From Semaphore to Satellite

Total Page:16

File Type:pdf, Size:1020Kb

From Semaphore to Satellite This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library & Archives Service from an original paper document in the ITU Library & Archives collections. La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections de ce service. Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT. (ITU) ﻟﻼﺗﺼﺎﻻﺕ ﺍﻟﺪﻭﻟﻲ ﺍﻻﺗﺤﺎﺩ ﻓﻲ ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﺃﺟﺮﺍﻩ ﺍﻟﻀﻮﺋﻲ ﺑﺎﻟﻤﺴﺢ ﺗﺼﻮﻳﺮ ﻧﺘﺎﺝ (PDF) ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻨﺴﺨﺔ ﻫﺬﻩ .ﻭﺍﻟﻤﺤﻔﻮﻇﺎﺕ ﺍﻟﻤﻜﺘﺒﺔ ﻗﺴﻢ ﻓﻲ ﺍﻟﻤﺘﻮﻓﺮﺓ ﺍﻟﻮﺛﺎﺋﻖ ﺿﻤﻦ ﺃﺻﻠﻴﺔ ﻭﺭﻗﻴﺔ ﻭﺛﻴﻘﺔ ﻣﻦ ﻧ ﻘ ﻼً 此电子版(PDF版本)由国际电信联盟(ITU)图书馆和档案室利用存于该处的纸质文件扫描提供。 Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно-архивной службы МСЭ. From Semaphore to Satellite 1865-1965 Published by the International Telecommunication Union Geneva 1965 on the Occasion of its Centenary From Semaphore to Satellite From Semaphore to Satellite This Volume is published on the Occasion of the Centenary of the International Telecommunication Union Published by the International Telecommunication Union Geneva 1965 From Semaphore to Satellite Introduction Part I — The Telegraph Part II - Radio 1888-1947 Part III — The Union after Conclusions and the Telephone a Century 1947-1965 1793-1932 Foreword The Precursors 11 The Inventors of Wireless The Union and its The Achievement o f a Hundred Years 305 The Preface The Pioneers of the Telegraphy 117 Secretariat 205 Telegraph 25 Wireless Grows up at Sea 129 The International Telegraph The Social Effect o f Telecommunications 315 International Co-operation International Radiotelegraph and Telephone Consultative Committee (C.C.I.T.T.) 215 Begins 43 Conferences 143 The Future 327 Paris — 1865 51 Madrid— 1932 159 The International Radio Consultative Committee The Pioneering Work of Wars and Telecom­ (C .C .I.R .) 229 List o f Members and the Telegraph Union 63 munications — an Interlude 171 The International Frequency Associate Members of the I.T.U. 337 Telegraph Rates, Priorities, Atlantic C ity — 1947 183 List and the International and Codes 77 Radio Frequencies and Frequency Registration Acknowledgement to The Telephone 91 Radio Regulations 193 Board (I.F.R.B.) 247 Picture Sources 339 Telephone Regulations 103 Helping the New and Reference Books 343 Developing Countries 261 Telecommunications in Government, Industry, and Private Life 275 Telecommunications in Space 283 5 Philofophical EXPERIMENTS AND OBSERVATIONS Of the late Eminent Dr. ROBERT HOOKE, S. R . S. And Geom. Pro£ G r e jb . AND Other Eminent V irti'o so ’s in his Time. With COPPER PL A TEA. Publifh'd by W . D e r h a m , F . R . S . 1-3 Robert Hooke's suggestion for optical L O N .T ) O N . telegraphy, as published Printed by W. and J. Innys, Printers to the in 1726. Individual letters and code signs R o y a l S o c ie t y , at the W eft End o f St. Paul's. were to be MDCCXXVI. suspended from the wooden framework. As fa r as is known, these suggestions were never carried out in practice. 6 Foreword To look back on a hundred years of successful international co-operation, as the International Tele­ communication Union can do, is a unique achievement. The Union is the oldest of the intergovernmental organizations which now form the specialized agencies of the United Nations. Yet a hundred years is but the briefest interval in the recorded history of man. Of the earth’s own aeons it is a ipicroscopic part. But in this last century there has occurred such a change for mankind that all previous discovery and progress are almost insignificant. Probably the most remarkable advance of the last hundred years lies in the speed and variety of our communications. First the telegraph and the telephone, then radio, including broadcasting and tele­ vision, all tremendously expanded through the electronic revolution, and now space communications, these are all an integral part of the exponential growth of science which may well astonish even our grand­ children. But this ever-increasing rate of scientific invention has led to another equally astonishing growth, namely an ever closer working together across natural and man-made frontiers. Without the one, the other could never have altered the very texture of our life so deeply, intimately and so permanently. And that is the theme of our present book. International co-operation in telecommunications started from small beginnings in Paris on May 17, 1865, when the International Telegraph Union was founded. To mark the 100th anniversary of this historic event the International Telecommunication Union is publishing this centenary volume. The decision to publish this Volume was taken by the ITU Administrative Council at its 1963 session. The text was written by Dr. Anthony R. Michaelis