ORIGINAL ARTICLE Amplification at 7Q22 Targets Cyclin-Dependent Kinase 6 in T-Cell Lymphoma

Total Page:16

File Type:pdf, Size:1020Kb

ORIGINAL ARTICLE Amplification at 7Q22 Targets Cyclin-Dependent Kinase 6 in T-Cell Lymphoma Leukemia (2008) 22, 387–392 & 2008 Nature Publishing Group All rights reserved 0887-6924/08 $30.00 www.nature.com/leu ORIGINAL ARTICLE Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma S Nagel1, E Leich2, H Quentmeier1, C Meyer1, M Kaufmann1, HG Drexler1, A Zettl2, A Rosenwald2 and RAF MacLeod1 1Department of Human and Animal Cell Cultures, DSMZ, Braunschweig, Germany and 2Institute of Pathology, University of Wu¨rzburg, Wu¨rzburg, Germany Recurrent chromosomal aberrations in hematopoietic tumors Organization, T-cell lymphomas include anaplastic large-cell target genes involved in pathogenesis. Their identification and lymphoma (ALCL) and peripheral T-cell lymphoma, not other- functional characterization are therefore important for the wise specified (PTCL NOS).4 ALCL is rareFrepresenting roughly establishment of rational therapies. Here, we investigated F genomic amplification at 7q22 in the T-cell lymphoma cell line 3% of all lymphomas and the clinical course differs signifi- SU-DHL-1 belonging to the subtype of anaplastic large-cell cantly between ALK-positive (ALK þ ) and ALK-negative (ALKÀ) lymphoma (ALCL). Cytogenetic analysis mapped this amplicon ALCL patients.3 The main chromosomal rearrangement in ALCL, to 86–95 Mb. Copy-number determination quantified the ampli- t(2;5)(p23;q35), fuses NPM1 to ALK, which generates a fication level at 5- to 6-fold. Expression analysis of genes constitutively active kinase-enhancing proliferation.5,6 Genes located within this region identified cyclin-dependent kinase 6 dysregulated by non-chromosomal mechanisms in ALCL cells (CDK6) as a potential amplification target. In comparison with control cell lines, SU-DHL-1 expressed considerably higher include CCND3 and CDKN1B coding for cyclin D3 and p27, levels of CDK6. Functionally, SU-DHL-1 cells exhibited reduced respectively, both key cell cycle regulators, highlighting the sensitivity to rapamycin treatment, as indicated by cell growth proliferative aspect of this disease.7,8 PTCL NOS is predomi- and cell cycle analysis. Rapamycin reportedly inhibits degrada- nantly a nodal lymphoma and comprises up to 70% of T-cell tion of the CDK inhibitor p27 with concomitant downregulation lymphomas in western countries.3 Cytogenetic abnormalities of cyclin D3, implying a proliferative advantage for CDK6 are common, although few recurrent aberrations have been overexpression. Amplification of the CDK6 locus was analyzed 9 in primary T-cell lymphoma samples and, while detected described. infrequently in those classified as ALCL (1%), was detected in Cyclin-dependent kinases (CDKs) are key regulators of the cell 23% of peripheral T-cell lymphomas not otherwise specified. cycle. Diverse CDKs are known, namely CDK1–10 in mammals. Taken together, analysis of the 7q22 amplicon identified CDK6 The G1–S phase transition of the cell cycle depends on CDK2, as an important cell cycle regulator in T-cell lymphomas, CDK4 and CDK6, which interact with D-type cyclins and representing a novel potential target for rational therapy. phosphorylate retinoblastoma protein family members.10 CDK Leukemia (2008) 22, 387–392; doi:10.1038/sj.leu.2405028; inhibitors repress the activity of CDKs and encompass INK4 and published online 8 November 2007 11 Keywords: ALCL; PTCL NOS; amplification; CDK6; BRCA1 KIP protein families, which include p27. Here, we describe the analysis of an amplicon in the ALCL- derived cell line SU-DHL-1 located at 7q22. This region is part of a larger amplicon described previously in ALCL cells. The reduced amplicon in SU-DHL-1 allows more focused