Research Trends in Biomimetic Medical Materials for Tissue Engineering: Commentary

Total Page:16

File Type:pdf, Size:1020Kb

Research Trends in Biomimetic Medical Materials for Tissue Engineering: Commentary Park et al. Biomaterials Research (2016) 20:8 DOI 10.1186/s40824-016-0053-7 COMMENTARY Open Access Research trends in biomimetic medical materials for tissue engineering: commentary Ki Dong Park1†, Xiumei Wang2†, Jae Young Lee3, Kyung Min Park4, ShengMin Zhang5* and Insup Noh6,7* Abstract We introduce our active experts’ communications and reviews (Part II) of 2015 Korea-China Joint Symposium on Biomimetic Medical Materials in Republic of Korea, which reflect their perspectives on current research trends of biomimetic medical materials for tissue regeneration in both Korea and China. The communications covered three topics of biomimetics, i.e., 1) hydrogel for therapeutics and extracellular matrix environments, 2) design of electrical polymers for communications between electrical sources and biological systems and 3) design of biomaterials for nerve tissue engineering. The reviews in the Part II will cover biomimetics of 3D bioprinting materials, surface modifications, nano/micro-technology as well as clinical aspects of biomaterials for cartilage. Introduction particularly bone, cartilage and nerve, and provided a An invitation-based, bilateral symposium on biomimetic platform for the academic cooperation between Korea medical materials was held from October 22 to 26 in and China. Seoul, Korea, towards building strong relationships During the discussion session about two countries’ sci- among established leaders and emerging young scientists entific collaboration led by key scientists, diverse issues in Korea and China. Numerous breakthrough achieve- were mainly discussed on how to upgrade our scientific ments in biomedical materials and nano-biotechnology relationship of this new research area. Other topics also research on regenerative medicine have been made in raised how to contribute to improve the relationships the two countries throughout successful series of the among the National Research Foundation (NRF) of previous Korea-China Joint Symposium on Biomaterials Korea and the National Natural Science Foundation of and Nano-biotechnology pioneered by professors Inseop China (NSFC), Korean Society for Biomaterials (KSBM) Lee in Yonsei University of Korea and Fu-Zhai Cui in and Chinese Society for Biomaterials (CSBM) and how Tsinghua University of China over more than 10 years. to improve partnerships in research and industrial Biomaterials science and technology have recently aspects. evolved into a new stage of tissue engineering research The key members of both Korean and Chinese Soci- through the modeling of characteristics of the extracellu- eties for Biomaterials agreed on holding a biannual ex- lar matrix (ECM) of defect tissues as well as the ad- change forum of young scientists during each society’s vancement of new fabrication methods of 3D bio- annual meeting. The first forum was held on November printings of functional biomaterials. The symposium fo- 20, 2015 in Hainan, China, and the second one is sched- cused on recent scientific progress on biomimetics and uled to be held in Korea in 2016. regenerative medical materials for tissue engineering, Herein, we introduce our active experts’ communica- tions and reviews, which reflect their perspectives on current research trends of biomimetic medical materials * Correspondence: [email protected]; [email protected] †Equal contributors for tissue regeneration. The communications covered 5Advanced Biomaterials and Tissue Engineering Center, Huazhong University three topics of biomimetics, i.e., 1) hydrogel for thera- of Science and Technology, Wuhan, P. R. China peutics and extracellular matrix environments, 2) design 6Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Korea of electrical polymers for communications between Full list of author information is available at the end of the article © 2016 Park et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Park et al. Biomaterials Research (2016) 20:8 Page 2 of 6 electrical sources and biological systems and 3) design of Artificial extracellular microenvironments biomaterials for nerve tissue engineering. The reviews Recently, many researchers are interested in utilizing the will cover biomimetics of 3D bioprinting materials, sur- artificial extracellular microenvironment using bio- face modifications, nano/micro-technology as well as mimetic hydrogel materials to support cell growth. These clinical aspects of biomaterials for cartilage. engineered cellular microenvironments are created by tai- loring the polymeric backbone with cellular response mol- Biomimetic medical materials trends: polymeric ecules (e.g., cell adhesion peptides or proteolytic-cleavable hydrogels peptides), which are critical for supporting 3D cell growth Polymeric hydrogels have received substantial attentions [7]. In addition, it is well known that the native cellular in various biomedical applications due to their structural microenvironment contains spatial-gradients in various similarities to the native extracellular matrix (ECM) as