of London and the illustrations were mostly provided by ITU Member Governments, additional pictorial material being assembled from many sources by Dr. Michaelis. The design is by Claude Humbert and the book was printed by Henri Studer S.A. of Geneva. Any opinions expressed in this Volume are those of the author and do not in any way commit the International Telecommunication Union. Gerald C. GROSS Secretary-General International Telecommunication Union Geneva, January 1965 7 r j 8 The Preface Stand anywhere in the quiet countryside, away from crowded cities, ploughed fields, or other signs of man’s many activities. Then your picture may well be the same as that of your forefathers, hundreds or even thousands of years ago. And yet, during the last few decades, a subtle change has occurred, which none of our senses can register. Radio waves, bearing messages in many tongues, flow ceaselessly around us, through us and above us. We can only hear and see them if we convert them to other waves to which our ears and eyes are receptive. Perhaps that is the major reason why we take radio for granted. The moment wires are used to convey intelligence we become conscious of the means, although we are still ignorant of the ends. Yet, about 150 years ago, when the arms of the optical telegraph were waving in the air, anyone who knew their code could read the signals, simply by looking at them. From such simple beginnings then, the semaphores, to the satellites orbiting our planet, and acting as relay stations for our messages, has grown the subject which we now call telecommunications. It is defined as any transmission, emission or recep­ tion of signs, signals, writing, images, sounds, or intelligence of any nature, by wire, radio, optical or other electromagnetic systems. Yet our book is not primarily concerned with a scientific history of these means of telecommunica­ tions. Its subject is the international co-operation which has occurred in this field during more than 100 years. Working together, across man-made and across natural frontiers, became an imperative necessity as soon as the technical means had been perfected to send messages over long distances. Small groups of countries first joined together to draft acceptable agreements, and then, on May 17, 1865, twenty delegations from different European countries signed in Paris the first convention of the International Telegraph Union. To-day there are over 120 members of the International Telecommunication Union, covering all the corners of the earth. These hundred years of successful, uninterrupted progress in inter­ national co-operation are the subject of our book. But it proved impossible to tell this exciting story without explaining at the same time the scientific progress that was constantly made in the techniques of telecommunications. Neither the means, nor the international co-operation by themselves would have told the full story of success. Only by weaving the one into the other, telling once again how the telegraph, telephone and radio, as well as radar, broad­ casting and television came about, and how each new invention demanded new efforts in international 9 co-operation, could this cloth unfold which contains the threads of untold thousands of scientists, engi­ neers and administrators. All had but one aim, to extend international co-operation in all fields of tele­ communications, although it often took decades to achieve a single step towards it. After a hundred years, their success is assured. It can be seen in the pages of this book, and it contains many lessons which other workers in other fields might well find of value. It is our sincere hope that you will find in this book more than dry historical facts. This achievement of successfully working together for a hundred years has so far remained unique. (The Universal Postal Union held a preliminary meeting in Paris in 1863, but their first formal conference only took place in Berne in 1874.) That so many different countries can work together for a hundred years in a field of communications is eloquent proof that international co-operation is feasible, that it is profitable, and that in the successful development of scientific inventions it is absolutely essential. To-day in the space age the world has great need for such a proof, and if the reader can absorb this spirit from the following pages, the purpose of this history will have been fulfilled. To bring forth this spirit, both from the scientific and from the international developments, has meant that many interesting details had to be left aside. Fortunately, there is now a great literature available for anyone anxious to pursue the two subjects in greater depth than was possible in this book and a number of useful publications are listed in an appendix.
