Annexins: Putative Linkers in Dynamic Membrane–Cytoskeleton

Total Page:16

File Type:pdf, Size:1020Kb

Annexins: Putative Linkers in Dynamic Membrane–Cytoskeleton Protoplasma (2007) 230: 203–215 DOI 10.1007/s00709-006-0234-7 PROTOPLASMA Printed in Austria Annexins: putative linkers in dynamic membrane–cytoskeleton interactions in plant cells D. Konopka-Postupolska Laboratory of Plant Pathogenesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw Received January 10, 2006; accepted March 14, 2006; published online April 24, 2007 © Springer-Verlag 2007 Summary. The plasma membrane, the most external cellular structure, proteins with similar characteristics in plant cells (Boustead is at the forefront between the plant cell and its environment. Hence, it is et al. 1989, Blackbourn et al. 1991). In vertebrates the annex- naturally adapted to function in detection of external signals, their trans- duction throughout the cell, and finally, in cell reactions. Membrane ins were grouped into 13 families. In contrast, plant annexins lipids and the cytoskeleton, once regarded as simple and static structures, seem to represent a relatively simpler, smaller, and less have recently been recognized as significant players in signal transduc- diverse family of proteins. Nevertheless, in all analysed tion. Proteins involved in signal detection and transduction are organised in specific domains at the plasma membrane. Their aggregation allows to plant species, at least two distinct proteins with molecular bring together and orient the downstream and upstream members of sig- masses between 33 and 36 kDa have been discovered nalling pathways. The cortical cytoskeleton provides a structural frame- (Smallwood et al. 1990, Shin et al. 1995, Proust et al. 1996, work for rapid signal transduction from the cell periphery into the Thonat et al. 1997). However, a search through the nucleus. It leads to intracellular reorganisation and wide-scale modula- tion of cellular metabolism which results in accumulation of newly syn- Arabidopsis thaliana genome, in which seven annexin thesised proteins and/or secondary metabolites which, in turn, have to be genes were found (Clark et al. 2001), showed that this distributed to the appropriate cell compartments. And again, in plant number can be even larger. Summarising, it seems to be cells, the secretory vesicles that govern polar cellular transport are deliv- ered to their target membranes by interaction with actin microfilaments. true for both vertebrates and plants that more than one anne- In search for factors that could govern subsequent steps of the cell re- xin is usually expressed at a given moment and in a par- sponse delineated above we focused on an evolutionary conserved pro- ticular cell type (so-called annexin fingerprint). This tein family, the annexins, that bind in a calcium-dependent manner to membrane phospholipids. Annexins were proposed to regulate dynamic indicates that in spite of significant functional homology, changes in membrane architecture and to organise the interface between individual annexins support distinct and divergent func- secretory vesicles and the membrane. Certain proteins from this family tions. Some data suggest that individual annexins are asso- were also identified as actin binding, making them ideal mediators in ciated with different cellular compartments possibly cell membrane and cytoskeleton interactions. conferring specificity of cellular response to the given stim- Keywords: Plant annexin; Actin microfilament; Stress response; An- ulus. A special family of plant vacuolar annexins, VCaBP, nexin–actin interaction; Exocytosis. with a slightly larger molecular mass (ca. 42 kDa) was discovered in various plant species of the families Annexins in plant cells Solanaceae and Brassicaceae (Seals et al. 1994, Seals and Randall 1997). In mustard plants (Sinapis alba), annexin Annexins constitute a family of ubiquitous, calcium- and p28 was shown to be a part of the chloroplast translation membrane-binding proteins. They have been intensively apparatus (Pfannschmidt et al. 2000). Finally, the presence studied since the identification of the first annexin in animal of nuclear annexins has also been documented (Clark et al. tissues (Creutz et al. 1978) and subsequent recognition of 1998, Kovacs et al. 1998). Annexins have an evolutionary conserved overall struc- ture, with an about 70-amino-acid motif