Monopeptide Versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine Via X-Ray Absorption Spectroscopy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insights Into the Molecular Basis for Substrate Binding and Specificity of the Wild-Type L-Arginine/Agmatine Antiporter Adic
Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC Hüseyin Ilgüa,b,1, Jean-Marc Jeckelmanna,b,1, Vytautas Gapsysc, Zöhre Ucuruma,b, Bert L. de Grootc, and Dimitrios Fotiadisa,b,2 aInstitute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland; bSwiss National Centre of Competence in Research TransCure, University of Bern, CH-3012 Bern, Switzerland; and cComputational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, D-37077 Goettingen, Germany Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved July 26, 2016 (received for review April 4, 2016) Pathogenic enterobacteria need to survive the extreme acidity of Arg-bound states (10). The two outward-open, substrate-free the stomach to successfully colonize the human gut. Enteric bacteria structures are at the reasonable and moderate resolutions of 3.2 Å circumvent the gastric acid barrier by activating extreme acid- (8) and 3.6 Å (9), respectively, and the only ones available of wild- resistance responses, such as the arginine-dependent acid resistance type AdiC (AdiC-wt). The two other structures are with bound system. In this response, L-arginine is decarboxylated to agmatine, Arg and at 3-Å resolution, and could only be obtained as a result thereby consuming one proton from the cytoplasm. In Escherichia of the introduction of specific point mutations: AdiC-N22A (10) coli,theL-arginine/agmatine antiporter AdiC facilitates the export and AdiC-N101A (11). The N101A mutation results in a defective of agmatine in exchange of L-arginine, thus providing substrates for AdiC protein unable to bind Arg and with a dramatically de- further removal of protons from the cytoplasm and balancing the creased turnover rate compared with wild-type (11). -
Separation of Isomers <Emphasis Type="Italic">L </Emphasis>-Alanine and Sarcosine in Urine by Electrospra
SHORT COMMUNICATION Separation of Isomers L-Alanine and Sarcosine in Urine by Electrospray Ionization and Tandem Differential Mobility Analysis-Mass Spectrometry Pablo Martínez-Lozanoa and Juan Rusb a Institute for Biomedical Technologies-National Research Council, Milan, Italy b SEADM, Valladolid, Spain Sarcosine, an isomer of L-alanine, has been proposed as a prostate cancer progression biomarker [1]. Both compounds are detected in urine, where the measured sarcosine/alanine ratio has been found to be higher in prostate biopsy-positive group versus controls. We present here preliminary evidence showing that urine samples spiked with sarcosine/alanine can be partially resolved in 3 min via tandem differential mobility analysis-mass spectrometry (DMA-MS). Based on the calibration curves obtained for two mobility peaks, we finally estimate their concentration ratio in urine. (J Am Soc Mass Spectrom 2010, 21, 1129–1132) © 2010 American Society for Mass Spectrometry rostate cancer is a leading cause of death among the tive-ion mode at the DMA entrance slit. Our nanospray male population. Sarcosine, an isomer of alanine, parameters were: capillary 360 m o.d., 50 m i.d., length Pwas recently proposed as a prostate cancer progres- 22 cm, driving pressure 75 mbar, and 3.8 kV. The ions sion biomarker [1]. In particular, the sarcosine/alanine entered the separation region propelled by an electric field ratio was found to be significantly higher in urine derived and against a counterflow gas (0.2 L/min). Sheath gas from biopsy-positive prostate cancer patients compared flow was kept constant, and the classification voltage was with biopsy-negative controls. -
Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials
Mar. Drugs 2015, 13, 6792-6817; doi:10.3390/md13116792 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials Nagendra Kumar Kaushik 1,†,*, Neha Kaushik 1,†, Sunil Pardeshi 1, Jai Gopal Sharma 2, Seung Hyun Lee 3 and Eun Ha Choi 1,* 1 Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea; E-Mails: [email protected] (N.K.); [email protected] (S.P.) 2 Department of Biotechnology, Delhi Technological University, Delhi 110042, India; E-Mail: [email protected] 3 Graduate School of Information Contents, Kwangwoon University, Seoul 139701, Korea; E-Mail: [email protected] † These authors contributed equally in this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (N.K.K.); [email protected] (E.H.C.); Tel.: +82-2-940-8618 (N.K.K.); +82-2-940-5661 (E.H.C.); Fax: +82-2-940-5664 (N.K.K.); +82-2-940-5664 (E.H.C.). Academic Editor: Anake Kijjoa Received: 5 October 2015 / Accepted: 3 November 2015 / Published: 11 November 2015 Abstract: The substance secreted by mussels, also known as nature’s glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs), a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA) and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications. -
