Directional Exosome Proteomes Reflect Polarity-Specific Functions in Retinal Pigmented Epithelium Monolayers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo -
Protein Expression Analysis of an in Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets
Journal of Personalized Medicine Article Protein Expression Analysis of an In Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets Hisham F. Bahmad 1,2,3 , Wenjing Peng 4, Rui Zhu 4, Farah Ballout 1, Alissar Monzer 1, 1,5 6, , 1, , 4, , Mohamad K. Elajami , Firas Kobeissy * y , Wassim Abou-Kheir * y and Yehia Mechref * y 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; [email protected] (H.F.B.); [email protected] (F.B.); [email protected] (A.M.); [email protected] (M.K.E.) 2 Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 3 Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA 4 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; [email protected] (W.P.); [email protected] (R.Z.) 5 Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 6 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon * Correspondence: [email protected] (F.K.); [email protected] (W.A.-K.); [email protected] (Y.M.); Tel.: +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 4778) (W.A.K.); +1-806-834-8246 (Y.M.); Fax: +1-806-742-1289 (Y.M.); 961-1-744464 (W.A.K.) These authors have contributed equally to this work as joint senior authors. -
The Role of Chromosome X in Intraocular Pressure Variation and Sex-Specific Effects
Genetics The Role of Chromosome X in Intraocular Pressure Variation and Sex-Specific Effects Mark J. Simcoe,1–3 Anthony P. Khawaja,4,5 Omar A. Mahroo,3 Christopher J. Hammond,1,2 and Pirro G. Hysi1,2; for the UK Biobank Eye and Vision Consortium 1Department of Ophthalmology, Kings College London, London, United Kingdom 2KCL Department of Twin Research and Genetic Epidemiology, London, United Kingdom 3Institute of Ophthalmology, University College London, London, United Kingdom 4NIHR Biomedical Research Centre, Moorfield’s Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom 5Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom Correspondence: Pirro G. Hysi, PURPOSE. The purpose of this study was to identify genetic variants on chromosome Department of Ophthalmology, X associated with intraocular pressure (IOP) and determine if they possess any sex- Kings College London, St. Thomas specific effects. Hospital, Westminster Bridge Road, London, SE1 7EH UK; METHODS. Association analyses were performed across chromosome X using 102,407 [email protected]. participants from the UK Biobank. Replication and validation analyses were conducted in an additional 6599 participants from the EPIC-Norfolk cohort, and an independent Members of the UK Biobank Eye and Vision Consortium are listed in 331,682 participants from the UK Biobank. the Supplementary Material. RESULTS. We identified three loci associated with IOP at genomewide significance (P < 5 × 10−8), located within or near the following genes: MXRA5 (rs2107482, Received: June 19, 2020 − − Accepted: August 19, 2020 P = 7.1 × 10 11), GPM6B (rs66819623, P = 6.9 × 10 10), NDP,andEFHC2 (rs12558081, − Published: September 14, 2020 P = 4.9 × 10 11). -
Annexin A7 Is Required for ESCRT III-Mediated Plasma Membrane Repair
Annexin A7 is required for ESCRT III-mediated plasma membrane repair Sønder, Stine Lauritzen; Boye, Theresa Louise; Tölle, Regine; Dengjel, Jörn; Maeda, Kenji; Jäättelä, Marja; Simonsen, Adam Cohen; Jaiswal, Jyoti K.; Nylandsted, Jesper Published in: Scientific Reports DOI: 10.1038/s41598-019-43143-4 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Sønder, S. L., Boye, T. L., Tölle, R., Dengjel, J., Maeda, K., Jäättelä, M., ... Nylandsted, J. (2019). Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Scientific Reports, 9(1), [6726]. https://doi.org/10.1038/s41598-019-43143-4 Download date: 09. apr.. 2020 www.nature.com/scientificreports OPEN Annexin A7 is required for ESCRT III-mediated plasma membrane repair Received: 16 November 2018 Stine Lauritzen Sønder1, Theresa Louise Boye1, Regine Tölle2,3, Jörn Dengjel 2,3, Accepted: 15 April 2019 Kenji Maeda1, Marja Jäättelä 1,4, Adam Cohen Simonsen 5, Jyoti K. Jaiswal 6,7 & Published: xx xx xxxx Jesper Nylandsted 1,4 The plasma membrane of eukaryotic cells forms the essential barrier to the extracellular environment, and thus plasma membrane disruptions pose a fatal threat to cells. Here, using invasive breast cancer cells we show that the Ca2+ - and phospholipid-binding protein annexin A7 is part of the plasma membrane repair response by enabling assembly of the endosomal sorting complex required for transport (ESCRT) III. Following injury to the plasma membrane and Ca2+ fux into the cytoplasm, annexin A7 forms a complex with apoptosis linked gene-2 (ALG-2) to facilitate proper recruitment and binding of ALG-2 and ALG-2-interacting protein X (ALIX) to the damaged membrane. -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
Methylation of the NT5E Gene Is Associated with Poor Prognostic Factors in Breast Cancer
diagnostics Article Methylation of the NT5E Gene Is Associated with Poor Prognostic Factors in Breast Cancer Young Ju Jeong 1,* , Hoon Kyu Oh 2 , Hye Ryeon Choi 3 and Sung Hwan Park 1 1 Department of Surgery, Catholic University of Daegu School of Medicine, Daegu 42471, Korea; [email protected] 2 Department of Pathology, Catholic University of Daegu School of Medicine, Daegu 42471, Korea; [email protected] 3 Department of Thyroid and Endocrine Surgery, Thyroid Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-53-560-4875 Received: 8 October 2020; Accepted: 11 November 2020; Published: 12 November 2020 Abstract: Cluster of differentiation (CD) 73, which is encoded by the NT5E gene, regulates production of immunosuppressive adenosine and is an emerging checkpoint in cancer immunotherapy. Despite the significance of CD73 in immuno-oncology, the roles of the NT5E gene methylation in breast cancer have not been well-defined yet. Therefore, we aimed to investigate the prognostic significance of the NT5E gene methylation in breast cancer. The DNA methylation status of the NT5E gene was analyzed using pyrosequencing in breast cancer tissues. In addition, the levels of inflammatory markers and lymphocyte infiltration were evaluated. The mean methylation level of the NT5E gene was significantly higher in breast cancer than in normal breast tissues. In the analysis of relevance with clinicopathologic characteristics, the mean methylation levels of the NT5E gene were significantly higher in patients with large tumor size, high histologic grade, negative estrogen receptor expression, negative Bcl-2 expression, and premenopausal women. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
Differential Proteomic Analysis of Hepatocellular Carcinomas From
CANCER GENOMICS & PROTEOMICS 17 : 669-685 (2020) doi:10.21873/cgp.20222 Differential Proteomic Analysis of Hepatocellular Carcinomas from Ppp2r5d Knockout Mice and Normal (Knockout) Livers CAROLINE LAMBRECHT 1, GABRIELA BOMFIM FERREIRA 2, JUDIT DOMÈNECH OMELLA 1, LOUIS LIBBRECHT 3, RITA DE VOS 4, RITA DERUA 1, CHANTAL MATHIEU 2, LUT OVERBERGH 2, ETIENNE WAELKENS 1 and VEERLE JANSSENS 1,5 1Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium; 2Clinical and Experimental Endocrinology, Department Clinical and Experimental Medicine, University of Leuven (KU Leuven), Leuven, Belgium; 3Department of Pathology, Université Catholique de Louvain (UCL), Brussels, Belgium; 4Translational Cell and Tissue Research, Department Imaging and Pathology, University of Leuven (KU Leuven), Leuven, Belgium; 5LKI, KU Leuven Cancer Institute, Leuven, Belgium Abstract. Background: Hepatocellular carcinoma (HCC) ‘gastrointestinal disease’ as top hits. Conclusion: We is the major type of primary liver cancer. Mice lacking the identified several proteins for further exploration as novel tumor-suppressive protein phosphatase 2A subunit B56 δ potential HCC biomarkers, and independently underscored (Ppp2r5d ) spontaneously develop HCC, correlating with the relevance of Ppp2r5d knockout mice as a valuable increased c-MYC oncogenicity. Materials and Methods: We hepatocarcinogenesis model. used two-dimensional difference gel electrophoresis-coupled matrix-assisted laser desorption/ionization time-of-flight Hepatocellular carcinoma (HCC) is the most common primary mass spectrometry to identify differential proteomes of livers liver cancer, and the second leading cause of cancer-related death from wild-type, non-cancerous and HCC-affected B56 δ worldwide (1). Most patients with HCC are diagnosed at an knockout mice. -