Recommended publications
  • Sparks, Shocks and Voltage Traces As Windows Into Experience: the Spiraled Conductor and Star Wheel Interrupter of Charles Grafton Page
    | Sparks, Shocks and Voltage Traces as Windows into Experience | 123 | Sparks, Shocks and Voltage Traces as Windows into Experience: The Spiraled Conductor and Star Wheel Interrupter of Charles Grafton Page Elizabeth CAVICCHI a T Abstract When battery current flowing in his homemade spiraled conductor switched off, nineteenth century experimenter Charles Grafton Page saw sparks and felt shocks, even in parts of the spiral where no current passed. Reproducing his experiment today is improvisational: an oscilloscope replaces Page’s body; a copper star spinning through galinstan substitutes for Barlow’s wheel interrupter. Green and purple flashes accompanied my spinning wheel. Unlike what Page’s shocks showed, induced voltages probed across my spiral’s wider spans were variable, precipitating extensive explorations of its resonant fre - quencies. Redoing historical experiments extends our experience, fostering new observations about natural phenomena and experimental development. Keywords: electromagnetic induction, historical replication, Charles Grafton Page, exploratory learning, spiral, Barlow wheel, galinstan, autotransformer T Introduction real? Facing wires and wiggling magnetic needles firsthand, while trying to make sense of it, deepens Historical experiments come to us in fragments: our perspective; we become confused and curious handwritten data, published reports, and often non - (Cavicchi 2003). Redoing an experiment is not just a functioning apparatus. A further carry-over may per - check on facts, dates, whether Oersted’s needle went sist in ideas, procedures, materials and inventions east or west. It gives us access to experience congru - bearing imprints of the prior work. All these are clues ous with the past: “’to know an experimenter, you to something both more transitory and more coher - should replicate her study’” (Kurz 2001, p.
    [Show full text]
  • Lomonosov, the Discovery of Venus's Atmosphere, and Eighteenth Century Transits of Venus
    Journal of Astronomical History and Heritage, 15(1), 3-14 (2012). LOMONOSOV, THE DISCOVERY OF VENUS'S ATMOSPHERE, AND EIGHTEENTH CENTURY TRANSITS OF VENUS Jay M. Pasachoff Hopkins Observatory, Williams College, Williamstown, Mass. 01267, USA. E-mail: [email protected] and William Sheehan 2105 SE 6th Avenue, Willmar, Minnesota 56201, USA. E-mail: [email protected] Abstract: The discovery of Venus's atmosphere has been widely attributed to the Russian academician M.V. Lomonosov from his observations of the 1761 transit of Venus from St. Petersburg. Other observers at the time also made observations that have been ascribed to the effects of the atmosphere of Venus. Though Venus does have an atmosphere one hundred times denser than the Earth’s and refracts sunlight so as to produce an ‘aureole’ around the planet’s disk when it is ingressing and egressing the solar limb, many eighteenth century observers also upheld the doctrine of cosmic pluralism: believing that the planets were inhabited, they had a preconceived bias for believing that the other planets must have atmospheres. A careful re-examination of several of the most important accounts of eighteenth century observers and comparisons with the observations of the nineteenth century and 2004 transits shows that Lomonosov inferred the existence of Venus’s atmosphere from observations related to the ‘black drop’, which has nothing to do with the atmosphere of Venus. Several observers of the eighteenth-century transits, includ- ing Chappe d’Auteroche, Bergman, and Wargentin in 1761 and Wales, Dymond, and Rittenhouse in 1769, may have made bona fide observations of the aureole produced by the atmosphere of Venus.