repeated four * Correspondence and reprints: Laboratory of Plant Pathogenesis, Insti- tute of Biochemistry and Biophysics, Polish Academy of Sciences, times within the molecule, and contain a discrete (neither Pawinskiego 5A, 02-106 Warsaw, Poland. EF-hand nor C2) calcium binding site (Fig. 1). Calcium 204 D. Konopka-Postupolska: Annexins in regulation of membrane–cytoskeleton dynamics D. Konopka-Postupolska: Annexins in regulation of membrane–cytoskeleton dynamics 205 binding induces structural changes resulting in protein regulation of membrane organisation, membrane traffick- translocation from the cytoplasm to the cell periphery. ing, interactions with the cytoskeleton, and secretion. In Crystallographic data reveal that membrane binding oc- time it became clear that certain plant annexins can also curs via formation of a ternary complex between annexin, function in plant stress response. Expression of different calcium, and the membranes (Swairjo et al. 1995). Annex- annexins was induced by osmotic stress (AnnMs2 from ins have been shown to preferentially bind to negatively alfa alfa [Kovacs et al. 1998]; AnnAt1 from A. thaliana charged membrane phospholipids (e.g., phosphatidylse- [S. Lee et al. 2004 and our unpubl. data]), which suggests rine). Plant annexins are fairly abundant cellular proteins that they might participate in drought resistance. Some (Clark and Roux 1995) and should thus be considered as a data indicate also that AnnAt1 can act at a crossroad be- very important element of calcium signalling pathways. tween auxin and abscisic acid signalling (Bianchi et al. On the basis of immunocytochemical experiments, it has 2002). Enhanced expression of annexin was also reported been concluded that in plant cells, annexins are localised after different treatments that led to accumulation of reac- mainly in the cytoplasm. When calcium levels increase, tive oxygen species during defence response in tomato they are moved towards the cytoplasmic surface of certain plants (Xiao et al. 2001), and after salicylic acid and hy- membrane structures, mainly the plasma membrane, but drogen peroxide treatment in Arabidopsis plants (Gidrol the presence of an annexin that binds specifically to the et al. 1996). It is worth mentioning that those two an- outer membrane of the chloroplast envelope was also re- nexins, namely, p34 from tomato cells and AnnAt1 from ported (Seigneurin-Barny et al. 2000). On the other hand, A. thaliana, represent close homologs (84% of homology experimental data show that particular proteins, although on protein level). AnnAt1 also has the ability to protect lacking defined targeting sequences, are present in non- heterologous cells from the consequences of oxidative stimulated cells in different cellular compartments. Proteo- stress. Molecular mechanisms of this protection have not mic analysis revealed that, e.g., AnnAt1 from A. thaliana been elucidated, although different hypotheses are consid- was present in the fraction of cell wall proteins (P. Woj- ered, beginning from an intrinsic peroxidase activity of taszek, Adam Mickiewicz University, Poznan, Poland, pers. AnnAt1 (Gidrol et al. 1996). An indirect effect via modu- commun.), integral membrane proteins (Santoni et al. 1998, lation of calcium signalling that results in the lowering of S. Lee et al. 2004), in central, vegetative vacuoles (Carter superoxide production and reduction of protein kinase C et al. 2004), as well as in the nuclear matrix (A. Jerz- activity was also proposed (Kush and Sabapathy 2001, manowski, Institute of Biochemistry and Biophysics, Polish Janicke et al. 1998). It is also possible that it can be a non- Academy of Sciences, Warsaw, Poland, pers. commun.). specific consequence of membrane lipid protection Mimosa annexin exhibits day–night changes in distribution: against oxidative stress. Mammalian annexin A5 was during the daytime it is localised on the cell periphery, shown to bind, with affinity similar to that of phos- while at night it stays in the cytoplasm (D. Hoshino et al. phatidylserine, to malondialdehyde adducts, a major prod- 2004). Additional analyses are necessary to establish uct of lipid peroxidation generated by the nonenzymatic whether this microcompartmentalisation is also true for the reaction of polyunsaturated fatty acids with molecular other plant annexins. oxygen (Balasubramanian et al. 2001). In contrast to free Despite several