physicochemical properties, including matrix proteins, well as multi-tunable properties. Up to date, various oxygen gradients, mechanical strength, and microstruc- kinds of polymeric hydrogels have been developed ture properties [8, 9]. Combining these parameters, the through physical- or chemical-cross linking mechanisms, synthetic microenvironments have been utilized either to which can be applied as either therapeutic implants or create three dimensional tissue constructs for tissue re- therapeutic vehicles for controlled drug delivery and tissue generation or to generate engineered disease models (e.g., regeneration [1]. Specifically, the engineered polymeric engineered tumor, vascular, skin, and liver models) for a hydrogels have been widely used either as therapeutic de- better understanding of basic cellular/molecular biology livery carriers that facilitate tissue regeneration and repair and clinical outcomes. More recently, the engineered tis- or as an artificial extracellular microenvironment that sup- sue constructs have been designed by a combination of port 3D cells or organs growth [2, 3]. Here, we briefly dis- polymeric hydrogels with micro-/nano-fabrication tech- cuss the emerging trends in polymeric hydrogel materials niques (e.g., microfluidics and 3D printing) to more accur- for biomedical research fields. ately recapitulate the complexity of the native cellular environments [10–12]. Therapeutic vehicles In the past decade, polymeric hydrogels have been used Biomimetic medical materials trends: design of as a carrier to deliver therapeutic agents (e.g., growth electrical polymers for biomimetics factors, cells or other bioactive molecules) for tissue re- Tissues and cells in our body are strongly affected by generation [4]. Recently, researchers have focused on de- electrical signals, such as electrical field and current, and veloping advanced hydrogel materials that allow much at the same time utilize electrical signals as important finer control over the spatial and temporal delivery of factors that control physiological conditions [13]. For ex- the therapeutic agents to improve the therapeutic effi- ample, embryonic body development and tissue regener- cacy. These engineered hydrogel materials can play a ation are known to involve electrical signals [14]. The role not only as delivery vesicles for the therapeutic simple examples include electrically excitable cells, such agents, but also to direct stimulate tissue regeneration as neurons, cardiomyocytes, myoblasts, utilize electrical and repair through physicochemical interactions be- signals for the inherent functions [15]. Surprisingly, re- tween the materials and the host tissues. Park and his cent studies have revealed that other types of cells, such colleagues have developed a micro/nanogel composed of as stem cells, also respond to electrical stimulation and in situ crosslinkable gelatin-based microgel and self- exhibit various cell behaviors [16]. Accordingly, there assembled heparin-based nanogels, which can serve as have been growing attentions to an effective way to de- an injectable growth factor delivery carrier for the urethral liver or record electrical signals to or from biological muscle regeneration [5]. Interestingly, they noticed that systems. To effectively mediate electrical signals between incorporating a growth factor -encapsulated heparin- electrical sources (e.g., electrodes) and biological sys- nanogels into a gelatin matrix allowed the hydrogel com- tems, materials that possess good electrical conductivity posites to release the therapeutic agent continuously up to are required. Various conductive materials, including 4 weeks, resulting in enhanced urethral muscle regener- metals, metal oxides, carbon nanomaterials, and con- ation and recovery of their biological function. More ductive polymers, have been extensively utilized to con- recently, Park and Gerecht have developed hypoxia- struct
Recommended publications
  • Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials
    Mar. Drugs 2015, 13, 6792-6817; doi:10.3390/md13116792 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials Nagendra Kumar Kaushik 1,†,*, Neha Kaushik 1,†, Sunil Pardeshi 1, Jai Gopal Sharma 2, Seung Hyun Lee 3 and Eun Ha Choi 1,* 1 Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: [email protected] (N.K.); [email protected] (S.P.) 2 Department of Biotechnology, Delhi Technological University, Delhi 110042, India; E-Mail: [email protected] 3 Graduate School of Information Contents, Kwangwoon University, Seoul 139701, Korea; E-Mail: [email protected] † These authors contributed equally in this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (N.K.K.); [email protected] (E.H.C.); Tel.: +82-2-940-8618 (N.K.K.); +82-2-940-5661 (E.H.C.); Fax: +82-2-940-5664 (N.K.K.); +82-2-940-5664 (E.H.C.). Academic Editor: Anake Kijjoa Received: 5 October 2015 / Accepted: 3 November 2015 / Published: 11 November 2015 Abstract: The substance secreted by mussels, also known as nature’s glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs), a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA) and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications.