    [Show full text]
  • The South African Sale London Wednesday 19 March 2014 W1S 1SR
    Bonhams 101 New Bond Street the south african sale London Wednesday 19 March 2014 W1S 1SR +44 (0) 20 7447 7447 +44 (0) 20 7447 7400 fax the south african sale Ӏ New Bond Street, London Ӏ Wednesday March 19 2014 21431 International Auctioneers and Valuers – bonhams.com lot 15 Irma Stern Zanzibar Woman the South afrIcan Sale Wednesday 19 March at 2pm New Bond Street, London PhyI S cal condItIon of Vw Ie Ing enquIrIeS lotS In thIS auctIon Sunday 16 March Giles Peppiatt MRICS 11.00 to 15.00 +44 (0) 20 7468 8355 PLEASE NOTE THAT THERE IS Monday 17 March NO REFERENCE IN THIS 9.00 to 16.30 Hannah O’Leary CATALOGUE TO THE PHYSICAL Tuesday 18 March +44 (0) 20 7468 8213 CONDITION OF ANY LOT. 9.00 to 16.30 INTENDING BIDDERS MUST Wednesday 19 March Elizabeth Callinicos SATISFY THEMSELVES AS TO 9.00 to 12 noon +44 (0) 20 7468 8216 THE CONDITION OF ANY LOT AS SPECIFIED IN CLAUSE 14 PreVIew of hIghlIghtS [email protected] OF THE NOTICE TO BIDDERS 580 Madison Avenue, New York CONTAINED AT THE END OF 19 - 21 February Jonathan Horwich THIS CATALOGUE. 10.00 to 17.00 Global Director, Picture Sales +44 (0) 20 7468 8280 As a courtesy to intending Sale number [email protected] bidders, Bonhams will provide a 21431 written Indication of the physical South Africa condition of lots in this sale if a catalogue Penny Culverwell request is received up to 24 £25.00 +27 71 342 2670 hours before the auction starts.
    [Show full text]
  • Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008)
    Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008) Through the brief but brilliant span of aviation history, the United States has been at the leading edge of advancing technology, from airframe and engines to navigation aids and avionics. One key component of American aviation progress has always been the airway and navigation system that today makes all-weather transcontinental flight unremarkable and routine. From the initial, tentative efforts aimed at supporting the infant air mail service of the early 1920s and the establishment of the airline industry in the 1930s and 1940s, air navigation later guided aviation into the jet age and now looks to satellite technology for direction. Today, the U.S. Federal Aviation Administration (FAA) provides, as one of many services, the management and maintenance of the American airway system. A little-seen but still important element of that maintenance process is airborne flight inspection. Flight inspection has long been a vital part of providing a safe air transportation system. The concept is almost as old as the airways themselves. The first flight inspectors flew war surplus open-cockpit biplanes, bouncing around with airmail pilots and watching over a steadily growing airway system predicated on airway light beacons to provide navigational guidance. The advent of radio navigation brought an increased importance to the flight inspector, as his was the only platform that could evaluate the radio transmitters from where they were used: in the air. With the development of the Instrument Landing System (ILS) and the Very High Frequency Omni-directional Range (VOR), flight inspection became an essential element to verify the accuracy of the system.
    [Show full text]
  • History of Radio Broadcasting in Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1963 History of radio broadcasting in Montana Ron P. Richards The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Richards, Ron P., "History of radio broadcasting in Montana" (1963). Graduate Student Theses, Dissertations, & Professional Papers. 5869. https://scholarworks.umt.edu/etd/5869 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE HISTORY OF RADIO BROADCASTING IN MONTANA ty RON P. RICHARDS B. A. in Journalism Montana State University, 1959 Presented in partial fulfillment of the requirements for the degree of Master of Arts in Journalism MONTANA STATE UNIVERSITY 1963 Approved by: Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number; EP36670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiuartation PVUithing UMI EP36670 Published by ProQuest LLC (2013).
