12.2% 122000 135M Top 1% 154 4800

Total Page:16

File Type:pdf, Size:1020Kb

12.2% 122000 135M Top 1% 154 4800 We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,800 122,000 135M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter 1 Morphological Bases of Human Leydig Cell Dysfunction Maria P. De Miguel,Maria P. De Miguel, Pilar Gonzalez-PeramatoPilar Gonzalez-Peramato andand Manuel NistalManuel Nistal Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.79201 Abstract In this chapter, we describe the histophysiology of human Leydig cells, their cytologi- cal characteristics, their differentiation processes, and the physiopathological processes occurring at various times throughout life. We first focus on the normal development of fetal Leydig cells as well as the pathologies of fetal Leydig cells that can affect num- bers or hyperplasic processes (e.g., hypogonadotropic hypogonadism, cryptorchidism, congenital Leydig cell hyperplasia secondary to diabetes, and isoimmunization). Next, we explain the changes occurring at puberty with the onset and differentiation of adult Leydig cells and the pathophysiology of delayed puberty. We then describe the histophysiology of adult Leydig cells and the most frequent pathologies (e.g., hypogo- nadotropic hypogonadism, testicular dysgenesia, mild androgen insensitivity syndrome, 5-α-reductase defect, and Klinefelter syndrome). Finally, we discuss the morphological changes of these cells in the elderly. Keywords: fetal Leydig cells, adult Leydig cells, testosterone, puberty, elderly, dysgenesia, pathology 1. Introduction Leydig cells are the primary producers of testosterone. They perform important functions during fetal life, in the first months of life, and in adults, ranging from male sexual differentia- tion and testicular descent to the acquisition of a normal number of spermatogonial stem cells, the development of spermatogenesis and thus fertility, and the maintenance of typical male characteristics in adulthood. © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons © 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. distribution, and reproduction in any medium, provided the original work is properly cited. 2 Advances in Testosterone Action 2. Fetal stage 2.1. Origin and development of fetal Leydig cells During development, two different types of Leydig cells appear sequentially, fetal Leydig cells and adult Leydig cells, which display different functional characteristics, reflecting their morphology, steroid capacity, and regulatory mechanisms. Fetal Leydig cells are detected immediately after gonadal sex differentiation [1]. Adult Leydig cells begin to develop at the beginning of puberty and acquire their maximum numbers at the end of puberty. The origin of both Leydig cell types is debated: some suggest a parent-common progenitor pool in the fetal testis [2, 3] and others have suggested that Leydig cells in adults might originate in precursors to fetal Leydig cells 4[]. In addition, a three-phase model of the development of Leydig cells has been proposed: fetal, neonatal, and adult Leydig cells5]. [ 2.1.1. Development of fetal Leydig cells The mesonephros and the coelomic epithelium are considered the two most plausible origins of fetal Leydig cells. The progenitor cells expressing SF1 actively proliferate and ultimately lose this marker when cell differentiation begins in week 8 of human gestation. The first sign of differentiation is the histochemical detection of 3-beta hydroxysteroid dehydrogenase (3β- HSD) in the cytoplasm. About 83% of 3β-HSD-positive cells show a high intensity of andro - gen receptors (ARs) immunoreaction. Fetal Leydig cells express various steroidogenic enzymes required for androgen synthesis, such as acute regulatory protein, CYP11A1 (P450 side chain cleavage), CYP17A1 (P450C17), and 3β-HSD. The most important androgenic product of fetal Leydig cells is androstenedione. Fetal Sertoli cells make testosterone from androstenedione through the enzyme 17-β hydroxys- teroid dehydrogenase (HSD17β3) at this stage of fetal testis development. Differentiation of fetal Leydig cells has been a subject of debate in recent decades and appears to be an andro- gen-independent process [6]. Their proliferation and subsequent development do so under the stimulus of human chorionic gonadotropin (hCG) in the first half of the gestation period and with the help of luteinizing hormone (LH) secreted by the pituitary gland in the last half. Both hormones are glycoproteic in nature and act through the same receptor (LHCGR). 