97301 for Oregon Department of Transportation, Research Group 200 Hawthorne SE, Suite B-240 Salem OR 97301-5192 and Federal Highway Administration Washington, D.C. December 2002 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-OR-RD-03-08 4. Title and Subtitle 5. Report Date Humectants to Augment Current from Metallized Zinc Cathodic Protection December 2002 Systems on Concrete 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Gordon R. Holcomb, Bernard S. Covino, Jr., Stephen D. Cramer, James H. Russell, Sophie J. Bullard, and W. Keith Collins Albany Research Center, U. S. Department of Energy, Albany OR 97321 Jack E. Bennett, J. E. Bennett Consulting, Inc., Chardon OH 44024 Steven M. Soltesz and H. Martin Laylor, Oregon Department of Transportation, Salem OR 97301 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Oregon Department of Transportation Research Group 11. Contract or Grant No. 200 Hawthorne Avenue SE, Suite B-240 SPR 384 Salem, Oregon 97301-5192 12. -
Corrosion Control Plan for Bridges
Contents Introduction There is essentially no argument that the American infrastructure is in Introduction ................................................. i poor shape and there is little indication that significant improvement is on the horizon. Acknowledgments ....................................ii The amount of money needed to correct this problem is Executive Summary ..................................2 staggering, especially considering the current state of the economy. Crumbling Infrastructure ........................4 One reason for this is the age profile of the nation’s bridges. Figure 1 1 Introduction to Corrosion ......................6 shows this profile taken from the 2010 National Bridge Inventory . It shows bridges are approaching the maximum age distribution of Bridges to Everywhere ............................7 around 50 years. Most bridges were built for a 50 year design life, which means state highway departments will have to maintain those Corrosion Basics ...................................... 11 bridges beyond their original design lives, which will be challenging because they were built to lower design standards than those used Corrosion in Concrete ........................... 14 today. Exposure Conditions ............................. 18 Corrosion Control ................................... 21 The Highway Ahead .............................. 27 References ................................................. 29 Figure 1: Distribution of bridges by age (2010 NBI data) When the Eisenhower Interstate System was created, -
University Micrdfilms International 300 N
INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. -
Section-Xv 608 Chapter-72 Section Xv Base Metals And
SECTION-XV 608 CHAPTER-72 SECTION XV BASE METALS AND ARTICLES OF BASE METAL NOTES : 1. This Section does not cover : (a) prepared paints, inks or other products with a basis of metallic flakes or powder (headings 3207 to 3210, 3212, 3213 or 3215); (b) ferro-cerium or other pyrophoric alloys (heading 3606); (c) headgear or parts thereof of heading 6506 or 6507; (d) umbrella frames or other articles of heading 6603; (e) goods of Chapter 71 (for example, precious metal alloys, base metal clad with precious metal, imitation jewellery); (f) articles of Section XVI (machinery, mechanical appliances and electrical goods); (g) assembled railway or tramway track (heading 8608) or other articles of Section XVII (vehicles, ships and boats, aircraft); (h) instruments or apparatus of Section XVIII, including clock or watch springs; (ij) lead shot prepared for ammunition (heading 9306) or other articles of Section XIX (arms and ammunition); (k) articles of Chapter 94 (for example, furniture, mattress supports, lamps and lighting fittings, illuminated signs, prefabricated buildings); (l) articles of Chapter 95 (for example, toys, games, sports requisites); (m) hand sieves, buttons, pens, pencil-holders, pen nibs, monopods, bipods, tripods and similar articles or other articles of Chapter 96 (miscellaneous manufactured articles); or" (n) articles of Chapter 97 (for example, works of art). 2. Throughout this Schedule, the expression “parts of general use” means : (a) articles of headings 7307, 7312, 7315, 7317 or 7318 and similar articles of other base metal; (b) springs and leaves for springs, of base metal, other than clock or watch springs (heading 9114); and (c) articles of headings 8301, 8302, 8308, 8310 and frames and mirrors, of base metal, of heading 8306. -
Galvanic Corrosion