analysis of Introduction genes located within this region. Accordingly, the aim of this study was the identification and characterization of candidate Recurrent chromosomal translocations and amplifications spe- genes targeted by 7q22 amplification. cifically target oncogenes involved in tumor development and maintenance. This underlines the importance of their character- ization for understanding pathomechanisms of cancer develop- Materials and methods ment and uncovering rational targets for therapeutic intervention. Unlike tumor-suppressor genes and oncogenes Cell culture and patient samples targeted for genomic amplification, leukemic oncogenes acti- ALCL-derived cell lines DEL, KARPAS-299, L-82, SR-786, SU- vated by translocation are often developmental and, thus, rarely DHL-1 and SUP-M2, as well as the cell lines HSB-2 and MOLT- involved in solid tumors.1 Gene amplification within chromo- 3 are held at the DSMZ, Braunschweig, Germany somal amplicons, manifesting as ‘double minute’ chromosomes (www.dsmz.de); MAC-2A was provided by M Kadin, Boston, or as ‘homogeneously staining regions’, occurs widely in solid MA, USA. Cell lines were cultured as recommended by tumors where it is believed to facilitate upregulated transcription originators. Rapamycin was obtained from Sigma, Taufkirchen, of selected genes located therein. This phenomenon is less Germany. Patient material was represented by 156 paraffin- widespread in lymphoid and myeloid neoplasia where chromo- embedded tumor samples (43 PTCL NOS, 45 ALK þ ALCL and some translocations affecting gene juxtapositions and fusions, 68 ALKÀ ALCL) from the Institute of Pathology, University of respectively, predominate.2 Wuerzburg, Germany. All tumors were classified according to T-cell lymphomas represent about 12% of the total.3 the World Health Organization criteria. This study was According to the cancer classification of the World Health authorized by the Ethics Committee of the University of Wuerzburg, Germany. Correspondence: Dr S Nagel, Department of Human and Animal Cell Cultures, DSMZ, Inhoffenstrasse 7B, Braunschweig 38124, Germany. E-mail: [email protected] Fluorescence in situ hybridization Received 9 October 2007; accepted 12 October 2007; published Fluorescence in situ hybridization (FISH) analysis was per- online 8 November 2007 formed on metaphases prepared from cell lines as described CDK6 in T-cell lymphoma S Nagel et al 388 previously12 using the following RP11 BAC clones obtained Using a BAC contig for FISH analysis, we determined both the from the Sanger Institute, Cambridge, UK (www.genome.ucs- size (9 Mb) and location (86–95 Mb) of the amplicon (Figure 1b). c.edu): 315P14, 30D21, 371H19, 90H9, 232H24 and 124G15. Our results are consistent with genomic data provided by the Primary patient samples were analyzed by interphase FISH as Sanger Institute (www.sanger.ac.uk/cgi-bin/genetics/CGP/ described previously.13 Briefly, FISH was performed in paraffin- 10kCGHviewer.cgi?dna ¼ SU-DHL-1), which show a sharp loss embedded material in a tissue microarray format. Cases showing of heterozygosity peak and concomitant copy-number gains at a gain/amplification of the CDK6 locus were subsequently B90 Mb. For precise copy-number determination at the 7q22 analyzed on whole paraffin-embedded tissue sections as well. amplicon, we used a PCR-based MLPA assay, which simulta- The following RP11 BAC clones, used as spanning probes to neously analyzed 40 genes, including CDK6 located within the detect the CDK6 locus, were purchased from the German amplicon at 92.1–92.3 Mb. Data indicated a 5- to 6-fold Resource Centre for Genome Research, Berlin, Germany amplification of this gene in SU-DHL-1 (Figure 1c). Additional (www.rzpd.de): 467N23, 332M5 and 514K1. The centromeric data obtained by this assay