2.1.2. Evolution throughout fetal life Fetal Leydig cells are identified by positivity for the 3β-HSD enzyme. The maximum peak of Leydig cell numbers is reached at week 19 of gestation (Figure 1). Remarkably, this peak occurs in parallel with the disappearance of one of the two layers of peritubular cells of the seminiferous epithelium, the outermost layer of peritubular cells, between weeks 17 and 19 of gestation. These two occurrences also match the maximum production of testosterone between the 14th and 19th weeks of fetal life. After a few weeks of Leydig cell quiescence, from week 22 of gestation, a progressive decrease in the number of Leydig cells is observed. Most fetal Leydig cells disappear after birth; however, a subpopulation persists in the postna- tal testis that is estimated to represent 10% of all Leydig cells in adulthood [ 7–9]. Given that Morphological Bases of Human Leydig Cell Dysfunction 3 http://dx.doi.org/10.5772/intechopen.79201 Figure 1. Fetus at 19 weeks. Seminiferous tube showing two gonocytes in the center, with the remaining cells, the Sertoli cells. In the interstitium, Leydig cells with peripheral nuclei and broad eosinophilic cytoplasm are abundantly found. fetal Leydig cells do not express HSD17β3, they cannot directly synthesize testosterone; thus, their functional importance in adults is unknown. 2.2. Functions of fetal Leydig cells 2.2.1. Differentiation of the genitals Under the action of testosterone, the differentiation of the Wolff tubes takes place. This dif- ferentiation is ipsilateral and gives rise to the development of the epididymis, vas deferens, and seminal vesicle. When testosterone is converted into dihydrotestosterone by the enzyme 5-α-reductase, differentiation of the prostate and development of the external genitalia occur: male urethra, penis, and scrotum. 2.2.2. Testicular descent The two stages of testicular descent, transabdominal and inguinoscrotal, are controlled directly or indirectly by fetal Leydig cells. Transabdominal descent depends on an androgen- independent peptide, insulin-like growth factor 3 (INLS3), whereas inguinoscrotal descent is mediated by androgens through the masculinization they produce in the genitofemoral nerve neurons. Those neurons produce calcitonin gene-related peptide (CGRP), which is respon- sible for the development that the gubernaculum acquires, allowing testicle descent10]. [ 2.3. Pathology of fetal Leydig cells 2.3.1. Defective androgen synthesis Defects in the synthesis of androgens due to various autosomal hereditary syndromes result in absent or incomplete virilization. They include lipoid congenital adrenal hyperplasia (lipoid CAH), deficits in 3-βHSD/17,20-lyase, α-hydroxylase 17/17,20-lyase deficiency, deficit in 17,20 desmolase, and deficit in 17-β hydroxysteroid dehydrogenase. 4 Advances in Testosterone Action 2.3.1.1. Lipoid CAH It is the most severe form of congenital adrenal hyperplasia. It affects the synthesis of adrenal and gonadal steroid hormones. Genetically 46,XY patients are phenotypically women with severe salt-losing syndrome. There is no uniformity in the histological descriptions of the Leydig cells; in some cases, they are described as having large accumulations of lipids11], [ whereas in others, such lipid inclusions are absent [12]. 2.3.1.2. 3-βHSD/17,20-lyase deficit Patients with a mild deficiency have normal external genitalia; some consult for hypospadias or micropenis [13], and the testicles are smaller than normal. 2.3.1.3. 17-α Hydroxylase/17,20-lyase deficiency Patients have a significant degree of undermasculinization; they can even mature as girls and consult at puberty for amenorrhea. The testes show a delay in pubertal development and hyperplasia of Leydig cells. 2.3.1.4. 17,20 Desmolase deficit It presents with a high variability in external genital development, from a female pheno- type to males with micropenis that is hardly virilized, bifid scrotum, perineal hypospa- dias, and cryptorchidism, due to the insufficient production of testosterone during fetal life. 2.3.1.5. 17-β-Hydroxysteroid dehydrogenase deficit Patients show a female phenotype at birth, grow up as girls, and suffer significant virilization