Engineering of a Biomimetic Interface Between a Native Dental Tissue and Restorative Composite and Its Study Using Synchrotron FTIR Microscopic Mapping
International Journal of Molecular Sciences Article Engineering of a Biomimetic Interface between a Native Dental Tissue and Restorative Composite and Its Study Using Synchrotron FTIR Microscopic Mapping Pavel Seredin 1,2,* , Dmitry Goloshchapov 1, Yuri Ippolitov 3 and Jitraporn Vongsvivut 4 1 Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia; [email protected] 2 Scientific and Educational Center “Nanomaterials and Nanotechnologies”, Ural Federal University named after the first President of Russia B. N. Yeltsin, Mir av., 620002 Yekaterinburg, Russia 3 Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia; [email protected] 4 ANSTO—Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia; [email protected] * Correspondence: [email protected] Abstract: The aim of this work is to develop a biomimetic interface between the natural tooth tissue and the restorative composite and to study it on the basis of synchrotron micro-FTIR mapping and multidimensional processing of the spectral data array. Using hierarchical cluster analysis of 3D FTIR data revealed marked improvements in the formation of the dentine/adhesive/dental hybrid interface using a biomimetic approach. The use of a biomimetic strategy (application of an amino acid– modified primer, alkaline calcium and a nano-c-HAp–modified adhesive) allowed the formation of a Citation: Seredin, P.; Goloshchapov, matrix that can be structurally integrated with natural dentine and dental composite. The biomimetic D.; Ippolitov, Y.; Vongsvivut, J. hybrid layer was characterised by homogeneous chemical composition and a higher degree of Engineering of a Biomimetic Interface conversion of the adhesive during polymerisation, which should provide optimal integration of the between a Native Dental Tissue and dental composite with the dentine. -
Beta Alanine
PERFORMANCE ENHANCERS FACTS AND BOTTOM LINE BETA ALANINE What is it? B-alanine is a naturally occurring amino acid (a non-essential amino acid) not used by the body to make muscle tissue. Rather, research has shown that B-alanine works by increasing the muscle content of an important compound – carnosine. In fact, the production of carnosine is limited by the availability of B-alanine. Carnosine is highly concentrated in muscle tissue where its role is primarily to soak up hydrogen ions. Does it work? B-alanine is one of the few dietary supplements that actually have good scientific evidence that it can possibly enhance performance. How does it work? When you exercise intensely the body produces hydrogen ions. The longer you exercise the more hydrogen ions you produce and this reduces the pH level in your muscles. Muscles work best in a very specific pH range and when the pH drops below that level then muscular performance also starts to decrease. Anything that helps to prevent or delay that drop in pH will help delay muscle fatigue. This is where B-alanine has proven to be very helpful. Beta-alanine increases the levels of carnosine in your slow and fast twitch muscle fibers and carnosine is a buffer that basically soaks up hydrogen ions and so reduces the drop in pH. By keeping your hydrogen ion levels lower, B-alanine allows you to train harder and longer. The bottom line is that B-alanine works by increasing the hydrogen ion buffering abilities of your muscles. What benefits does it offer? B-alanine has been shown to increase muscle strength, increase muscle mass, increase anaerobic endurance, increase aerobic endurance and increase exercise capacity. -
Clinical Perspectives on 3D Bioprinting Paradigms for Regenerative Medicine
rmf.hapres.com Review Clinical Perspectives on 3D Bioprinting Paradigms for Regenerative Medicine Sadi Loai 1,2,†, Benjamin R. Kingston 1,†, Zongjie Wang 1,3,†, David N. Philpott 3,†, Mingyang Tao 1, Hai-Ling Margaret Cheng 1,2,3,* 1 Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada 2 Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Canada 3 The Edwards S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada † These authors contributed equally to this work. * Correspondence: Hai-Ling Margaret Cheng, Email: [email protected]; Tel.: +1-416-978-4095. ABSTRACT Three-dimensional (3D) bioprinting is an emerging manufacturing technology that layers living cells and biocompatible natural or synthetic materials to build complex, functional living tissue with the requisite 3D geometries. This technology holds tremendous promise across a plethora of applications