Suppl. Table 1

Total Page:16

File Type:pdf, Size:1020Kb

Suppl. Table 1 Suppl. Table 1. SiRNA library used for centriole overduplication screen. Entrez Gene Id NCBI gene symbol siRNA Target Sequence 1070 CETN3 TTGCGACGTGTTGCTAGAGAA 1070 CETN3 AAGCAATAGATTATCATGAAT 55722 CEP72 AGAGCTATGTATGATAATTAA 55722 CEP72 CTGGATGATTTGAGACAACAT 80071 CCDC15 ACCGAGTAAATCAACAAATTA 80071 CCDC15 CAGCAGAGTTCAGAAAGTAAA 9702 CEP57 TAGACTTATCTTTGAAGATAA 9702 CEP57 TAGAGAAACAATTGAATATAA 282809 WDR51B AAGGACTAATTTAAATTACTA 282809 WDR51B AAGATCCTGGATACAAATTAA 55142 CEP27 CAGCAGATCACAAATATTCAA 55142 CEP27 AAGCTGTTTATCACAGATATA 85378 TUBGCP6 ACGAGACTACTTCCTTAACAA 85378 TUBGCP6 CACCCACGGACACGTATCCAA 54930 C14orf94 CAGCGGCTGCTTGTAACTGAA 54930 C14orf94 AAGGGAGTGTGGAAATGCTTA 5048 PAFAH1B1 CCCGGTAATATCACTCGTTAA 5048 PAFAH1B1 CTCATAGATATTGAACAATAA 2802 GOLGA3 CTGGCCGATTACAGAACTGAA 2802 GOLGA3 CAGAGTTACTTCAGTGCATAA 9662 CEP135 AAGAATTTCATTCTCACTTAA 9662 CEP135 CAGCAGAAAGAGATAAACTAA 153241 CCDC100 ATGCAAGAAGATATATTTGAA 153241 CCDC100 CTGCGGTAATTTCCAGTTCTA 80184 CEP290 CCGGAAGAAATGAAGAATTAA 80184 CEP290 AAGGAAATCAATAAACTTGAA 22852 ANKRD26 CAGAAGTATGTTGATCCTTTA 22852 ANKRD26 ATGGATGATGTTGATGACTTA 10540 DCTN2 CACCAGCTATATGAAACTATA 10540 DCTN2 AACGAGATTGCCAAGCATAAA 25886 WDR51A AAGTGATGGTTTGGAAGAGTA 25886 WDR51A CCAGTGATGACAAGACTGTTA 55835 CENPJ CTCAAGTTAAACATAAGTCAA 55835 CENPJ CACAGTCAGATAAATCTGAAA 84902 CCDC123 AAGGATGGAGTGCTTAATAAA 84902 CCDC123 ACCCTGGTTGTTGGATATAAA 79598 LRRIQ2 CACAAGAGAATTCTAAATTAA 79598 LRRIQ2 AAGGATAATATCGTTTAACAA 51143 DYNC1LI1 TTGGATTTGTCTATACATATA 51143 DYNC1LI1 TAGACTTAGTATATAAATACA 2302 FOXJ1 CAGGACAGACAGACTAATGTA 2302 FOXJ1 CACCCTGTCGGCCATCTACAA 11064 CEP110 CAGCTATAATCTAATAGGGAA 11064 CEP110 AACAATTGAACTGGTAGCCCA 55363 HEMGN AACATACAGCTTAATAGTTTA 55363 HEMGN CACCTGAAACGTATCAAGAAA 9814 SFI1 AAGGATGGTGCAGTTAAGAAA 9814 SFI1 AAGCAAGTACTCATTACAGAA 8451 CUL4A ACCCATATTATTAGTGATAAA 8451 CUL4A CTAGAGATTGTTAATATTGTA 11258 DCTN3 CTGGACAGTGCTCACATCAAA 11258 DCTN3 GAGGGTGAAGATTCTCTACAA 203068 TUBB CAGTTGGTAGAGAATACTGAT 203068 TUBB CCGCAAGTTGGCAGTCAACAT 22995 CEP152 CAGGAACTTAAAGAAACTGAA 22995 CEP152 ATGAAGAAACTCGAAATTGAA 