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Somatostatin in the Periventricular Nucleus of the Female Rat: Age Specific Effects of Estrogen and Onset of Reproductive Aging
    4 Somatostatin in the Periventricular Nucleus of the Female Rat: Age Specific Effects of Estrogen and Onset of Reproductive Aging Eline M. Van der Beek, Harmke H. Van Vugt, Annelieke N. Schepens-Franke and Bert J.M. Van de Heijning Human and Animal Physiology Group, Dept. Animal Sciences, Wageningen University & Research Centre The Netherlands 1. Introduction The functioning of the growth hormone (GH) and reproductive axis is known to be closely related: both GH overexpression and GH-deficiency are associated with dramatic decreases in fertility (Bartke, 1999; Bartke et al, 1999; 2002; Naar et al, 1991). Also, aging results in significant changes in functionality of both axes within a similar time frame. In the rat, GH secretion patterns are clearly sexually dimorphic (Clark et al, 1987; Eden et al, 1979; Gatford et al, 1998). This has been suggested to result mainly from differences in somatostatin (SOM) release patterns from the median eminence (ME) (Gillies, 1997; Muller et al, 1999; Tannenbaum et al, 1990). SOM is synthesized in the periventricular nucleus of the hypothalamus (PeVN) and controls in concert with GH-releasing hormone (GHRH) the GH release from the pituitary (Gillies, 1987; Tannenbaum et al, 1990; Terry and Martin, 1981; Zeitler et al, 1991). An altered GH status is reflected in changes in the hypothalamic SOM system. For instance, the number of SOM cells (Sasaki et al, 1997) and pre-pro SOM mRNA levels (Hurley and Phelps, 1992) in the PeVN were elevated in animals overexpressing GH. Several observations suggest that SOM may also affect reproductive function directly at the level of the hypothalamus.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Napierindia Gnrhr As a Molecular Target For
    Gonadotropin-releasing Hormone Receptor As A Molecular Target for Contraception in Feral Cats by India Desiree Napier A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 12, 2015 Keywords: contraception, DNA vaccines, feline, gonadotropin-releasing hormone receptor, superparamagnetic iron oxide nanoparticles, ubiquitin Copyright 2015 by India Desiree Napier Approved by Tatiana I Samoylova, Chair, Research Professor of Scott-Ritchey Research Center Frank F Bartol, Professor of Anatomy, Physiology, and Pharmacology Timothy D Braden, Associate Professor of Anatomy, Physiology, and Pharmacology Douglas R Martin, Professor of Anatomy, Physiology, and Pharmacology Robyn R Wilborn, Associate Professor of Clinical Sciences Abstract The global overpopulation of feral cats generates concern regarding their welfare, negative impact on public health, and adverse effects on the environment. In the U.S. and other Westernized countries, the most common method for managing feral cat populations is impoundment in animal shelters, where they undergo surgical sterilization procedures as part of a shelter adoption or trap-neuter-release programs. However, such programs are labor-intensive, time-consuming, and costly. Further, several million, un-adopted cats are euthanized each year. Thus, there is a need for a permanent, nonsurgical, and low-cost method for controlling feral cat populations. Immunocontraception has the potential to provide the practical approach needed to manage stray cat populations. Gonadotropin-releasing hormone receptor (GnRHR) is an attractive target for immunocontraceptive vaccine development because it is highly expressed by anterior pituitary gonadotropic cells, important components of the hypothalamic-pituitary-gonadal axis that regulates normal mammalian reproduction.