    [Show full text]
  • Is Technology Unnatural?
    BOOKS & ARTS NATURE|Vol 450|29 November 2007 were in top scientific institutions: extreme mena chromosomes end in a series of repeated a fundamentally important process, but telom- dedication and long working hours, with no runs of cytosine bases that varied in length. erase continued to receive scant attention until supporting hierarchies — what Brady calls a Although this was the first molecular insight 1994–95, when it was shown to be aberrantly “rat lab”. Fellow scientists became her family into the structure of chromosome ends, it was activated in most human cancers. substitutes and friends, and there she met her not seen as important by the community, The biography succeeds in capturing Black- future husband, John Sedat. which is surprising in view of its implications burn’s vision, which has encouraged her to Blackburn’s DNA-sequencing skills were for for chromosome replication and transmission pursue unbeaten tracks to make discoveries her the key to discovery, and she took them to of genetic information. Blackburn blames the that today hold therapeutic promise for both Joe Gall’s lab in Yale after a short break to climb perception of Tetrahymena as a “freak organ- cancer and ageing. ■ to Mount Everest’s base camp with Sedat. In ism”. But it also fell outside what was then Maria A. Blasco is head of the Telomeres and Gall’s lab were some of the future principals of mainstream molecular biology. The story Telomerase Group in the Molecular Oncology the telomere field — Ginger Zakian, Mary-Lou repeated itself when she, together with Carol Program at the Spanish National Cancer Centre Pardue and, later, Tom Cech.
    [Show full text]
  • Engineering of a Biomimetic Interface Between a Native Dental Tissue and Restorative Composite and Its Study Using Synchrotron FTIR Microscopic Mapping
    International Journal of Molecular Sciences Article Engineering of a Biomimetic Interface between a Native Dental Tissue and Restorative Composite and Its Study Using Synchrotron FTIR Microscopic Mapping Pavel Seredin 1,2,* , Dmitry Goloshchapov 1, Yuri Ippolitov 3 and Jitraporn Vongsvivut 4 1 Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia; [email protected] 2 Scientific and Educational Center “Nanomaterials and Nanotechnologies”, Ural Federal University named after the first President of Russia B. N. Yeltsin, Mir av., 620002 Yekaterinburg, Russia 3 Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia; [email protected] 4 ANSTO—Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia; [email protected] * Correspondence: [email protected] Abstract: The aim of this work is to develop a biomimetic interface between the natural tooth tissue and the restorative composite and to study it on the basis of synchrotron micro-FTIR mapping and multidimensional processing of the spectral data array. Using hierarchical cluster analysis of 3D FTIR data revealed marked improvements in the formation of the dentine/adhesive/dental hybrid interface using a biomimetic approach. The use of a biomimetic strategy (application of an amino acid– modified primer, alkaline calcium and a nano-c-HAp–modified adhesive) allowed the formation of a Citation: Seredin, P.; Goloshchapov, matrix that can be structurally integrated with natural dentine and dental composite. The biomimetic D.; Ippolitov, Y.; Vongsvivut, J. hybrid layer was characterised by homogeneous chemical composition and a higher degree of Engineering of a Biomimetic Interface conversion of the adhesive during polymerisation, which should provide optimal integration of the between a Native Dental Tissue and dental composite with the dentine.