9738 CP110 AAAGGGCTATATAATAATAAA 9738 CP110 CCCGAAATTATGCCAAAGTTA 132320 SCLT1 CAGCTGGAAATGGCAAATGAA 132320 SCLT1 TAGAAGTGTATTGAAATGGTA 54801 FAM29A AAGGAACACTGTCAAACTATA 54801 FAM29A TTGGAGAACTACCTAATTTAA 7317 UBE1 CTGGGATGTCACGAAGTTAAA 7317 UBE1 CTGAATCCTAATAAAGAATTA 51199 NIN CTGGAAGACCTAAGAAATGTA 51199 NIN AACGGGAACAAGAGAAGTTTA 9857 CAP350 CTGGGACAAAGAATTAATAAA 9857 CAP350 CAGCATTATGCAGAAACTGAA 8450 CUL4B AATGATGATTTCAAACATAAA 8450 CUL4B TGGCAGCACTATTGTAATTAA 10383 TUBB2C CCGGGCAGTGCGGCAACCAAA 10383 TUBB2C GAGCAAATGCTTAATGTCCAA 22897 CEP164 CAGGTGACATTTACTATTTCA 22897 CEP164 ACCTACATTCCTAGTGAGCAA 56890 MDM1 ATGAGGGTGTAACAAACCATA 56890 MDM1 CTGGACTTAGATCAGATCAAT 79959 CEP76 AACGATGAATCCAAATGGAAA 79959 CEP76 TTGGATCATGTTTGCTTGTAA 10142 AKAP9 CAGCCTATCAGTGAACATCAA 10142 AKAP9 CAGCTTCAAAGGGATATACAA 29922 NME7 CCCGGCATTTACGCCCTGGAA 29922 NME7 TTCATGTAGATCACCAGTCAA 1019 CDK4 AAGCCTCTCTTCTGTGGAAAC 1019 CDK4 AAGGTAACCCTGGTGTTTGAG 995 CDC25C CCAGGGAGCCTTAAACTTATA 995 CDC25C GAGCTGCAATCTAGTTAACTA 993 CDC25A CTGGCCAAATAGCAAAGACAA 993 CDC25A AAGGGTTATCTCTTTCATACA 1017 CDK2 CAGGTTATATCCAATAGTAGA 1017 CDK2 GACGGAGCTTGTTATCGCAAA 5519 PPP2R1B CTGACGTTCGTTTGAATATCA 5519 PPP2R1B CAGAAGTTAGGTCAAGATGAA 6502 SKP2 AAGTGATAGTGTCATGCTAAA 6502 SKP2 ACCCTTCAACTGTTAAAGGAA 983 CDC2 CTCTGGTACAGATCTCCAGAA 983 CDC2 AAGGGGTTCCTAGTACTGCAA 84131 CEP78 AAGGCTGTTTAAGTATATCAA 84131 CEP78 TAGGAAGTGGTCACAAAGGAA 23644 EDC4 AACATTGAGAAATTCAATTAA 23644 EDC4 CAGGTGATAGTACCTCAGCAA 1069 CETN2 CAGAACGACTTTAGACAAGCA 1069 CETN2 AAGCACATGTAACTAGATTTA 23177 CEP68 CGGCAATTTAAGAAAGATATA 23177 CEP68 ACCGAAGATGATCCATCCCTA 7532 YWHAG CCGATTAGGCCTGGCTCTTAA 7532 YWHAG AAGAGCTATATCCTTAACCAT 8481 OFD1 CCGCCCGGGCTGGGCACTAAA 8481 OFD1 ATCGATCGTTCTGTCAATGGA 54820 NDE1 AGCCGAGAATATGAAGCTGAA 54820 NDE1 ACGCAGCTGCAACAAATTGAA 10464 PIBF1 CAGAGCCAATTCGCTATTAAA 10464 PIBF1 CTCGTTAAGATGCATAGTAAA 163786 SASS6 CTCCACTATTAGAGAACTTAA 163786 SASS6 CAGGCACAGGTTCAATATCAA 152185 CCDC52 TTAGCAGAATTTAATAATTAA 152185 CCDC52 CAGCTGTTAAATAAAGTGAAA 5108 PCM1 CAGGCTTTAACTAATTATGGA 5108 PCM1 CAGTATCACATCTGAACTAAA 10382 TUBB4 CTGACCTTGCCTCACCTTTAA 10382 TUBB4 TGAGCCCTAATTTATCTTTAA 