revealed a threefold amplification of probe cep7 (Abbott, Wiesbaden, Germany) as well as probes BRCA1 which is located at 17q21 (38.5 Mb), in keeping with detecting the region slightly telomeric of the T-cell receptor Sanger Institute SNP-array data, which also show copy number genes TRG (7p14–15) and TRB (7q35) loci were used as increase at 37–50 Mb, i.e. covering 17q21, albeit unaccompa- reference probes.14 For negative controls, CDK6 and cep7 nied by loss of heterozygosity. Furthermore, according to our probes were tested simultaneously in seven paraffin-embedded MPLA analysis, the tumor-suppressor gene CHFR (at 12q24.3), reactive lymph nodes as well as on cells from the cell lines which is reportedly hypermethylated in T-cell lymphoma,17 MOLT-3 and HSB-2. The cell line SU-DHL-1 served as a seems to be deleted in SU-DHL-1 (Figure 1c). positive control. Reverse transcription-PCR Reverse transcription (RT)-PCR analysis was performed as described previously.15 Oligonucleotides are listed in Table 1 and were purchased from MWG, Martinsried, Germany. Quantitative real-time RT-PCR analysis was performed on an ABI 7500 SDS cycler, using commercial expression assays for CDK6 and TBP (Applied Biosystems, Darmstadt, Germany). Immunocytology Cytospin preparation and immunodetection were performed as described previously.16 Antibody anti-CDK6 was obtained from Santa Cruz (Heidelberg, Germany). Flow cytometry Flow cytometry and cell cycle analysis were performed as described previously.16 Multiplex ligation-dependent probe amplification Genomic copy-number determination was performed using a PCR-based multiplex ligation-dependent probe amplification (MLPA) kit, amplifying 40 cancer-related genes, including CDK6 (SALSA MS-MLPA kit ME001 tumor suppressor-1, MRC- Figure 1 (a) Karyotype analysis showing the homogeneously staining Holland, Amsterdam, The Netherlands). The mean amplification region on 7q in SU-DHL-1 cells. (b) Fluorescence in situ hybridization (FISH) analysis was used to map the amplicon at 7q22. A painting signal was set to 1. probe for chromosome 7 (red) was co-hybridized with BAC probe RP11-90H9 (green), demonstrating CDK6 amplification on der(7) in SU-DHL-1. (c) Copy
Recommended publications
  • Analyses of Allele-Specific Gene Expression in Highly Divergent
    ARTICLES Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance James J Crowley1,10, Vasyl Zhabotynsky1,10, Wei Sun1,2,10, Shunping Huang3, Isa Kemal Pakatci3, Yunjung Kim1, Jeremy R Wang3, Andrew P Morgan1,4,5, John D Calaway1,4,5, David L Aylor1,9, Zaining Yun1, Timothy A Bell1,4,5, Ryan J Buus1,4,5, Mark E Calaway1,4,5, John P Didion1,4,5, Terry J Gooch1,4,5, Stephanie D Hansen1,4,5, Nashiya N Robinson1,4,5, Ginger D Shaw1,4,5, Jason S Spence1, Corey R Quackenbush1, Cordelia J Barrick1, Randal J Nonneman1, Kyungsu Kim2, James Xenakis2, Yuying Xie1, William Valdar1,4, Alan B Lenarcic1, Wei Wang3,9, Catherine E Welsh3, Chen-Ping Fu3, Zhaojun Zhang3, James Holt3, Zhishan Guo3, David W Threadgill6, Lisa M Tarantino7, Darla R Miller1,4,5, Fei Zou2,11, Leonard McMillan3,11, Patrick F Sullivan1,5,7,8,11 & Fernando Pardo-Manuel de Villena1,4,5,11 Complex human traits are influenced by variation in regulatory DNA through mechanisms that are not fully understood. Because regulatory elements are conserved between humans and mice, a thorough annotation of cis regulatory variants in mice could aid in further characterizing these mechanisms. Here we provide a detailed portrait of mouse gene expression across multiple tissues in a three-way diallel. Greater than 80% of mouse genes have cis regulatory variation. Effects from these variants influence complex traits and usually extend to the human ortholog. Further, we estimate that at least one in every thousand SNPs creates a cis regulatory effect.