years of investigation, the primary radicals, lipid peroxides are long-lived and can thus dif- physiological function for annexins has not yet been elu- fuse from the site of origin and exert deleterious effects cidated. It is generally assumed that annexins are impli- and/or activate stress-related pathways in surrounding tis- cated in several processes related to membranes, including sues. If AnnAt1, and possibly other annexins, shares this Fig. 1. Alignment of the deduced amino acid sequences of human (A1, A2, A4, A5, A6, A7, A11, A13) and plant (Arabidopsis thaliana AnnAt1 to -7, Capsicum annuum Ca_p32 and p38, Lycopersicon esculentum Le_p34 and p35, Gossypium hirsutum Gh1, Nicotiana tabacum Nt_VCaBP, Solanum tuberosum St_p34, and Medicago sativa MsAnn annexin genes obtained using T-COFFEE (Notredame et al. 2000). Potential functional domains are indicated as follows:
Recommended publications
  • Annexin A7 Is Required for ESCRT III-Mediated Plasma Membrane Repair
    Annexin A7 is required for ESCRT III-mediated plasma membrane repair Sønder, Stine Lauritzen; Boye, Theresa Louise; Tölle, Regine; Dengjel, Jörn; Maeda, Kenji; Jäättelä, Marja; Simonsen, Adam Cohen; Jaiswal, Jyoti K.; Nylandsted, Jesper Published in: Scientific Reports DOI: 10.1038/s41598-019-43143-4 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Sønder, S. L., Boye, T. L., Tölle, R., Dengjel, J., Maeda, K., Jäättelä, M., ... Nylandsted, J. (2019). Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Scientific Reports, 9(1), [6726]. https://doi.org/10.1038/s41598-019-43143-4 Download date: 09. apr.. 2020 www.nature.com/scientificreports OPEN Annexin A7 is required for ESCRT III-mediated plasma membrane repair Received: 16 November 2018 Stine Lauritzen Sønder1, Theresa Louise Boye1, Regine Tölle2,3, Jörn Dengjel 2,3, Accepted: 15 April 2019 Kenji Maeda1, Marja Jäättelä 1,4, Adam Cohen Simonsen 5, Jyoti K. Jaiswal 6,7 & Published: xx xx xxxx Jesper Nylandsted 1,4 The plasma membrane of eukaryotic cells forms the essential barrier to the extracellular environment, and thus plasma membrane disruptions pose a fatal threat to cells. Here, using invasive breast cancer cells we show that the Ca2+ - and phospholipid-binding protein annexin A7 is part of the plasma membrane repair response by enabling assembly of the endosomal sorting complex required for transport (ESCRT) III. Following injury to the plasma membrane and Ca2+ fux into the cytoplasm, annexin A7 forms a complex with apoptosis linked gene-2 (ALG-2) to facilitate proper recruitment and binding of ALG-2 and ALG-2-interacting protein X (ALIX) to the damaged membrane.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Downloaded from URL: Δ Δ Nated ALG-2 GF122) and GST-ALG-2 GF122 Was Cium.Uhnres.Utoronto.Ca/Vgm
    Inuzuka et al. BMC Structural Biology 2010, 10:25 http://www.biomedcentral.com/1472-6807/10/25 RESEARCH ARTICLE Open Access Molecular basis for defect in Alix-binding by alternatively spliced isoform of ALG-2 (ALG-2ΔGF122) and structural roles of F122 in target recognition Tatsutoshi Inuzuka1, Hironori Suzuki1,2, Masato Kawasaki2, Hideki Shibata1, Soichi Wakatsuki2, Masatoshi Maki1* Abstract Background: ALG-2 (a gene product of PDCD6) belongs to the penta-EF-hand (PEF) protein family and Ca2 +-dependently interacts with various intracellular proteins including mammalian Alix, an adaptor protein in the ESCRT system. Our previous X-ray crystal structural analyses revealed that binding of Ca2+ to EF3 enables the side chain of R125 to move enough to make a primary hydrophobic pocket (Pocket 1) accessible to a short fragment of Alix. The side chain of F122, facing a secondary hydrophobic pocket (Pocket 2), interacts with the Alix peptide. An alternatively spliced shorter isoform, designated ALG-2ΔGF122, lacks Gly121Phe122 and does not bind Alix, but the structural basis of the incompetence has remained to be elucidated. Results: We solved the X-ray crystal structure of the PEF domain of ALG-2ΔGF122 in the Ca2+-bound form and compared it with that of ALG-2. Deletion of the two residues shortened a-helix 5 (a5) and changed the configuration of the R125 side chain so that it partially blocked Pocket 1. A wall created by the main chain of 121- GFG-123 and facing the two pockets was destroyed. Surprisingly, however, substitution of F122 with Ala or Gly, but not with Trp, increased the Alix-binding capacity in binding assays.