10 GALVANIC CORROSION X. G. ZHANG Teck Metals Ltd., Mississauga, Ontario, Canada A. Introduction graphite, are dispersed in a metal, or on a ship, where the B. Definition various components immersed in water are made of different C. Factors in galvanic corrosion metal alloys. In many cases, galvanic corrosion may result in D. Material factors quick deterioration of the metals but, in other cases, the D1. Effects of coupled materials galvanic corrosion of one metal may result in the corrosion D2. Effect of area protection of an attached metal, which is the basis of cathodic D3. Effect of surface condition protection by sacrificial anodes. E. Environmental factors Galvanic corrosion is an extensively investigated subject, E1. Effects of solution as shown in Table 10.1, and is qualitatively well understood E2. Atmospheric environments but, due to its highly complex nature, it has been difficult to E3. Natural waters deal with in a quantitative way until recently. The widespread F. Polarity reversal use of computers and the development of software have made G. Preventive measures great advances in understanding and predicting galvanic H. Beneficial effects of galvanic corrosion corrosion. I. Fundamental considerations I1. Electrode potential and Kirchhoff’s law I2. Analysis B. DEFINITION I3. Polarization and resistance I4. Potential and current distributions When two dissimilar conducting materials in electrical con- References tact with each other are exposed to an electrolyte, a current, called the galvanic current, flows from one to the other. Galvanic corrosion is that part of the corrosion that occurs at the anodic member of such a couple and is directly related to the galvanic current by Faraday’s law. -
Glossary of Oilfield Production Terminology (GOT) (DEFINITIONS and ABBREVIATIONS)
Glossary of Oilfield Production Terminology (GOT) (DEFINITIONS AND ABBREVIATIONS) FIRST EDITION, JANUARY 1, 1988 American Petroleum Institute 1220 L Street, Northwest Washington, DC 20005 Issued by AMERICAN PETROLEUM INSTITUTE Production Department FOR INFORMATION CONCERNING TECHNICAL CONTENTS OF THIS PUBLICATION CONTACT THE API PRODUCTION DEPARTMENT, 2535 ONE MAIN PLACE, DALLAS, TX 75202-3904 – (214) 748-3841. SEE BACK SIDE FOR INFORMATION CONCERNING HOW TO OBTAIN ADDITIONAL COPIES OF THIS PUBLICATION. Users of this publication should become familiar with its scope and content. This publication is intended to supplement rather than replace individual engineering judgment. OFFICIAL PUBLICATION REG U.S. PATENT OFFICE Copyright 1988 American Petroleum Institute TABLE OF CONTENTS Page FOREWORD 2 SECTION 1: LIST OF PUBLICATIONS 3 SECTION 2: ABBREVIATIONS AND DEFINITIONS 5 FOREWORD A. This publication is under the jurisdiction of the API Executive Committee on Standardization of Oilfield Equipment and Materials. B. The purpose of this publication is to provide standards writing groups access to previously used abbreviations and definitions. Standards writing groups are encouraged to adopt, when possible, the definitions found herein. Attention Users of this Publication: Portions of this publication have been changed from the previous edition. The location of changes has been marked with a bar in the margin. In some cases the changes are significant, while in other cases the changes reflect minor editorial adjustments. The bar notations in the margins are provided as an aid to users to identify those parts of this publication that have been changed from the previous edition, but API makes no warranty as to the accuracy of such bar notations. -
Dicionarioct.Pdf
McGraw-Hill Dictionary of Earth Science Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be repro- duced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-141798-2 The material in this eBook also appears in the print version of this title: 0-07-141045-7 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw- Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decom- pile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. -
A Guide to Water Well Casing and Screen Selection
A Guide To Water Well Casing and Screen Selection A Note About Roscoe Moss Company Roscoe Moss Company, publisher of this guide, has been engaged in the development of ground water since the 1890's. Originating as a water well drilling contractor operating in the Southwest, the firm has constructed thousands of wells throughout the United States and in ten foreign countries. In 1926, Roscoe Moss began the manufacture of water well casing and screens. Emphasis on the development of these products has brought the company to the forefront of specialists in the marketing of these materials. Completing its uniqueness as a firm engaged in all phases of ground-water development, Roscoe Moss has an active interest in two large California water utilities serving 1.8 million people. Included in their supply sources are over 500 high capacity water wells. The material contained in this pamphlet is in based on a broad practical knowledge of water well design, construction, operation and maintenance, as well as steel products manufacture. These resources are enhanced by an ongoing systematic research and evaluation program. We are pleased to share the information following, some of which represents proprietary company knowledge and has never before been published. A Guide To Water Well Casing and Screen Selection Table of Contents 1.0..INTRODUCTION ...............................…....................................................... 4 2.0 METHODS OF WELL CONSTRUCTION ...…............................................ 6 2.1 Cable Tool ................................................…..................................... -
Guidelines for Field Installation of Corrosion Monitoring and Cathodic Protection Systems