    [Show full text]
  • Screening for Copy Number Variation in Genes Associated with the Long QT Syndrome Clinical Relevance
    Journal of the American College of Cardiology Vol. 57, No. 1, 2011 © 2011 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2010.08.621 Heart Rhythm Disorders Screening for Copy Number Variation in Genes Associated With the Long QT Syndrome Clinical Relevance Julien Barc, PHD,*‡§ François Briec, MD,*†‡§ Sébastien Schmitt, MD,ʈ Florence Kyndt, PharmD, PHD,*‡§ʈ Martine Le Cunff, BS,*‡§ Estelle Baron, BS,*‡§ Claude Vieyres, MD,¶ Frédéric Sacher, MD,# Richard Redon, PHD,*‡§ Cédric Le Caignec, MD, PHD,*‡§ʈ Hervé Le Marec, MD, PHD,*†‡§ Vincent Probst, MD, PHD,*†‡§ Jean-Jacques Schott, PHD*†‡§ Nantes, Angoulême, and Bordeaux, France Objectives The aim of this study was to investigate, in a set of 93 mutation-negative long QT syndrome (LQTS) probands, the frequency of copy number variants (CNVs) in LQTS genes. Background LQTS is an inherited cardiac arrhythmia characterized by a prolonged heart rate–corrected QT (QTc) interval as- sociated with sudden cardiac death. Recent studies suggested the involvement of duplications or deletions in the occurrence of LQTS. However, their frequency remains unknown in LQTS patients. Methods Point mutations in KCNQ1, KCNH2, and SCN5A genes were excluded by denaturing high-performance liquid chromatography or direct sequencing. We applied Multiplex Ligation-dependent Probe Amplification (MLPA) to detect CNVs in exons of these 3 genes. Abnormal exon copy numbers were confirmed by quantitative multiplex PCR of short fluorescent fragment (QMPSF). Array-based comparative genomic hybridization (array CGH) analysis was performed using Agilent Human Genome 244K Microarrays to further map the genomic rearrangements.
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • Comparative Analysis of Human Chromosome 7Q21 and Mouse
    Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Comparative analysis of human chromosome 7q21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, TFPI2/Tfpi2, which requires EHMT2 and EED for allelic-silencing David Monk,1,6 Alexandre Wagschal,2 Philippe Arnaud,2 Pari-Sima Mu¨ller,3 Layla Parker-Katiraee,4 Déborah Bourc’his,5 Stephen W. Scherer,4 Robert Feil,2 Philip Stanier,1 and Gudrun E. Moore1 1Institute of Child Health, London WC1N 1EH, United Kingdom; 2Institute of Molecular Genetics, CNRS UMR-5535 and University of Montpellier-II, 34293 Montpellier, France; 3Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; 4Center for Applied Genomics, The Hospital for Sick Children, Toronto M5G 1L7, Canada; 5Inserm U741, F-75251 Paris Cedex 05, France Genomic imprinting is a developmentally important mechanism that involves both differential DNA methylation and allelic histone modifications. Through detailed comparative characterization, a large imprinted domain mapping to chromosome 7q21 in humans and proximal chromosome 6 in mice was redefined. This domain is organized around a maternally methylated CpG island comprising the promoters of the adjacent PEG10 and SGCE imprinted genes. Examination of Dnmt3l−/+ conceptuses shows that imprinted expression for all genes of the cluster depends upon the germline methylation at this putative “imprinting control region” (ICR). Similarly as for other ICRs, we find its DNA-methylated allele to be associated with trimethylation of lysine 9 on histone H3 (H3K9me3) and trimethylation of lysine 20 on histone H4 (H4K20me3), whereas the transcriptionally active paternal allele is enriched in H3K4me2 and H3K9 acetylation.