    [Show full text]
  • Hypertrophic Cardiomyopathy- Associated Mutations in Genes That Encode Calcium-Handling Proteins
    Current Molecular Medicine 2012, 12, 507-518 507 Beyond the Cardiac Myofilament: Hypertrophic Cardiomyopathy- Associated Mutations in Genes that Encode Calcium-Handling Proteins A.P. Landstrom and M.J. Ackerman* Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Cardiovascular Diseases and Pediatric Cardiology, and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA Abstract: Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium- handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • DOE Systems Biology Knowledgebase Implementation Plan
    DOE Systems Biology Knowledgebase Implementation Plan As part of the U.S. Department of Energy’s (DOE) Office of Science, the Office of Biological and Environmental Research (BER) supports fundamental research and technology development aimed at achieving predictive, systems-level understand- ing of complex biological and environmental systems to advance DOE missions in energy, climate, and environment. DOE Contact Susan Gregurick 301.903.7672, [email protected] Office of Biological and Environmental Research U.S. Department of Energy Office of Science www.science.doe.gov/Program_Offices/BER.htm Acknowledgements The DOE Office of Biological and Environmental Research appreciates the vision and leadership exhibited by Bob Cottingham and Brian Davison (both from Oak Ridge National Laboratory) over the past year to conceptualize and guide the effort to create the DOE Systems Biology Knowledgebase Implementation Plan. Furthermore, we are grateful for the valuable contributions from about 300 members of the scientific community to organize, participate in, and provide the intellectual output of 5 work- shops, which culminated with the implementation plan. The plan was rendered into its current form by the efforts of the Biological and Environmental Research Information System (Oak Ridge National Laboratory). The report is available via • www.genomicscience.energy.gov/compbio/ • www.science.doe.gov/ober/BER_workshops.html • www.systemsbiologyknowledgebase.org Suggested citation for entire report: U.S. DOE. 2010. DOE Systems Biology Knowledgebase Implementation Plan. U.S. Department of Energy Office of Science (www.genomicscience.energy.gov/compbio/). DOE Systems Biology Knowledgebase Implementation Plan September 30, 2010 Office of Biological and Environmental Research The document is available via genomicscience.energy.gov/compbio/.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Annexin 7 Mobilizes Calcium from Endoplasmic Reticulum Stores in Brainb
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1742 (2004) 151–160 http://www.elsevier.com/locate/bba Review Annexin 7 mobilizes calcium from endoplasmic reticulum stores in brainB W.D. Watsona,1, M. Srivastavab,1, X. Leightonb, M. Glasmanb, M. Faradayc, L.H. Fossamd, H.B. Pollardb,*, A. Vermae aNeurology Department, National Naval Medical Center, Bethesda, MD 20814, United States bDepartment of Anatomy, Physiology, and Genetics, 4301 Jones Bridge Road, Bethesda, MD 20814, United States cDepartment of Medical Psychology, Bethesda, MD 20814, United States dDivision of Neuropharmacological Drug Products, CDER, FDA, Rockville, MD 20852, United States eDepartment of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States Received 18 September 2004; received in revised form 5 October 2004; accepted 12 October 2004 Available online 29 October 2004 Abstract Mobilization of intracellular calcium from inositol-1,4,5-triphosphate (IP3)-sensitive endoplasmic reticulum (ER) stores plays a prominent role in brain function. Mice heterozygous for the annexin A7 (Anx7) gene have a profound reduction in IP3 receptor function in pancreatic islets along with defective insulin secretion. We examined IP3-sensitive calcium pools in the brains of Anx7 (+/À) mice by utilizing ATP/Mg2+-dependent 45Ca2+ uptake into brain membrane preparations and tissue sections. Although the Anx7 (+/À) mouse brain displayed similar levels of IP3 binding sites and thapsigargin-sensitive 45Ca2+ uptake as that seen in wild-type mouse brain, the Anx7 (+/À) mouse brain Ca2+ pools showed markedly reduced sensitivity to IP3.