    [Show full text]
  • Clinical Perspectives on 3D Bioprinting Paradigms for Regenerative Medicine
    rmf.hapres.com Review Clinical Perspectives on 3D Bioprinting Paradigms for Regenerative Medicine Sadi Loai 1,2,†, Benjamin R. Kingston 1,†, Zongjie Wang 1,3,†, David N. Philpott 3,†, Mingyang Tao 1, Hai-Ling Margaret Cheng 1,2,3,* 1 Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada 2 Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Canada 3 The Edwards S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada † These authors contributed equally to this work. * Correspondence: Hai-Ling Margaret Cheng, Email: [email protected]; Tel.: +1-416-978-4095. ABSTRACT Three-dimensional (3D) bioprinting is an emerging manufacturing technology that layers living cells and biocompatible natural or synthetic materials to build complex, functional living tissue with the requisite 3D geometries. This technology holds tremendous promise across a plethora of applications as diverse as regenerative medicine, pathophysiological studies, and drug testing. Despite some success demonstrated in early attempts to recreate complex tissue structures, however, the field of bioprinting is very much in its infancy. There are a variety of challenges to building viable, functional, and lasting 3D structures, not the least of which is translation from a research to a clinical setting. In this review, the current translational status of 3D bioprinting is assessed for several major tissue types in the body (skin, bone/cartilage, cardiovascular, central/peripheral nervous systems, skeletal muscle, kidney, and liver), recent breakthroughs and current challenges are highlighted, and future prospects for this exciting research field are discussed.
    [Show full text]
  • Plant Virus-Based Materials for Biomedical Applications: Trends and Prospects
    Advanced Drug Delivery Reviews 145 (2019) 96–118 Contents lists available at ScienceDirect Advanced Drug Delivery Reviews journal homepage: www.elsevier.com/locate/addr Plant virus-based materials for biomedical applications: Trends and prospects Sabine Eiben a,1, Claudia Koch a,1, Klara Altintoprak a,2, Alexander Southan b,2, Günter Tovar b,c, Sabine Laschat d, Ingrid M. Weiss e, Christina Wege a,⁎ a Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany b Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany c Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569 Stuttgart, Germany d Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany e Department of Biobased Materials, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany article info abstract Article history: Nanomaterials composed of plant viral components are finding their way into medical technology and health Received 27 March 2018 care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent pro- Received in revised form 6 August 2018 tein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as Accepted 27 August 2018 carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications Available online 31 August 2018 enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel con- Keywords: cepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their Plant virus nanoparticles (plant VNPs) conversion into biocompatible, biodegradable units.
    [Show full text]
  • The Use of Chitosan-Based Scaffolds to Enhance Regeneration in the Nervous System
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino The use of chitosan-based scaffolds to enhance regeneration in the nervous system. This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/151524 since 2016-06-21T12:34:09Z Publisher: Elsevier Inc. Published version: DOI:10.1016/B978-0-12-420045-6.00001-8 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 24 September 2021 Thisis an authorversionof the contribution published on: Questa è la versione dell’autore dell’opera: Int Rev Neurobiol. 2013;109:1-62. doi: 10.1016/B978-0-12-420045-6.00001-8. Review. The definitive version is available at: La versione definitiva è disponibile alla URL: http://www.sciencedirect.com/science/article/pii/B9780124200456000018 The Use of Chitosan-Based ScaffoldstoEnhanceRegeneration in the Nervous System Sara Gnavi*, Christina Barwig†, Thomas Freier†, Kirsten Haastert-Talini{, Claudia Grothe{, Stefano Geuna*,1 *Department of Clinical and Biological Sciences, Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), University of Turin, Ospedale San Luigi, Regione Gonzole 10, Orbassano (TO), Italy †Medovent GmbH, Mainz, Germany {Hannover Medical School, Institute of Neuroanatomy & Center for Systems Neuroscience (ZSN), Hannover, Germany 1Corresponding author: e-mail address: [email protected] Abstract Various biomaterials have been proposed to build up scaffolds for promoting neural repair.