10987 COPS5 CTGGACTAAGGATCACCATTA 10987 COPS5 TAGGACATACCCAAAGGGCTA 11190 CEP250 ACGCCACTTCCTGGAAATGAA 11190 CEP250 CAGATTCAAACTGTCACTCAA 64005 MYO1G CAGGTACAAGATGACCTGTGA 64005 MYO1G CCCGCCAGCGCTGCAAATAAA 10426 TUBGCP3 CACGACTCGCATGGACTTTAA 10426 TUBGCP3 CCACTACCTAAGAGTATTTAA 1781 DYNC1I2 CTCGATCGTGTCAGTTTGTAA 1781 DYNC1I2 CAGGTGCTAAACTGTCATTAA 114791 TUBGCP5 CACGTTATATAGCGTATCAGA 114791 TUBGCP5 CTGGATGATGTTCATGATCCA 10806 SDCCAG8 AAGGAAGAATGCTGTACATTA 10806 SDCCAG8 AACAGGGATCTTGAAATTAAA 27229 TUBGCP4 CAGCGGTAAACAAACAATATA 27229 TUBGCP4 CTGGATGTTACCACCAAGTAA 80321 CEP70 CAGGAGCTTATAGAAACTAAT 80321 CEP70 CAGGCATTTACTAATGATCTA 4957 ODF2 AAGGATCTTTATGTCGCTGAA 4957 ODF2 AAGAGGATTCTGAAAGACTAA 7840 ALMS1 CTGGAACAAAGTGGTGATTAA 7840 ALMS1 TCGGAAGTTAGTGAAGCTTTA 10121 ACTR1A CAGGACCATTTGAGATTGGAA 10121 ACTR1A CTGAGTGAAGTGAAGAAACTA 55125 CEP192 CAGAAGTTAGTAGATATGAAA 55125 CEP192 AACAGTGAATGTGCAAGTAAA 116840 CNTROB AAGCATATCTTTGAGATGGAA 116840 CNTROB CTGGTGGAAACCTTTCCTCTA 5116 PCNT CAGGGTGAATTTGGAAGTGAA 5116 PCNT CACGAGCTTGAAGGTCATATA 80709 AKNA AAGAATGAATATTGATCTTAA 80709 AKNA CCGGACTGTGGTATCTGGCAA 85444 LRRCC1 CTGCATAAACATGCAAATGAA 85444 LRRCC1 AAGATCTGACCTGTATGGTAA 22994 AZI1 CAGCACGAGCTGGAGATTAAA 22994 AZI1 CCGGGAGAAGTGGATCAGTGA 8452 CUL3 AACAACTTTCTTCAAACGCTA 8452 CUL3 AAGAATCCTTCTCATAGTGAA 3320 HSP90AA1 ATGGCATGACAACTACTTTAA 3320 HSP90AA1 AACCCTGACCATTCCATTATT 79659 DYNC2H1 AAGGAATTGAATACTCTTCAA 79659 DYNC2H1 AAGCTCGTTGGGACCAACTAA 8655 DYNLL1 CTAGTTTGTCGTGGTTATAAA 8655 DYNLL1 AGGGAACATCTCGATGTTTGA 9696 CROCC CCCAGAGATCTCTCCGCCTTA 9696 CROCC GAGCCACTGTAGATCATTAAA 9859 CEP170 CAGAATATTATTTAAAGACAA 9859 CEP170 AAACATGATGATGGTACGCAA 80254 CEP63 AAGAAACTACATGAAGAATTA 80254 CEP63 ATGGAAGCACATAACAATGAA 55294 FBXW7 CCCTAAAGAGTTGGCACTCTA 55294 FBXW7 AAACATATGATGCAAGTGATA 7531 YWHAE CTCCGCTGAAATGTTGCTGAA 7531 YWHAE AAGCATCTAAGAGAGAGGTTA 145508 C14orf145 AAGCTTGGAACAATCAATCGA 145508 C14orf145 GCGGGTGCGATAGAACATTTA 10844 TUBGCP2 CAGCGTCTGGATCAGCAACAA 10844 TUBGCP2 CCAGGAGGATTACAACGACAA 85459 KIAA1731 CAGCATGAACTTAGTGCTATA 85459 KIAA1731 AACAATTACTTGAATATCAAA 388554 LOC388554 CACGGCCTTTGTGAAAGCCAA 388554 LOC388554 