    [Show full text]
  • Anti-SRI / Sorcin Antibody (ARG42959)
    Product datasheet [email protected] ARG42959 Package: 50 μg anti-SRI / Sorcin antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes SRI / Sorcin Tested Reactivity Hu, Ms, Rat Tested Application FACS, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name SRI / Sorcin Antigen Species Human Immunogen Synthetic peptide corresponding to a sequence of Human SRI / Sorcin. (TVDPQELQKALTTMGFRLSPQAVNSIAKRY) Conjugation Un-conjugated Alternate Names SCN; 22 kDa protein; V19; CP-22; Sorcin; CP22 Application Instructions Application table Application Dilution FACS 1:150 - 1:500 IHC-P 1:200 - 1:1000 WB 1:500 - 1:2000 Application Note IHC-P: Antigen Retrieval: Heat mediation was performed in Citrate buffer (pH 6.0) for 20 min. * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 22 kDa Observed Size ~ 22 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer 0.2% Na2HPO4, 0.9% NaCl, 0.05% Sodium azide and 4% Trehalose. Preservative 0.05% Sodium azide Stabilizer 4% Trehalose Concentration 0.5 - 1 mg/ml www.arigobio.com 1/3 Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol SRI Gene Full Name sorcin Background This gene encodes a calcium-binding protein with multiple E-F hand domains that relocates from the cytoplasm to the sarcoplasmic reticulum in response to elevated calcium levels.
    [Show full text]
  • Supplementary Table 1. the List of Proteins with at Least 2 Unique
    Supplementary table 1. The list of proteins with at least 2 unique peptides identified in 3D cultured keratinocytes exposed to UVA (30 J/cm2) or UVB irradiation (60 mJ/cm2) and treated with treated with rutin [25 µM] or/and ascorbic acid [100 µM]. Nr Accession Description 1 A0A024QZN4 Vinculin 2 A0A024QZN9 Voltage-dependent anion channel 2 3 A0A024QZV0 HCG1811539 4 A0A024QZX3 Serpin peptidase inhibitor 5 A0A024QZZ7 Histone H2B 6 A0A024R1A3 Ubiquitin-activating enzyme E1 7 A0A024R1K7 Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 8 A0A024R280 Phosphoserine aminotransferase 1 9 A0A024R2Q4 Ribosomal protein L15 10 A0A024R321 Filamin B 11 A0A024R382 CNDP dipeptidase 2 12 A0A024R3V9 HCG37498 13 A0A024R3X7 Heat shock 10kDa protein 1 (Chaperonin 10) 14 A0A024R408 Actin related protein 2/3 complex, subunit 2, 15 A0A024R4U3 Tubulin tyrosine ligase-like family 16 A0A024R592 Glucosidase 17 A0A024R5Z8 RAB11A, member RAS oncogene family 18 A0A024R652 Methylenetetrahydrofolate dehydrogenase 19 A0A024R6C9 Dihydrolipoamide S-succinyltransferase 20 A0A024R6D4 Enhancer of rudimentary homolog 21 A0A024R7F7 Transportin 2 22 A0A024R7T3 Heterogeneous nuclear ribonucleoprotein F 23 A0A024R814 Ribosomal protein L7 24 A0A024R872 Chromosome 9 open reading frame 88 25 A0A024R895 SET translocation 26 A0A024R8W0 DEAD (Asp-Glu-Ala-Asp) box polypeptide 48 27 A0A024R9E2 Poly(A) binding protein, cytoplasmic 1 28 A0A024RA28 Heterogeneous nuclear ribonucleoprotein A2/B1 29 A0A024RA52 Proteasome subunit alpha 30 A0A024RAE4 Cell division cycle 42 31
    [Show full text]
  • Directional Exosome Proteomes Reflect Polarity-Specific Functions in Retinal Pigmented Epithelium Monolayers