    [Show full text]
  • A Study on Acute Myeloid Leukemias with Trisomy 8, 11, Or 13, Monosomy 7, Or Deletion 5Q
    Leukemia (2005) 19, 1224–1228 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu Genomic gains and losses influence expression levels of genes located within the affected regions: a study on acute myeloid leukemias with trisomy 8, 11, or 13, monosomy 7, or deletion 5q C Schoch1, A Kohlmann1, M Dugas1, W Kern1, W Hiddemann1, S Schnittger1 and T Haferlach1 1Laboratory for Leukemia Diagnostics, Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany We performed microarray analyses in AML with trisomies 8 aim of this study to investigate whether gains and losses on the (n ¼ 12), 11 (n ¼ 7), 13 (n ¼ 7), monosomy 7 (n ¼ 9), and deletion genomic level translate into altered genes expression also in 5q (n ¼ 7) as sole changes to investigate whether genomic gains and losses translate into altered expression levels of other areas of the genome in AML. genes located in the affected chromosomal regions. Controls were 104 AML with normal karyotype. In subgroups with trisomy, the median expression of genes located on gained Materials and methods chromosomes was higher, while in AML with monosomy 7 and deletion 5q the median expression of genes located in deleted Samples regions was lower. The 50 most differentially expressed genes, as compared to all other subtypes, were equally distributed Bone marrow samples of AML patients at diagnosis were over the genome in AML subgroups with trisomies. In contrast, 30 and 86% of the most differentially expressed genes analyzed: 12 cases with trisomy 8 (AML-TRI8), seven with characteristic for AML with 5q deletion and monosomy 7 are trisomy 11 (AML-TRI11), seven with trisomy 13 (AML-TRI13), located on chromosomes 5 or 7.
    [Show full text]
  • Mouse Ppp1r9a Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Ppp1r9a Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Ppp1r9a conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Ppp1r9a gene (NCBI Reference Sequence: NM_181595 ; Ensembl: ENSMUSG00000032827 ) is located on Mouse chromosome 6. 16 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 16 (Transcript: ENSMUST00000035813). Exon 3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Ppp1r9a gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-2F8 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit defects in dopamine-mediated neuromodulation, deficient long-term potentiation at corticostriatal synapses, increased spontaneous excitatory post-synaptic current frequency, and enhanced locomotor activationin response to cocaine treatment. Exon 3 starts from about 42.59% of the coding region. The knockout of Exon 3 will result in frameshift of the gene. The size of intron 2 for 5'-loxP site insertion: 139091 bp, and the size of intron 3 for 3'-loxP site insertion: 11389 bp. The size of effective cKO region: ~633 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 3 16 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Ppp1r9a Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • AKAP9 Antibody (Monoclonal) (M01) Mouse Monoclonal Antibody Raised Against a Partial Recombinant AKAP9
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 AKAP9 Antibody (monoclonal) (M01) Mouse monoclonal antibody raised against a partial recombinant AKAP9. Catalog # AT1090a Specification AKAP9 Antibody (monoclonal) (M01) - Product Information Application WB, E Primary Accession Q99996 Other Accession NM_147171 Reactivity Human Host mouse Clonality Monoclonal Isotype IgG2a Kappa Calculated MW 452987 AKAP9 Antibody (monoclonal) (M01) - Additional Information Antibody Reactive Against Recombinant Protein.Western Blot detection against Gene ID 10142 Immunogen (36.74 KDa) . Other Names A-kinase anchor protein 9, AKAP-9, A-kinase anchor protein 350 kDa, AKAP 350, hgAKAP 350, A-kinase anchor protein 450 kDa, AKAP 450, AKAP 120-like protein, Centrosome- and Golgi-localized PKN-associated protein, CG-NAP, Protein hyperion, Protein kinase A-anchoring protein 9, PRKA9, Protein yotiao, AKAP9, AKAP350, AKAP450, KIAA0803 Target/Specificity Detection limit for recombinant GST tagged AKAP9 (NP_671700, 3812 a.a. ~ 3911 a.a) AKAP9 is approximately 0.3ng/ml as a partial recombinant protein with GST tag. capture antibody. MW of the GST tag alone is 26 KDa. Dilution AKAP9 Antibody (monoclonal) (M01) - WB~~1:500~1000 Background Format The A-kinase anchor proteins (AKAPs) are a Clear, colorless solution in phosphate group of structurally diverse proteins which buffered saline, pH 7.2 . have the common function of binding to the regulatory subunit of protein kinase A (PKA) Storage and confining the holoenzyme to discrete Store at -20°C or lower. Aliquot to avoid locations within the cell. This gene encodes a repeated freezing and thawing. member of the AKAP family.