CACCCTGGACCTGCTGACCTA 10376 TUBA1B TCCATCATATCTCAAAGTAAA 10376 TUBA1B CAGCTTAACTGACAGACGTTA 7846 TUBA1A CCGCCTAAGAGTCGCGCTGTA 7846 TUBA1A TCCAACCTATACTAACCTGAA 11178 LZTS1 CCAGACGGAGGTGAACGCCAA 11178 LZTS1 CACCGTGGCACTAGAATGCAA 1778 DYNC1H1 CAGGAGGTAATTGCAGACAAA 1778 DYNC1H1 CAGGTGGGTGTACATTACGAA 153090 DAB2IP CAGGGATAGGCTAAGGAGTAA 153090 DAB2IP AACGATCTTTCCGGTCTGATA 23332 CLASP1 AAGCGTAATGTTACACTTTAA 23332 CLASP1 CAGGACTTTGCTAACAATAAT 79441 C4orf15 CAGCGACGTAATAAATGTCAA 79441 C4orf15 AACAAGATTATTATACAGCAA 201255 LRRC45 CTCCATCATCAACGCTCTCAA 201255 LRRC45 CCGCACTCACGTCCTCAGCAA 49856 WDR8 TCCCAAGATAGTGGTGTATAA 49856 WDR8 CTCGATGGCCCTCCTCAGCAA 95681 TSGA14 CAGTATTAGTCTAATTGAGTA 95681 TSGA14 CACTGGTAACAGTATGACTAA 1639 DCTN1 TCGGCCCAACTTATGGAGCAA 1639 DCTN1 AGCGATGAATGAGATGAACGA 23354 KIAA0841 CAGGCACGTCAGCACACTCAA 23354 KIAA0841 CAGAGTTTACAAGATAAGGAA 5518 PPP2R1A CTGGTGTCCGATGCCAACCAA 5518 PPP2R1A ACGGCTGAACATCATCTCTAA 5577 PRKAR2B ACGAACATGGATATTGTTGAA 5577 PRKAR2B CACGCCATTGGGACTGTCAAA 7277 TUBA4A CCGCCGCAACCTAGACATCGA 7277 TUBA4A GAGGATGAGGGAGAAGAATAA 10769 PLK2 CACCTTTCAGGTGAATTTCTA 10769 PLK2 CAGATTGTGTCTGGACTGAAA 3796 KIF2A AAGAACCAAGATTGTTCTAAA 3796 KIF2A ACCATATAACATGTGATTATA 22919 MAPRE1 CCAGTTATCCCGAAATTTCTA 22919 MAPRE1 CAGAGCAACATCGGAATTCTT 4738 NEDD8 CTCATAATGAGGCATCATATA 4738 NEDD8 ATGCCCAGTAATGTATGTCTA 8453 CUL2 CGGCACAATGCCCTTATTCAA 8453 CUL2 TACATCGGATGTATACAGATA 5576 PRKAR2A AACGGCATGTCTCTCCAACAA 5576 PRKAR2A AACTTGAAAGTCAGCACTAAA 9793 CKAP5 CAGGTATTATTAATGACGCAA 9793 CKAP5 AAGGGTCGACTCAATGATTCA 5566 PRKACA CAGAAGGTGGTGAAACTGAAA 5566 PRKACA CAAGGACAACTCAAACTTATA 7283 TUBG1 CCGAGGGAAATCATCACCCTA 7283 TUBG1 CTCCTCTTATGAGACTATTTA 8636 SSNA1 TGGCCTGTGATTATGAATAAA 8636 SSNA1 CTCCTTCACCACAGAACCCAA 1263 PLK3 CTGCATCAAGCAGGTTCACTA 1263 PLK3 CAGAAAGACTGTGCACTACAA 10733 PLK4 AAGGACTTGGTCTTACAACTA 10733 PLK4 CAGACATATAAGTTTAATAAA 11116 FGFR1OP AAGATGTTGCATAGACACGAA 11116 FGFR1OP CCAGATGAAGATGATATGGAA 994 CDC25B CCCAGTCTGTTGAGTTAGTTA 994 CDC25B CAGGAGGCTGAGGAACCTAAA 1454 CSNK1E GTGGTTGTTAATTTGAAGTAA 1454 CSNK1E GAGCTTTATCGTGGTTGTTAA 1453 CSNK1D CCGGTCTAGGATCGAAATGTT 1453 CSNK1D CTCCCTGACGATTCCACTGTA 8454 CUL1 