    [Show full text]
  • Choosing and Using Astronomical Filters
    Martin Griffiths Choosing and Using Astronomical Filters The Patrick Moore The Patrick Moore Practical Astronomy Series For further volumes: http://www.springer.com/series/3192 Globular cluster Messier 5 in Serpens. Image by Martin Griffiths courtesy of LCOGT Choosing and Using Astronomical Filters Martin Griffi ths Martin Griffi ths University of South Wales Glyntaf , UK ISSN 1431-9756 ISSN 2197-6562 (electronic) ISBN 978-1-4939-1043-4 ISBN 978-1-4939-1044-1 (eBook) DOI 10.1007/978-1-4939-1044-1 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014940529 © Springer Science+Business Media New York 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
    [Show full text]
  • Early Forms of Long-Distance Communication
    EARLY FORMS OF LONG-DISTANCE COMMUNICATION In this material, you will learn about Telegraphy, Telephone and GSM architecture Before the development of the electric telegraph in the 19th century revolutionized how information was transmitted across long distances, ancient civilizations such as those in China, Egypt and Greece used drumbeats or smoke signals to exchange information between far-flung points. However, such methods were limited by the weather and the need for an uninterrupted line of sight between receptor points. These limitations also lessened the effectiveness of the semaphore, a modern precursor to the electric telegraph. Developed in the early 1790s, the semaphore consisted of a series of hilltop stations that each had large movable arms to signal letters and numbers and two telescopes with which to see the other stations. Like ancient smoke signals, the semaphore was susceptible to weather and other factors that hindered visibility. A different method of transmitting information was needed to make regular and reliable long-distance communication workable. Did You Know? SOS, the internationally recognized distress signal, does not stand for any particular words. Instead, the letters were chosen because they are easy to transmit in Morse code: "S" is three dots, and "O" is three dashes. The Electric Telegraph In the early 19th century, two developments in the field of electricity opened the door to the production of the electric telegraph. First, in 1800, the Italian physicist Alessandro Volta (1745-1827) invented the battery, which reliably stored an electric current and allowed the current to be used in a controlled environment. Second, in 1820, the Danish physicist Hans Christian Oersted (1777-1851) demonstrated the connection between electricity and magnetism by deflecting a magnetic needle with an electric current.
    [Show full text]
  • Anticipated Acquisition by BT Group Plc of EE Limited
    Anticipated acquisition by BT Group plc of EE Limited Appendices and glossary Appendix A: Terms of reference and conduct of the inquiry Appendix B: Industry background Appendix C: Financial performance of companies Appendix D: Regulation Appendix E: Transaction and merger rationale Appendix F: Retail mobile Appendix G: Spectrum, capacity, and speed Appendix H: Fixed-mobile bundles Appendix I: Wholesale mobile: total foreclosure analysis Appendix J: Wholesale mobile: partial foreclosure analysis Appendix K: Mobile backhaul: input foreclosure Appendix L: Retail fixed broadband: Market A Appendix M: Retail broadband: superfast broadband Glossary APPENDIX A Terms of reference and conduct of the inquiry Terms of reference 1. In exercise of its duty under section 33(1) of the Enterprise Act 2002 (the Act) the Competition and Markets Authority (CMA) believes that it is or may be the case that: (a) arrangements are in progress or in contemplation which, if carried into effect, will result in the creation of a relevant merger situation in that: (i) enterprises carried on by, or under the control of, BT Group plc will cease to be distinct from enterprises currently carried on by, or under the control of, EE Limited; and (ii) section 23(1)(b) of the Act is satisfied; and (b) the creation of that situation may be expected to result in a substantial lessening of competition within a market or markets in the United Kingdom (the UK) for goods or services, including the supply of: (i) wholesale access and call origination services to mobile virtual network operators; and (ii) fibre mobile backhaul services to mobile network operators.
    [Show full text]
  • Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16
    Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 1 of 137 Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 2 of 137 Exhibit A Case 20-32299-KLP Doc 208 Filed 06/01/20 Entered 06/01/20 16:57:32 Desc Main Document Page 3 of 137 Exhibit A1 Served via Overnight Mail Name Attention Address 1 Address 2 City State Zip Country Aastha Broadcasting Network Limited Attn: Legal Unit213 MezzanineFl Morya LandMark1 Off Link Road, Andheri (West) Mumbai 400053 IN Abs Global LTD Attn: Legal O'Hara House 3 Bermudiana Road Hamilton HM08 BM Abs-Cbn Global Limited Attn: Legal Mother Ignacia Quezon City Manila PH Aditya Jain S/O Sudhir Kumar Jain Attn: Legal 12, Printing Press Area behind Punjab Kesari Wazirpur Delhi 110035 IN AdminNacinl TelecomunicacionUruguay Complejo Torre De Telecomuniciones Guatemala 1075. Nivel 22 HojaDeEntrada 1000007292 5000009660 Montevideo CP 11800 UY Advert Bereau Company Limited Attn: Legal East Legon Ars Obojo Road Asafoatse Accra GH Africa Digital Network Limited c/o Nation Media Group Nation Centre 7th Floor Kimathi St PO Box 28753-00100 Nairobi KE Africa Media Group Limited Attn: Legal Jamhuri/Zaramo Streets Dar Es Salaam TZ Africa Mobile Network Communication Attn: Legal 2 Jide Close, Idimu Council Alimosho Lagos NG Africa Mobile Networks Cameroon Attn: Legal 131Rue1221 Entree Des Hydrocarbures Derriere Star Land Hotel Bonapriso-Douala Douala CM Africa Mobile Networks Cameroon Attn: Legal BP12153 Bonapriso Douala CM Africa Mobile Networks Gb,
    [Show full text]
  • A Chronological History of Electrical Development from 600 B.C
    From the collection of the n z m o PreTinger JJibrary San Francisco, California 2006 / A CHRONOLOGICAL HISTORY OF ELECTRICAL DEVELOPMENT FROM 600 B.C. PRICE $2.00 NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION 155 EAST 44th STREET NEW YORK 17, N. Y. Copyright 1946 National Electrical Manufacturers Association Printed in U. S. A. Excerpts from this book may be used without permission PREFACE presenting this Electrical Chronology, the National Elec- JNtrical Manufacturers Association, which has undertaken its compilation, has exercised all possible care in obtaining the data included. Basic sources of information have been search- ed; where possible, those in a position to know have been con- sulted; the works of others, who had a part in developments referred to in this Chronology, and who are now deceased, have been examined. There may be some discrepancies as to dates and data because it has been impossible to obtain unchallenged record of the per- son to whom should go the credit. In cases where there are several claimants every effort has been made to list all of them. The National Electrical Manufacturers Association accepts no responsibility as being a party to supporting the claims of any person, persons or organizations who may disagree with any of the dates, data or any other information forming a part of the Chronology, and leaves it to the reader to decide for him- self on those matters which may be controversial. No compilation of this kind is ever entirely complete or final and is always subject to revisions and additions. It should be understood that the Chronology consists only of basic data from which have stemmed many other electrical developments and uses.
    [Show full text]
  • JOTA Activity Booklet KE4TIO
    1 2 3 Gulf Ridge Council Pack 415 KE4TIO Alan Wentzell (Operator) Amateur Call Signs Heard and Worked: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ States Contacted: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ Countries Contacted: __________________________________ __________________________________ __________________________________ __________________________________ Scouts Present: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ Akela’s Present: __________________________________ __________________________________ __________________________________ __________________________________ __________________________________ 4 Q Codes The “Q” code was originally developed as a way of sending shorthand messages in Morse Code. However, it is still used by operators for voice communications. Some of those in common use are listed below: QRA What is your call sign? QRM I have interference (manmade). QRN I am receiving static (atmospheric noise). QRT I am closing
    [Show full text]
  • Optical Communication: Its History and Recent Progress Govind P
    177 8 Optical Communication: Its History and Recent Progress Govind P. Agrawal 8.1 Historical Perspective – 178 8.2 Basic Concepts Behind Optical Communication – 181 8.2.1 Optical Transmitters and Receivers – 181 8.2.2 Optical Fibers and Cables – 182 8.2.3 Modulations Formats – 184 8.2.4 Channel Multiplexing – 185 8.3 Evolution of Optical Communication from 1975 to 2000 – 187 8.3.1 The First Three Generations – 187 8.3.2 The Fourth Generation – 188 8.3.3 Bursting of the Telecom Bubble in 2000 – 190 8.4 The Fifth Generation – 191 8.5 The Sixth Generation – 192 8.5.1 Capacity Limit of Single-Mode Fibers – 193 8.5.2 Space-Division Multiplexing – 194 8.6 Worldwide Fiber-Optic Communication Network – 195 8.7 Conclusions – 197 References – 198 G.P. Agrawal (*) The Institute of Optics, University of Rochester, Rochester NY 14627, USA e-mail: [email protected] © The Author(s) 2016 M.D. Al-Amri et al. (eds.), Optics in Our Time, DOI 10.1007/978-3-319-31903-2_8 178 G.P. Agrawal 8.1 Historical Perspective The use of light for communication purposes dates back to antiquity if we interpret optical communication in a broad sense, implying any communication scheme that makes use of light. Most civilizations have used mirrors, fire beacons, or smoke signals to convey a single piece of information (such as victory in a war). For example, it is claimed that the Greeks constructed in 1084 B.C. a 500-km-long line of fire beacons to convey the news of the fall of Troy [1].
    [Show full text]