    [Show full text]
  • General and Comparative Endocrinology 273 (2019) 209–217
    General and Comparative Endocrinology 273 (2019) 209–217 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Effects of GnRH and the dual regulatory actions of GnIH in the pituitary explants and brain slices of Astyanax altiparanae males T Giovana Souza Brancoa,b,1, Aline Gomes Melob,1, Juliana M.B. Riccib, Melanie Digmayerb, ⁎ Lázaro W.O. de Jesusc, Hamid R. Habibid, Rafael Henrique Nóbregab, a Aquaculture Center of São Paulo State University (CAUNESP), São Paulo State University (UNESP), Jaboticabal Campus, Jaboticabal, Brazil b Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu Campus, Botucatu, Brazil c Institute of Biological Sciences and Health, Federal University of Alagoas – A. C., Simões Campus, Maceió, Brazil d Department of Biological Sciences, University of Calgary, Calgary, Canada ARTICLE INFO ABSTRACT Keywords: The pituitary gonadotropins, Fsh (follicle-stimulating hormone) and Lh (luteinizing hormone), regulate testi- Gonadotropin-releasing hormone cular development and functions in all vertebrates. At the pituitary, different signaling systems regulate the Gonadotropin-inhibitory hormone synthesis and secretion of the gonadotropins, such as the hypothalamic neuropeptides GnRH (gonadotropin- Follicle-stimulating hormone releasing hormone) and GnIH (gonadotropin-inhibitory hormone). While GnRH exerts stimulatory roles, the Luteinizing hormone actions of GnIH remain controversial for many teleost species. Therefore, the aim of this study was to evaluate Lambari-do-rabo-amarelo the in vitro effects of chicken GnRH2 (cGnRH2) and zebrafish GnIH-3 (zGnIH-3) on the male gonadotropin and Astyanax altiparanae GnRH system expression using pituitary explants and brain slices from a neotropical species with economical and ecological relevance, Astyanax altiparanae.
    [Show full text]
  • BGD B Lecture Notes Docx
    BGD B Lecture notes Lecture 1: GIT Development Mark Hill Trilaminar contributions • Overview: o A simple tube is converted into a complex muscular, glandular and duct network that is associated with many organs • Contributions: o Endoderm – epithelium of the tract, glands, organs such as the liver/pancreas/lungs o Mesoderm (splanchnic) – muscular wall, connective tissue o Ectoderm (neural crest – muscular wall neural plexus Gastrulation • Process of cell migration from the epiblast through the primitive streak o Primitive streak forms on the bilaminar disk o Primitive streak contains the primitive groove, the primitive pit and the primitive node o Primitive streak defines the body axis, the rostral caudal ends, and left and right sides Thus forms the trilaminar embryo – ectoderm, mesoderm, endoderm • Germ cell layers: o ectoderm – forms the nervous system and the epidermis epithelia 2 main parts • midline neural plate – columnar epithelium • lateral surface ectoderm – cuboidal, containing sensory placodes and skin/hair/glands/enamel/anterior pituitary epidermis o mesoderm – forms the muscle, skeleton, and connective tissue cells migrate second migrate laterally, caudally, rostrally until week 4 o endoderm – forms the gastrointestinal tract epithelia, the respiratory tract and the endocrine system cells migrate first and overtake the hypoblast layer line the primary yolk sac to form the secondary yolk sac • Membranes: o Rostrocaudal axis Ectoderm and endoderm form ends of the gut tube, no mesoderm At each end, form the buccopharyngeal
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/29/2021 04:18:11AM Via Free Access
    REPRODUCTIONRESEARCH PROOF ONLY Gonadotropin characterization, localization and expression in the European hake (Merluccius merluccius) Michela Candelma1, Romain Fontaine2, Sabrina Colella3, Alberto Santojanni3, Finn-Arne Weltzien2 and Oliana Carnevali1 1Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy, 2Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway, and 3CNR-National Research Council of Italy, ISMAR-Marine Sciences Institute, Ancona, Italy Correspondence should be addressed to O Carnevali; Email: [email protected] Abstract In vertebrates, the regulation of gametogenesis is under the control of gonadotropins (Gth), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh). In fish, the physiological role of Gths is not fully understood, especially in species with asynchronous ovarian development. To elucidate the role of Gths in species with asynchronous ovary, we studied European hake (Merluccius merluccius) during the reproductive season. For this aim, we first cloned and sequenced both hormones. Then, we characterized their amino acid sequence and performed phylogenetic analyses to verify the relationship to their orthologues in other species. In addition, the quantification of gene expression during their natural reproductive season was analyzed in wild-caught female hake. Our results revealed that fshb peaked during the vitellogenic phase, remaining high until spawning. This is in contrast to the situation in species with synchronous ovary. lhb, on the other hand, peaked during maturation as it is also common in species with synchronous ovarian development. Finally, combining double-labeling fluorescent in situ hybridization (FISH) for Gth mRNAs with immunofluorescence for Lh protein, we evidenced the specific expression of fshb and lhb in different cells within the proximal pars distalis (PPD) of the pituitary.