AACGTAGTTATCAGCGATTCA 8454 CUL1 ACCGACAGCACTCAAATTAAA 1021 CDK6 AAGACTCAAGGTGGTCAGTAA 1021 CDK6 TCTGAAGTGTTTGACATTTAA 5347 PLK1 CCGGATCAAGAAGAATGAATA 5347 PLK1 CGCGGGCAAGATTGTGCCTAA 121441 NEDD1 CAGGTTTGCCTCGAAGCATAA 121441 NEDD1 CACAGTGTAACCACTAATTTA 9134 CCNE2 AAGAAGAGTATTAAATATATA 9134 CCNE2 CTCCAAGTTGATGCTCTTAAA 898 CCNE1 AAGGCAAACGTGACCGTTTTT 898 CCNE1 CAGGGTATCAGTGGTGCGACA 55755 CDK5RAP2 ATCCGTGATCTTAGAAATGAA 55755 CDK5RAP2 CAGAAGGAGAATGACAAATTA 134359 C5orf37 CAGGATGTTTATGAAGGTAAA 134359 C5orf37 CAGCAACAAATTCTAGTCATA 4751 NEK2 TTACGAGGATGTTAAACTTAA 4751 NEK2 TACGAGGATGTTAAACTTAAA.
Recommended publications
  • Old Data and Friends Improve with Age: Advancements with the Updated Tools of Genenetwork
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445383; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Old data and friends improve with age: Advancements with the updated tools of GeneNetwork Alisha Chunduri1, David G. Ashbrook2 1Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India 2Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA Abstract Understanding gene-by-environment interactions is important across biology, particularly behaviour. Families of isogenic strains are excellently placed, as the same genome can be tested in multiple environments. The BXD’s recent expansion to 140 strains makes them the largest family of murine isogenic genomes, and therefore give great power to detect QTL. Indefinite reproducible genometypes can be leveraged; old data can be reanalysed with emerging tools to produce novel biological insights. To highlight the importance of reanalyses, we obtained drug- and behavioural-phenotypes from Philip et al. 2010, and reanalysed their data with new genotypes from sequencing, and new models (GEMMA and R/qtl2). We discover QTL on chromosomes 3, 5, 9, 11, and 14, not found in the original study. We narrowed down the candidate genes based on their ability to alter gene expression and/or protein function, using cis-eQTL analysis, and variants predicted to be deleterious. Co-expression analysis (‘gene friends’) and human PheWAS were used to further narrow candidates.