CD Markers Are Routinely Used for the Immunophenotyping of Cells
ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr. -
Downloaded from URL: Δ Δ Nated ALG-2 GF122) and GST-ALG-2 GF122 Was Cium.Uhnres.Utoronto.Ca/Vgm
Inuzuka et al. BMC Structural Biology 2010, 10:25 http://www.biomedcentral.com/1472-6807/10/25 RESEARCH ARTICLE Open Access Molecular basis for defect in Alix-binding by alternatively spliced isoform of ALG-2 (ALG-2ΔGF122) and structural roles of F122 in target recognition Tatsutoshi Inuzuka1, Hironori Suzuki1,2, Masato Kawasaki2, Hideki Shibata1, Soichi Wakatsuki2, Masatoshi Maki1* Abstract Background: ALG-2 (a gene product of PDCD6) belongs to the penta-EF-hand (PEF) protein family and Ca2 +-dependently interacts with various intracellular proteins including mammalian Alix, an adaptor protein in the ESCRT system. Our previous X-ray crystal structural analyses revealed that binding of Ca2+ to EF3 enables the side chain of R125 to move enough to make a primary hydrophobic pocket (Pocket 1) accessible to a short fragment of Alix. The side chain of F122, facing a secondary hydrophobic pocket (Pocket 2), interacts with the Alix peptide. An alternatively spliced shorter isoform, designated ALG-2ΔGF122, lacks Gly121Phe122 and does not bind Alix, but the structural basis of the incompetence has remained to be elucidated. Results: We solved the X-ray crystal structure of the PEF domain of ALG-2ΔGF122 in the Ca2+-bound form and compared it with that of ALG-2. Deletion of the two residues shortened a-helix 5 (a5) and changed the configuration of the R125 side chain so that it partially blocked Pocket 1. A wall created by the main chain of 121- GFG-123 and facing the two pockets was destroyed. Surprisingly, however, substitution of F122 with Ala or Gly, but not with Trp, increased the Alix-binding capacity in binding assays. -
2812 Matrix Vesicles: Structure, Composition, Formation and Function in Ca
[Frontiers in Bioscience 16, 2812-2902, June 1, 2011] Matrix vesicles: structure, composition, formation and function in calcification Roy E. Wuthier Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Morphology of matrix vesicles (MVs) 3.1. Conventional transmission electron microscopy 3.2. Cryofixation, freeze-substitution electron microscopy 3.3. Freeze-fracture studies 4. Isolation of MVs 4.1. Crude collagenase digestion methods 4.2. Non-collagenase dependent methods 4.3. Cell culture methods 4.4. Modified collagenase digestion methods 4.5. Other isolation methods 5. MV proteins 5.1. Early SDS-PAGE studies 5.2. Isolation and identification of major MV proteins 5.3. Sequential extraction, separation and characterization of major MV proteins 5.4. Proteomic characterization of MV proteins 6. MV-associated extracellular matrix proteins 6.1. Type VI collagen 6.2. Type X collagen 6.3. Proteoglycan link protein and aggrecan core protein 6.4. Fibrillin-1 and fibrillin-2 7. MV annexins – acidic phospholipid-dependent ca2+-binding proteins 7.1. Annexin A5 7.2. Annexin A6 7.3. Annexin A2 7.4. Annexin A1 7.5. Annexin A11 and Annexin A4 8. MV enzymes 8.1. Tissue-nonspecific alkaline phosphatase(TNAP) 8.1.1. Molecular structure 8.1.2. Amino acid sequence 8.1.3. 3-D structure 8.1.4. Disposition in the MV membrane 8.1.5. Catalytic properties 8.1.6. Collagen-binding properties 8.2. Nucleotide pyrophosphate phosphodiesterase (NPP1, PC1) 8.3. PHOSPHO-1 (Phosphoethanolamine/Phosphocholine phosphatase 8.4. Acid phosphatase 8.5.