    [Show full text]
  • |||GET||| Pancreatic Islet Biology 1St Edition
    PANCREATIC ISLET BIOLOGY 1ST EDITION DOWNLOAD FREE Anandwardhan A Hardikar | 9783319453057 | | | | | The Evolution of Pancreatic Islets Advanced search. The field of regenerative medicine is rapidly evolving and offers great hope for the nearest future. Easily read eBooks on Pancreatic Islet Biology 1st edition phones, computers, or any eBook readers, including Kindle. Help Learn to edit Community portal Recent changes Upload file. Pancreatic Islet Biologypart of the Stem Cell Biology and Regenerative Medicine series, is essential reading for researchers and clinicians in stem cells or endocrinology, especially those focusing on diabetes. Because the beta cells in the pancreatic islets Pancreatic Islet Biology 1st edition selectively destroyed by an autoimmune process in type 1 diabetesclinicians and researchers are actively pursuing islet transplantation as a means of restoring physiological beta cell function, which would offer an alternative to a complete pancreas transplant or artificial pancreas. Strategies to improve islet yield from chronic pancreatitis pancreases intended for islet auto-transplantation 6. About this book This comprehensive volume discusses in vitro laboratory development of insulin-producing cells. Junghyo Jo, Deborah A. Show all. Comparative Analysis of Islet Development. Leibson A. However, type 1 diabetes is the result of the autoimmune destruction of beta cells in the pancreas. Islets can influence each other through paracrine and autocrine communication, and beta cells are coupled electrically to six to seven other beta cells but not to other cell types. Pancreatic Islet Biologypart of the Stem Cell Biology and Regenerative Medicine Pancreatic Islet Biology 1st edition, is essential reading for researchers and clinicians in stem cells or endocrinology, especially those focusing on diabetes.
    [Show full text]
  • ACTH in Tetrahymena Pyriformis, 76 Adenylate Cyclase Inhibition By
    INDEX ACTH Aromatase in tetrahymena pyriformis, 76 activity, 469 Adenylate Cyclase Armatase activity inhibition by somatostatin, granulosa cells, 317 377 OS induced, 253 Administered LHRHA with testosterone enanthate, 598 Bacteria Adrenal androgens binding of TSH, 77 in prostatic cancer, 540 Blocking agents Agonist or antagonist of gonadotropin receptor, 222 binding to receptor, 242 Ca2+ Androgen insensitive cells interaction of receptor, 267 exposed to low androgen, 542 on intracellular events, 267 Androgen receptor blockers Calmodulin inhibitors cyproterone acetate, flutamide, block GnRH, 160 558 cAMP Angiotensin 11 activation of phospho­ PRL release, 359, 361 diesterase, 413 Anterior pituitary function cumulus-oocyte complex, 328 neuromodulators, 48 regulation of oocyte Antral f1uid maturation, 326 FSH, LH and prolactin, 320 cAMP accumulation steroid hormone concentrations, LH-induced, 333 319 oocyte maturation, 332 AP cells cAMP and 20a-OH-P information on membrane compart­ response to OS or FSH, 257 ments, 170 cAMP binding activity Arachidonic acid effects of FSH and LHRH, 473 action of LHRH, 6 cAMP levels Arachidonic acid (AA) pregnenolone production, 429 prostaglandins (PG), 494 cAMP phosphodieste~se Arachidonic acid conversion stimulated by Ca ,calmodulin, preovulatory follicles, 348 414 Arachidonic acid metabolites Casein secretion of LH, 6 encoded by complex split genes, Arachodonic metabolites 389 in ovulation, 344 gene structure, 389 611 612 INDEX 6 Casein mRNAs D-Arg analog sequences, 389 of LH-RH, 522 a-casein Deglycosylated
    [Show full text]
  • Pituitary P62 Deficiency Leads to Female Infertility by Impairing Luteinizing Hormone Production