    [Show full text]
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Title a New Centrosomal Protein Regulates Neurogenesis By
    Title A new centrosomal protein regulates neurogenesis by microtubule organization Authors: Germán Camargo Ortega1-3†, Sven Falk1,2†, Pia A. Johansson1,2†, Elise Peyre4, Sanjeeb Kumar Sahu5, Loïc Broic4, Camino De Juan Romero6, Kalina Draganova1,2, Stanislav Vinopal7, Kaviya Chinnappa1‡, Anna Gavranovic1, Tugay Karakaya1, Juliane Merl-Pham8, Arie Geerlof9, Regina Feederle10,11, Wei Shao12,13, Song-Hai Shi12,13, Stefanie M. Hauck8, Frank Bradke7, Victor Borrell6, Vijay K. Tiwari§, Wieland B. Huttner14, Michaela Wilsch- Bräuninger14, Laurent Nguyen4 and Magdalena Götz1,2,11* Affiliations: 1. Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 2. Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, Germany. 3. Graduate School of Systemic Neurosciences, Biocenter, Ludwig-Maximilian University Munich, Germany. 4. GIGA-Neurosciences, Molecular regulation of neurogenesis, University of Liège, Belgium 5. Institute of Molecular Biology (IMB), Mainz, Germany. 6. Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain. 7. Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. 8. Research Unit Protein Science, Helmholtz Centre Munich, German Research Center for Environmental Health, Munich, Germany. 9. Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 10. Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany. 11. SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig- Maximilian University Munich, Germany. 12. Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, USA 13.
    [Show full text]
  • Mutations in CDK5RAP2 Cause Seckel Syndrome Go¨ Khan Yigit1,2,3,A, Karen E
    ORIGINAL ARTICLE Mutations in CDK5RAP2 cause Seckel syndrome Go¨ khan Yigit1,2,3,a, Karen E. Brown4,a,Hu¨ lya Kayserili5, Esther Pohl1,2,3, Almuth Caliebe6, Diana Zahnleiter7, Elisabeth Rosser8, Nina Bo¨ gershausen1,2,3, Zehra Oya Uyguner5, Umut Altunoglu5, Gudrun Nu¨ rnberg2,3,9, Peter Nu¨ rnberg2,3,9, Anita Rauch10, Yun Li1,2,3, Christian Thomas Thiel7 & Bernd Wollnik1,2,3 1Institute of Human Genetics, University of Cologne, Cologne, Germany 2Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany 3Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany 4Chromosome Biology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, W12 0NN, UK 5Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey 6Institute of Human Genetics, Christian-Albrechts-University of Kiel, Kiel, Germany 7Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany 8Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, WC1N 3EH, UK 9Cologne Center for Genomics, University of Cologne, Cologne, Germany 10Institute of Medical Genetics, University of Zurich, Schwerzenbach-Zurich, Switzerland Keywords Abstract CDK5RAP2, CEP215, microcephaly, primordial dwarfism, Seckel syndrome Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by pre- natal proportionate short stature, severe microcephaly, intellectual disability, and Correspondence characteristic facial features. Here, we describe the novel homozygous splice-site Bernd Wollnik, Center for Molecular mutations c.383+1G>C and c.4005-9A>GinCDK5RAP2 in two consanguineous Medicine Cologne (CMMC) and Institute of families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal pro- Human Genetics, University of Cologne, tein which is known to be essential for centrosomal cohesion and proper spindle Kerpener Str.
    [Show full text]
  • Screening for Copy Number Variation in Genes Associated with the Long QT Syndrome Clinical Relevance
    Journal of the American College of Cardiology Vol. 57, No. 1, 2011 © 2011 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2010.08.621 Heart Rhythm Disorders Screening for Copy Number Variation in Genes Associated With the Long QT Syndrome Clinical Relevance Julien Barc, PHD,*‡§ François Briec, MD,*†‡§ Sébastien Schmitt, MD,ʈ Florence Kyndt, PharmD, PHD,*‡§ʈ Martine Le Cunff, BS,*‡§ Estelle Baron, BS,*‡§ Claude Vieyres, MD,¶ Frédéric Sacher, MD,# Richard Redon, PHD,*‡§ Cédric Le Caignec, MD, PHD,*‡§ʈ Hervé Le Marec, MD, PHD,*†‡§ Vincent Probst, MD, PHD,*†‡§ Jean-Jacques Schott, PHD*†‡§ Nantes, Angoulême, and Bordeaux, France Objectives The aim of this study was to investigate, in a set of 93 mutation-negative long QT syndrome (LQTS) probands, the frequency of copy number variants (CNVs) in LQTS genes. Background LQTS is an inherited cardiac arrhythmia characterized by a prolonged heart rate–corrected QT (QTc) interval as- sociated with sudden cardiac death. Recent studies suggested the involvement of duplications or deletions in the occurrence of LQTS. However, their frequency remains unknown in LQTS patients. Methods Point mutations in KCNQ1, KCNH2, and SCN5A genes were excluded by denaturing high-performance liquid chromatography or direct sequencing. We applied Multiplex Ligation-dependent Probe Amplification (MLPA) to detect CNVs in exons of these 3 genes. Abnormal exon copy numbers were confirmed by quantitative multiplex PCR of short fluorescent fragment (QMPSF). Array-based comparative genomic hybridization (array CGH) analysis was performed using Agilent Human Genome 244K Microarrays to further map the genomic rearrangements.