    [Show full text]
  • Hypertrophic Cardiomyopathy- Associated Mutations in Genes That Encode Calcium-Handling Proteins
    Current Molecular Medicine 2012, 12, 507-518 507 Beyond the Cardiac Myofilament: Hypertrophic Cardiomyopathy- Associated Mutations in Genes that Encode Calcium-Handling Proteins A.P. Landstrom and M.J. Ackerman* Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Cardiovascular Diseases and Pediatric Cardiology, and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA Abstract: Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium- handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • Novel AKAP9 Mutation and Long QT Syndrome in a Patient with Torsades Des Pointes
    Journal of Interventional Cardiac Electrophysiology (2019) 56:171–172 https://doi.org/10.1007/s10840-019-00606-y CASE REPORTS Novel AKAP9 mutation and long QT syndrome in a patient with torsades des pointes Dario Bottigliero1 & Ilenia Monaco1 & Rosa Santacroce1 & Grazia Casavecchia1 & Michele Correale1 & Francesca Guastafierro1 & Angelica Leccese1 & Giorgia Cordisco1 & Riccardo Ieva2 & Roberta Trunzo1 & Matteo Di Biase3 & Maurizio Margaglione1 & Natale Daniele Brunetti1 Received: 22 March 2019 /Accepted: 2 August 2019 /Published online: 15 August 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 We report the case of an 84-year-old man with hyper- DNA: heterozygosity for AKAP9 exon 9 (c.3673C>T tension, diabetes, dyslipidemia, paroxysmal atrial fibril- G>A, p.Leu1150Phe) and mutation (Fig. 1). The vari- lation, CABG, previous right nephrectomy, and post- ants have not been previously described in the literature surgical hypothyroidism, who was admitted to neurosur- and have not been previously reported in the Human gery for subdural hematoma after syncope. Admission Gene Mutation Database (HGMD); no other possible electrocardiogram showed sinus bradycardia with causative mutations were found. prolonged QT duration. Echocardiography showed left The in silico analysis performed using SIFT and PolyPhen ventricular hypertrophy with severe mitral regurgitation. modeling programs suggests that this new variant may be During hospitalization, several episodes of torsade de harmful. pointes (8 s longest duration), treated with medical ther- AKAP9 gene is a known modifier of LQTS clinical phe- apy (magnesium sulfate iv), occurred. ECG monitoring notype by altering QTc duration and influencing the risk of constantly showed long QT (QTC > 570–580 ms) while cardiac events and the severity of the disease.
    [Show full text]
  • DOE Systems Biology Knowledgebase Implementation Plan
    DOE Systems Biology Knowledgebase Implementation Plan As part of the U.S. Department of Energy’s (DOE) Office of Science, the Office of Biological and Environmental Research (BER) supports fundamental research and technology development aimed at achieving predictive, systems-level understand- ing of complex biological and environmental systems to advance DOE missions in energy, climate, and environment. DOE Contact Susan Gregurick 301.903.7672, [email protected] Office of Biological and Environmental Research U.S. Department of Energy Office of Science www.science.doe.gov/Program_Offices/BER.htm Acknowledgements The DOE Office of Biological and Environmental Research appreciates the vision and leadership exhibited by Bob Cottingham and Brian Davison (both from Oak Ridge National Laboratory) over the past year to conceptualize and guide the effort to create the DOE Systems Biology Knowledgebase Implementation Plan. Furthermore, we are grateful for the valuable contributions from about 300 members of the scientific community to organize, participate in, and provide the intellectual output of 5 work- shops, which culminated with the implementation plan. The plan was rendered into its current form by the efforts of the Biological and Environmental Research Information System (Oak Ridge National Laboratory). The report is available via • www.genomicscience.energy.gov/compbio/ • www.science.doe.gov/ober/BER_workshops.html • www.systemsbiologyknowledgebase.org Suggested citation for entire report: U.S. DOE. 2010. DOE Systems Biology Knowledgebase Implementation Plan. U.S. Department of Energy Office of Science (www.genomicscience.energy.gov/compbio/). DOE Systems Biology Knowledgebase Implementation Plan September 30, 2010 Office of Biological and Environmental Research The document is available via genomicscience.energy.gov/compbio/.
    [Show full text]
  • Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
    Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades.
    [Show full text]