as diverse as regenerative medicine, pathophysiological studies, and drug testing. Despite some success demonstrated in early attempts to recreate complex tissue structures, however, the field of bioprinting is very much in its infancy. There are a variety of challenges to building viable, functional, and lasting 3D structures, not the least of which is translation from a research to a clinical setting. In this review, the current translational status of 3D bioprinting is assessed for several major tissue types in the body (skin, bone/cartilage, cardiovascular, central/peripheral nervous systems, skeletal muscle, kidney, and liver), recent breakthroughs and current challenges are highlighted, and future prospects for this exciting research field are discussed. -
Poly(L-Alanine) As a Universal Reference Material for Understanding Protein Energies and Structures TERESA HEAD-GORDON, FRANK H
Proc. Nati. Acad. Sci. USA Vol. 89, pp. 11513-11517, December 1992 Biophysics Poly(L-alanine) as a universal reference material for understanding protein energies and structures TERESA HEAD-GORDON, FRANK H. STILLINGER, MARGARET H. WRIGHT, AND DAVID M. GAY AT&T Bell Laboratories, Murray Hill, NJ 07974 Contributed by Frank H. Stillinger, June 17, 1992 ABSTRACT We present a proposition, the "poly(L- alanine) hypothesis," which asserts that the native backbone geometry for any polypeptide or protein of M residues has a closely mimicking, mechanically stable, image in poly(L- POLY-L-ALANINE alanine) of the same number of residues. Using a molecular co mechanics force field to represent the relevant potential energy a: hypersurfaces, we have carried out calculations over a wide z range of M values to show that poly(L-alanine) possesses the w structural versatility necessary to satisfy the proposition. These w include poly(L-alanine) representatives of minima correspond- U- ing to secondary and supersecondary structures, as well as PROTEIN poly(L-alanine) images for tertiary structures of the naturally occurring proteins bovine pancreatic trypsin inhibitor, crambin, ribonuclease A, and superoxide dismutase. The suc- cessful validation of the hypothesis presented in this paper BACKBONE COORDINATES indicates that poly(L-alanine) will serve as a good reference FIG. 1. Topographic basis ofthe poly(L-alanine) hypothesis. Free material in thermodynamic perturbation theory and calcula- energy hypersurfaces are compared for a given protein and for tions aimed at evaluating relative free energies for competing poly(L-alanine) with the same number of residues. candidate tertiary structures in real polypeptides and proteins. -
Alcohol Use Disorder
Section: A B C D E Resources References Alcohol Use Disorder (AUD) Tool This tool is designed to support primary care providers (family physicians and primary care nurse practitioners) in screening, diagnosing and implementing pharmacotherapy treatments for adult patients (>18 years) with Alcohol Use Disorder (AUD). Primary care providers should routinely offer medication for moderate and severe AUD. Pharmacotherapy alone to treat AUD is better than no therapy at all.1 Pharmacotherapy is most effective when combined with non-pharmacotherapy, including behavioural therapy, community reinforcement, motivational enhancement, counselling and/or support groups. 2,3 TABLE OF CONTENTS pg. 1 Section A: Screening for AUD pg. 7 Section D: Non-Pharmacotherapy Options pg. 4 Section B: Diagnosing AUD pg. 8 Section E: Alcohol Withdrawal pg. 5 Section C: Pharmacotherapy Options pg. 9 Resources SECTION A: Screening for AUD All patients should be screened routinely (e.g. annually or when indicators are observed) with a recommended tool like the AUDIT. 2,3 It is important to screen all patients and not just patients eliciting an index of suspicion for AUD, since most persons with AUD are not recognized. 4 Consider screening for AUD when any of the following indicators are observed: • After a recent motor vehicle accident • High blood pressure • Liver disease • Frequent work avoidance (off work slips) • Cardiac arrhythmia • Chronic pain • Rosacea • Insomnia • Social problems • Rhinophyma • Exacerbation of sleep apnea • Legal problems Special Patient Populations A few studies have reviewed AUD in specific patient populations, including youth, older adults and pregnant or breastfeeding patients. The AUDIT screening tool considered these populations in determining the sensitivity of the tool. -
The Use of Chitosan-Based Scaffolds to Enhance Regeneration in the Nervous System