Technical Memorandum No. MERL-2012-40 Guidelines for Field Installation of Corrosion Monitoring and Cathodic Protection Systems U.S. Department of the Interior Bureau of Reclamation December 2012 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Technical Memorandum No. MERL-2012-40 Guidelines for Field Installation of Corrosion Monitoring and Cathodic Protection Systems U.S. Department of the Interior Bureau of Reclamation December 2012 BUREAU OF RECLAMATION Technical Service Center, Denver, Colorado Materials Engineering and Research Lab Group, 86-68180 Technical Memorandum No. MERL-2012-40 Guidelines for Field Installation of Corrosion Monitoring and Cathodic Protection Systems 8/2 --------Mfed:r Daryl A. Little Date "Materials Engineer, Materials Engineering and Research Lab Group, 86-68180 Z- Che1648: Jessica D. Tor� Date Materials Engineer, Mats Engineering and Research Lab Group, 86-68180 � Editorial Approval: Teri Manross Date Technical Writer-E 'tor, Client Support and Technical Presentations Office, 86-68010 ( Technic�oval: Lee E. Sears� Date Material ngineer, Materials Engineering and Research Lab Group, 86-68180 ///7 �- Peer Review: William F. Kepler, P.E. Date Civil Engineer, Materials Engineering and Research Lab Group, 86-68180 REVISIONS l l d Date Description d e ica va ke ar c ro iew hn c he Rev Prep Peer C Te App Contents Page Chapter I: Introduction........................................................................................1 Corrosion Monitoring and Cathodic Protection Systems ................................ -
Beltcov Andrei.Pdf (5.892Mb)
Faculty of Science and Technology MASTER’S THESIS Study program/ Specialization: Spring semester, 2016 Offshore Technology/ Marine and Subsea Technology Open Writer: Andrei Y. Beltcov ………………………………………… (Writer’s signature) Faculty supervisor: Professor Ove Tobias Gudmestad (University of Stavanger) External supervisor(s): Professor Anatoly Borisovich Zolotukhin (Gubkin University) Title of thesis: «Development concepts for Sakhalin's offshore field development» Credits (ECTS):30 Key words: Pages: 15 + enclosure: 4 Concept development, Concept selection, Sakhalin’s Island offshore development, Concept selection criteria. Stavanger, June, 15, 2016 Abstract When a company undertakes to develop an oilfield, certain activities represent the foundation of the development, ranging from information about the metocean conditions at the site to marketing. The concept phase itself includes screening of concepts, selection of concept and concept development. Use of engineering data and calculations that represents a feasibility study of offshore oil and gas field is essentially the screening of concepts. The selection of concept consists of finding a solution that would meet world technical, environmental and safety demands. Despite the fact that Sakhalin Island shelf contains enormous hydrocarbon reserves, it is also a very environmentally sensitive region. High environmental risks and extreme weather conditions entail high capital expenditures, which put significant burden of responsibility on the project team during the development concept stage. This is of great importance during the early stages of concept selection. Selecting the optimum Sakhalin Shelf development concept is the aim of my thesis. Significance in the concept selection chain affects selection of various parameters affecting the optimum development concept and subsequent prioritization. Special attention is paid to challenges and peculiarities that can be faced at the Sakhalin Region and could affect the concept of field development. -
DNVGL-RP-0416 Corrosion Protection for Wind Turbines
RECOMMENDED PRACTICE DNVGL-RP-0416 Edition March 2016 Corrosion protection for wind turbines The electronic pdf version of this document found through http://www.dnvgl.com is the officially binding version. The documents are available free of charge in PDF format. DNV GL AS FOREWORD DNV GL recommended practices contain sound engineering practice and guidance. © DNV GL AS March 2016 Any comments may be sent by e-mail to [email protected] This service document has been prepared based on available knowledge, technology and/or information at the time of issuance of this document. The use of this document by others than DNV GL is at the user's sole risk. DNV GL does not accept any liability or responsibility for loss or damages resulting from any use of this document. CHANGES – CURRENT General This is a new document. Changes – current Recommended practice, DNVGL-RP-0416 – Edition March 2016 Page 3 DNV GL AS CONTENTS CHANGES – CURRENT .................................................................................................. 3 Sec.1 General ......................................................................................................... 5 1.1 Introduction ...........................................................................................5 1.2 Objectives ..............................................................................................5 1.3 Certification ...........................................................................................5 Sec.2 References ...................................................................................................