    [Show full text]
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • The Basal Bodies of Chlamydomonas Reinhardtii Susan K
    Dutcher and O’Toole Cilia (2016) 5:18 DOI 10.1186/s13630-016-0039-z Cilia REVIEW Open Access The basal bodies of Chlamydomonas reinhardtii Susan K. Dutcher1* and Eileen T. O’Toole2 Abstract The unicellular green alga, Chlamydomonas reinhardtii, is a biflagellated cell that can swim or glide. C. reinhardtii cells are amenable to genetic, biochemical, proteomic, and microscopic analysis of its basal bodies. The basal bodies contain triplet microtubules and a well-ordered transition zone. Both the mother and daughter basal bodies assemble flagella. Many of the proteins found in other basal body-containing organisms are present in the Chlamydomonas genome, and mutants in these genes affect the assembly of basal bodies. Electron microscopic analysis shows that basal body duplication is site-specific and this may be important for the proper duplication and spatial organization of these organelles. Chlamydomonas is an excellent model for the study of basal bodies as well as the transition zone. Keywords: Site-specific basal body duplication, Cartwheel, Transition zone, Centrin fibers Phylogeny and conservation of proteins Centrin, SPD2/CEP192, Asterless/CEP152; CEP70, The green lineage or Viridiplantae consists of the green delta-tubulin, and epsilon-tubulin. Chlamydomonas has algae, which include Chlamydomonas, the angiosperms homologs of all of these based on sequence conservation (the land plants), and the gymnosperms (conifers, cycads, except PLK4, CEP152, and CEP192. Several lines of evi- ginkgos). They are grouped together because they have dence suggests that CEP152, CEP192, and PLK4 interact chlorophyll a and b and lack phycobiliproteins. The green [20, 52] and their concomitant absence in several organ- algae together with the cycads and ginkgos have basal isms suggests that other mechanisms exist that allow for bodies and cilia, while the angiosperms and conifers have control of duplication [4].
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Par6c Is at the Mother Centriole and Controls Centrosomal Protein
    860 Research Article Par6c is at the mother centriole and controls centrosomal protein composition through a Par6a-dependent pathway Vale´rian Dormoy, Kati Tormanen and Christine Su¨ tterlin* Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA *Author for correspondence ([email protected]) Accepted 3 December 2012 Journal of Cell Science 126, 860–870 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.121186 Summary The centrosome contains two centrioles that differ in age, protein composition and function. This non-membrane bound organelle is known to regulate microtubule organization in dividing cells and ciliogenesis in quiescent cells. These specific roles depend on protein appendages at the older, or mother, centriole. In this study, we identified the polarity protein partitioning defective 6 homolog gamma (Par6c) as a novel component of the mother centriole. This specific localization required the Par6c C-terminus, but was independent of intact microtubules, the dynein/dynactin complex and the components of the PAR polarity complex. Par6c depletion resulted in altered centrosomal protein composition, with the loss of a large number of proteins, including Par6a and p150Glued, from the centrosome. As a consequence, there were defects in ciliogenesis, microtubule organization and centrosome reorientation during migration. Par6c interacted with Par3 and aPKC, but these proteins were not required for the regulation of centrosomal protein composition. Par6c also associated with Par6a, which controls protein recruitment to the centrosome through p150Glued. Our study is the first to identify Par6c as a component of the mother centriole and to report a role of a mother centriole protein in the regulation of centrosomal protein composition.