    [Show full text]
  • 3D Printing Biomimetic Materials and Structures for Biomedical Applications
    Bio-Design and Manufacturing (2021) 4:405–428 https://doi.org/10.1007/s42242-020-00117-0 REVIEW 3D printing biomimetic materials and structures for biomedical applications Yizhen Zhu1 · Dylan Joralmon1 · Weitong Shan2 · Yiyu Chen3 · Jiahui Rong3 · Hanyu Zhao3 · Siqi Xiao2 · Xiangjia Li1 Received: 26 August 2020 / Accepted: 24 November 2020 / Published online: 3 January 2021 © Zhejiang University Press 2021 Abstract Over millions of years of evolution, nature has created organisms with overwhelming performances due to their unique mate- rials and structures, providing us with valuable inspirations for the development of next-generation biomedical devices. As a promising new technology, 3D printing enables the fabrication of multiscale, multi-material, and multi-functional three- dimensional (3D) biomimetic materials and structures with high precision and great flexibility. The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies. In this paper, the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed. Various kinds of biomedical applications, including implants, lab-on-chip, medicine, microvascular network, and artificial organs and tissues, were respectively dis- cussed. The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated, and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted. Keywords 3D printing · Bioprinting · Biomimetic material · Functional structures · Biomedical applications Introduction tions [1]. A promising rapid prototyping technology, addi- tive manufacturing (AM), also known as three-dimensional Traditional manufacturing methods have been used to fabri- (3D) printing, has emerged to address these shortcomings cate biomedical devices for a long period [1].
    [Show full text]
  • The Effect of Functionalized Self-Assembling Peptide Scaffolds on Human Aortic Endothelial Cell Function
    ARTICLE IN PRESS Biomaterials 26 (2005) 3341–3351 www.elsevier.com/locate/biomaterials The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function Elsa Genove´ a, Colette Shenb, Shuguang Zhanga,c, Carlos E. Seminoa,c,Ã aCenter for Biomedical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA bHarvard University, Cambridge, MA, 02138, USA cBiotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received 2 February 2004; accepted 10 August 2004 Available online 13 October 2004 Abstract A class of designed self-assembling peptide nanofiber scaffolds with more than 99% water content has been shown to be a good biological material for cell culture. Here, we report the functionalization of one of these peptide scaffolds, RAD16-I (AcN–RADARADARADARADA–CONH2), by direct solid phase synthesis extension at the amino terminal with three short- sequence motifs. These motifs are present in two major protein components of the basement membrane, laminin 1 (YIGSR, RYVVLPR) and collagen IV (TAGSCLRKFSTM). These motifs have been previously shown to promote specific biological activities including endothelial cell adhesion, spreading, and tubular formation. Therefore, the generic functionalized peptide developed was AcN–X–GG-RADARADARADARADA–CONH2 with each motif represented by ‘‘X’’. We show in this work that these tailor-made peptide scaffolds enhance the formation of confluent cell monolayers of human aortic endothelial cells (HAEC) in culture. Moreover, additional assays designed to evaluate endothelial cell function showed that HAEC monolayers obtained on these scaffolds not only maintained LDL uptake activity but also enhanced nitric oxide release and elevated laminin 1 and collagen IV deposition.