    www.nature.com/scientificreports Correction: Author Correction OPEN Directional Exosome Proteomes Refect Polarity-Specifc Functions in Retinal Pigmented Epithelium Received: 9 February 2017 Accepted: 30 May 2017 Monolayers Published online: 07 July 2017 Mikael Klingeborn1, W. Michael Dismuke1, Nikolai P. Skiba1, Una Kelly1, W. Daniel Stamer1,2 & Catherine Bowes Rickman1,3 The retinal pigmented epithelium (RPE) forms the outer blood-retinal barrier in the eye and its polarity is responsible for directional secretion and uptake of proteins, lipoprotein particles and extracellular vesicles (EVs). Such a secretional division dictates directed interactions between the systemic circulation (basolateral) and the retina (apical). Our goal is to defne the polarized proteomes and physical characteristics of EVs released from the RPE. Primary cultures of porcine RPE cells were diferentiated into polarized RPE monolayers on permeable supports. EVs were isolated from media bathing either apical or basolateral RPE surfaces, and two subpopulations of small EVs including exosomes, and dense EVs, were purifed and processed for proteomic profling. In parallel, EV size distribution and concentration were determined. Using protein correlation profling mass spectrometry, a total of 631 proteins were identifed in exosome preparations, 299 of which were uniquely released apically, and 94 uniquely released basolaterally. Selected proteins were validated by Western blot. The proteomes of these exosome and dense EVs preparations suggest that epithelial polarity impacts directional release. These data serve as a foundation for comparative studies aimed at elucidating the role of exosomes in the molecular pathophysiology of retinal diseases and help identify potential therapeutic targets and biomarkers. Te retinal pigmented epithelium (RPE) is a cell monolayer that is situated between the photoreceptors and the systemic circulation of the choroid.
    [Show full text]
  • The Dynamic Phagosomal Proteome and the Contribution of the Endoplasmic Reticulum
    The dynamic phagosomal proteome and the contribution of the endoplasmic reticulum Lindsay D. Rogers and Leonard J. Foster* Centre for Proteomics, Department of Biochemistry and Molecular Biology, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1Z4 Edited by Emil R. Unanue, Washington University School of Medicine, St. Louis, MO, and approved October 4, 2007 (received for review June 23, 2007) Macrophages use phagocytosis to control the spread of pathogens LTQ-Orbitrap to measure the dynamics of the maturing phago- in the body, to clear apoptotic cells, and to aid in tissue remodeling. somal proteome with unparalleled accuracy. The phagosomal membrane is traditionally thought to originate IgG was chosen as an opsonin rather than whole serum (6) to from the plasmalemma and then go through a series of maturation reduce potentially confounding effects of phagocytosis through steps involving sequential fusion with endosomal compartments, different receptor systems. IgG-opsonized latex beads were leading to the formation of a phagolysosome. A recent model allowed to internalize for 10 min, and then latex bead-containing suggests that the endoplasmic reticulum (ER) is involved in the vacuoles (LBVs) were harvested at seven different time points maturation as well. Here we use stable isotope labeling and (Fig. 1). We focused on events within2hofphagocytosis because multiple quantitative proteomic approaches to follow the dynamic most internalized objects are dead or destroyed by this time and composition of the maturing phagosome in RAW 264.7 macro- there is no apparent physiological relevance to allowing vacuoles phage cells to a greater depth and higher temporal resolution than containing inert latex to mature for longer periods.
    [Show full text]