    [Show full text]
  • Supplemental Information Proximity Interactions Among Centrosome
    Current Biology, Volume 24 Supplemental Information Proximity Interactions among Centrosome Components Identify Regulators of Centriole Duplication Elif Nur Firat-Karalar, Navin Rauniyar, John R. Yates III, and Tim Stearns Figure S1 A Myc Streptavidin -tubulin Merge Myc Streptavidin -tubulin Merge BirA*-PLK4 BirA*-CEP63 BirA*- CEP192 BirA*- CEP152 - BirA*-CCDC67 BirA* CEP152 CPAP BirA*- B C Streptavidin PCM1 Merge Myc-BirA* -CEP63 PCM1 -tubulin Merge BirA*- CEP63 DMSO - BirA* CEP63 nocodazole BirA*- CCDC67 Figure S2 A GFP – + – + GFP-CEP152 + – + – Myc-CDK5RAP2 + + + + (225 kDa) Myc-CDK5RAP2 (216 kDa) GFP-CEP152 (27 kDa) GFP Input (5%) IP: GFP B GFP-CEP152 truncation proteins Inputs (5%) IP: GFP kDa 1-7481-10441-1290218-1654749-16541045-16541-7481-10441-1290218-1654749-16541045-1654 250- Myc-CDK5RAP2 150- 150- 100- 75- GFP-CEP152 Figure S3 A B CEP63 – – + – – + GFP CCDC14 KIAA0753 Centrosome + – – + – – GFP-CCDC14 CEP152 binding binding binding targeting – + – – + – GFP-KIAA0753 GFP-KIAA0753 (140 kDa) 1-496 N M C 150- 100- GFP-CCDC14 (115 kDa) 1-424 N M – 136-496 M C – 50- CEP63 (63 kDa) 1-135 N – 37- GFP (27 kDa) 136-424 M – kDa 425-496 C – – Inputs (2%) IP: GFP C GFP-CEP63 truncation proteins D GFP-CEP63 truncation proteins Inputs (5%) IP: GFP Inputs (5%) IP: GFP kDa kDa 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl 1-135136-424425-4961-424136-496FL Ctl Myc- 150- Myc- 100- CCDC14 KIAA0753 100- 100- 75- 75- GFP- GFP- 50- CEP63 50- CEP63 37- 37- Figure S4 A siCtl
    [Show full text]
  • The P53/P73 - P21cip1 Tumor Suppressor Axis Guards Against Chromosomal Instability by Restraining CDK1 in Human Cancer Cells
    Oncogene (2021) 40:436–451 https://doi.org/10.1038/s41388-020-01524-4 ARTICLE The p53/p73 - p21CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells 1 1 2 1 2 Ann-Kathrin Schmidt ● Karoline Pudelko ● Jan-Eric Boekenkamp ● Katharina Berger ● Maik Kschischo ● Holger Bastians 1 Received: 2 July 2020 / Revised: 2 October 2020 / Accepted: 13 October 2020 / Published online: 9 November 2020 © The Author(s) 2020. This article is published with open access Abstract Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN. CDKN1A, encoding for the CDK inhibitor p21CIP1, represents a critical target gene of p53/p73. Loss of p21CIP1 unleashes CDK1 activity which causes W-CIN in otherwise chromosomally stable cancer cells. fi Vice versa 1234567890();,: 1234567890();,: Consequently, induction of CDK1 is suf cient to induce abnormal microtubule assembly rates and W-CIN. , partial inhibition of CDK1 activity in chromosomally unstable cancer cells corrects abnormal microtubule behavior and suppresses W-CIN. Thus, our study shows that the p53/p73 - p21CIP1 tumor suppressor axis, whose loss is associated with W-CIN in human cancer, safeguards against chromosome missegregation and aneuploidy by preventing abnormally increased CDK1 activity.
    [Show full text]