AperTO - Archivio Istituzionale Open Access dell'Università di Torino The use of chitosan-based scaffolds to enhance regeneration in the nervous system. This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/151524 since 2016-06-21T12:34:09Z Publisher: Elsevier Inc. Published version: DOI:10.1016/B978-0-12-420045-6.00001-8 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 24 September 2021 Thisis an authorversionof the contribution published on: Questa è la versione dell’autore dell’opera: Int Rev Neurobiol. 2013;109:1-62. doi: 10.1016/B978-0-12-420045-6.00001-8. Review. The definitive version is available at: La versione definitiva è disponibile alla URL: http://www.sciencedirect.com/science/article/pii/B9780124200456000018 The Use of Chitosan-Based ScaffoldstoEnhanceRegeneration in the Nervous System Sara Gnavi*, Christina Barwig†, Thomas Freier†, Kirsten Haastert-Talini{, Claudia Grothe{, Stefano Geuna*,1 *Department of Clinical and Biological Sciences, Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), University of Turin, Ospedale San Luigi, Regione Gonzole 10, Orbassano (TO), Italy †Medovent GmbH, Mainz, Germany {Hannover Medical School, Institute of Neuroanatomy & Center for Systems Neuroscience (ZSN), Hannover, Germany 1Corresponding author: e-mail address: [email protected] Abstract Various biomaterials have been proposed to build up scaffolds for promoting neural repair. -
3D Printing Biomimetic Materials and Structures for Biomedical Applications
Bio-Design and Manufacturing (2021) 4:405–428 https://doi.org/10.1007/s42242-020-00117-0 REVIEW 3D printing biomimetic materials and structures for biomedical applications Yizhen Zhu1 · Dylan Joralmon1 · Weitong Shan2 · Yiyu Chen3 · Jiahui Rong3 · Hanyu Zhao3 · Siqi Xiao2 · Xiangjia Li1 Received: 26 August 2020 / Accepted: 24 November 2020 / Published online: 3 January 2021 © Zhejiang University Press 2021 Abstract Over millions of years of evolution, nature has created organisms with overwhelming performances due to their unique mate- rials and structures, providing us with valuable inspirations for the development of next-generation biomedical devices. As a promising new technology, 3D printing enables the fabrication of multiscale, multi-material, and multi-functional three- dimensional (3D) biomimetic materials and structures with high precision and great flexibility. The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies. In this paper, the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed. Various kinds of biomedical applications, including implants, lab-on-chip, medicine, microvascular network, and artificial organs and tissues, were respectively dis- cussed. The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated, and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted. Keywords 3D printing · Bioprinting · Biomimetic material · Functional structures · Biomedical applications Introduction tions [1]. A promising rapid prototyping technology, addi- tive manufacturing (AM), also known as three-dimensional Traditional manufacturing methods have been used to fabri- (3D) printing, has emerged to address these shortcomings cate biomedical devices for a long period [1]. -
Amino Acid Chemistry
Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1. -
The Effect of Functionalized Self-Assembling Peptide Scaffolds on Human Aortic Endothelial Cell Function
ARTICLE IN PRESS Biomaterials 26 (2005) 3341–3351 www.elsevier.com/locate/biomaterials The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function Elsa Genove´ a, Colette Shenb, Shuguang Zhanga,c, Carlos E. Seminoa,c,Ã aCenter for Biomedical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA bHarvard University, Cambridge, MA, 02138, USA cBiotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received 2 February 2004; accepted 10 August 2004 Available online 13 October 2004 Abstract A class of designed self-assembling peptide nanofiber scaffolds with more than 99% water content has been shown to be a good biological material for cell culture. Here, we report the functionalization of one of these peptide scaffolds, RAD16-I (AcN–RADARADARADARADA–CONH2), by direct solid phase synthesis extension at the amino terminal with three short- sequence motifs. These motifs are present in two major protein components of the basement membrane, laminin 1 (YIGSR, RYVVLPR) and collagen IV (TAGSCLRKFSTM). These motifs have been previously shown to promote specific biological activities including endothelial cell adhesion, spreading, and tubular formation. Therefore, the generic functionalized peptide developed was AcN–X–GG-RADARADARADARADA–CONH2 with each motif represented by ‘‘X’’. We show in this work that these tailor-made peptide scaffolds enhance the formation of confluent cell monolayers of human aortic endothelial cells (HAEC) in culture. Moreover, additional assays designed to evaluate endothelial cell function showed that HAEC monolayers obtained on these scaffolds not only maintained LDL uptake activity but also enhanced nitric oxide release and elevated laminin 1 and collagen IV deposition.