    [Show full text]
  • Molecular Biomimetics: Nanotechnology Through Biology
    REVIEW ARTICLE Molecular biomimetics: nanotechnology through biology Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology. MEHMET SARIKAYA*1,2, and correlate directly to the nanometre-scale structures 16,17 1,3 that characterize these systems .The realization of the CANDAN TAMERLER , full potential of nanotechnological systems,however, ALEX K. -Y.JEN1, KLAUS SCHULTEN4 has so far been limited due to the difficulties in their AND FRANÇOIS BANEYX2,5 synthesis and subsequent assembly into useful functional structures and devices.Despite all the 1Materials Science & Engineering, 2Chemical Engineering and promise of science and technology at the nanoscale, 5Bioengineering,University of Washington,Seattle,Washington the control of nanostructures and ordered assemblies 98195,USA of materials in two- and three-dimensions still remains 3Molecular Biology and Genetics,Istanbul Technical University, largely elusive14,18.
    [Show full text]
  • Biomimetic Polymers in Pharmaceutical and Biomedical Sciences
    European Journal of Pharmaceutics and Biopharmaceutics 58 (2004) 385–407 www.elsevier.com/locate/ejpb Review article Biomimetic polymers in pharmaceutical and biomedical sciences S. Drotleffa, U. Lungwitza, M. Breuniga, A. Dennisa,b, T. Blunka, J. Tessmarc,A.Go¨pfericha,* aDepartment of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany bDepartment of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA cDepartment of Bioengineering, Rice University, Houston, TX, USA Received 20 January 2004; accepted in revised form 5 March 2004 Available online 20 May 2004 Abstract This review describes recent developments in the emerging field of biomimetic polymeric biomaterials, which signal to cells via biologically active entities. The described biological effects are, in contrast to many other known interactions, receptor mediated and therefore very specific for certain cell types. As an introduction into this field, first some biological principles are illustrated such as cell attachment, cytokine signaling and endocytosis, which are some of the mechanisms used to control cells with biomimetic polymers. The next topics are then the basic design rules for the creation of biomimetic materials. Here, the major emphasis is on polymers that are assembled in separate building blocks, meaning that the biologically active entity is attached to the polymer in a separate chemical reaction. In that respect, first individual chemical standard reactions that may be used for this step are briefly reviewed. In the following chapter, the emphasis is on polymer types that have been used for the development of several biomimetic materials. There is, thereby, a delineation made between materials that are processed to devices exceeding cellular dimensions and materials predominantly used for the assembly of nanostructures.
    [Show full text]
  • Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury
    cells Review Dorsal Root Injury—A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury Håkan Aldskogius * and Elena N. Kozlova Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden; [email protected] * Correspondence: [email protected] Abstract: Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial Citation: Aldskogius, H.; Kozlova, neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response E.N.
    [Show full text]
  • 7619.Full.Pdf
    Rational design of thermostable vaccines by engineered peptide-induced virus self- biomineralization under physiological conditions Guangchuan Wanga,b, Rui-Yuan Caob, Rong Chenc, Lijuan Mod, Jian-Feng Hanb, Xiaoyu Wangb,e, Xurong Xue, Tao Jiangb, Yong-Qiang Dengb, Ke Lyuc, Shun-Ya Zhub, E-De Qinb, Ruikang Tanga,e,1, and Cheng-Feng Qinb,1 aCenter for Biomaterials and Biopathways, and eQiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China; bDepartment of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; cKey Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China; and dBiomedical Center, Sir Run Run Shaw Hospital, Hangzhou 310016, China Edited by Bernard Roizman, University of Chicago, Chicago, IL, and approved March 22, 2013 (received for review January 5, 2013) The development of vaccines against infectious diseases represents the efficacy and thermostability of vaccines is of great importance one of the most important contributions to medical science. However, and has been highlighted as a Grand Challenge in Global Health vaccine-preventable diseases still cause millions of deaths each year by the Gates Foundation (www.grandchallenges.org). due to the thermal instability and poor efficacy of vaccines. Using the New advances in genetic and materials sciences have created human enterovirus type 71 vaccine strain as a model, we suggest the possibility of improving and stabilizing vaccine products. a combined, rational design approach to improve the thermostability Stabilizers, such as deuterium oxide, proteins, MgCl2, and non- reducing sugars, have been introduced to produce stabilized and immunogenicity of live vaccines by self-biomineralization.
    [Show full text]