    www.nature.com/emm ARTICLE OPEN Pituitary P62 deficiency leads to female infertility by impairing luteinizing hormone production 1,2,3,6 1,6 1 1 1 4 4 5 1 2,3 Xing Li , Ling Zhou✉ , Guiliang Peng✉ , Mingyu Liao , Linlin Zhang , Hua Hu , Ling Long , Xuefeng Tang , Hua Qu , Jiaqing Shao , Hongting Zheng1 and Min Long 1 © The Author(s) 2021 P62 is a protein adaptor for various metabolic processes. Mice that lack p62 develop adult-onset obesity. However, investigations on p62 in reproductive dysfunction are rare. In the present study, we explored the effect of p62 on the reproductive system. P62 deficiency-induced reproductive dysfunction occurred at a young age (8 week old). Young systemic p62 knockout (p62-/-) and pituitary-specific p62 knockout (p62flox/flox αGSUcre) mice both presented a normal metabolic state, whereas they displayed infertility phenotypes (attenuated breeding success rates, impaired folliculogenesis and ovulation, etc.) with decreased luteinizing hormone (LH) expression and production. Consistently, in an infertility model of polycystic ovary syndrome (PCOS), pituitary p62 mRNA was positively correlated with LH levels. Mechanistically, p62-/- pituitary RNA sequencing showed a significant downregulation of the mitochondrial oxidative phosphorylation (OXPHOS) pathway. In vitro experiments using the pituitary gonadotroph cell line LβT2 and siRNA/shRNA/plasmid confirmed that p62 modulated LH synthesis and secretion via mitochondrial OXPHOS function, especially Ndufa2, a component molecule of mitochondrial complex I, as verified by Seahorse and rescue tests. After screening OXPHOS markers, Ndufa2 was found to positively regulate LH production in LβT2 cells. Furthermore, the gonadotropin-releasing hormone (GnRH)-stimulating test in p62flox/flox αGSUcre mice and LβT2 cells illustrated that p62 is a modulator of the GnRH-LH axis, which is dependent on intracellular calcium and ATP.
    [Show full text]
  • Advance Publication by J-STAGE Journal of Reproduction and Development
    Advance Publication by J-STAGE Journal of Reproduction and Development Accepted for publication: February 18, 2020 Advanced Epub: February 28, 2020 Gpr120 mRNA expression in gonadotropes in the mouse pituitary gland is regulated by free fatty acids Chikaya Deura, Yusuke Kimura, Takumi Nonoyama and Ryutaro Moriyama Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan Running head: FFA regulates Gpr120 mRNA Corresponding Author: Ryutaro Moriyama, PhD Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan Phone: +81-6-4307-3435 e-mail: [email protected] Abstract GPR120 is a long-chain fatty acid (LCFA) receptor that is specifically expressed in gonadotropes in the anterior pituitary gland in mice. The aim of this study was to investigate whether GPR120 is activated by free fatty acids in the pituitary of mice and mouse immortalized gonadotrope LβT2 cells. First, the effects of palmitate on GPR120, gonadotropic hormone b-subunits, and GnRH-receptor expression in gonadotropes were investigated in vitro. We observed palmitate-induced an increase in Gpr120 mRNA expression and a decrease in Fshb expression in LβT2 cells. Furthermore, palmitate exposure caused the phosphorylation of ERK1/2 in LβT2 cells, but no significant changes were observed in the expression levels of Lhb and Gnrh-r mRNA and number of GPR120 immunoreactive cells. Next, diurnal variation in Gpr120 mRNA expression in the male mouse pituitary gland was investigated using ad libitum and night-time restricted feeding (active phase from 1900 to 0700 h) treatments.
    [Show full text]
  • Gonadotropin-Releasing Hormone Signaling in Behavioral Plasticity Hans a Hofmann
    Gonadotropin-releasing hormone signaling in behavioral plasticity Hans A Hofmann Sex and reproduction sculpt brain and behavior throughout life Studies in songbirds and cichlid fishes have highlighted and evolution. In vertebrates, gonadotropin-releasing hormone the surprising plasticity exhibited by the GnRH system in (GnRH) is essential to these processes. Recent advances have adult animals in response to seasonal and social cues. uncovered novel regulatory mechanisms in GnRH signaling, such as the initiation of sexual maturation by kisspeptins. Yet GnRH genes and GnRH receptor genes despite our increasing molecular knowledge, we know very GnRH is a decapeptide (see Box 1), the structure of which little about environmental influences on GnRH signaling and has been highly conserved throughout evolution, espe- reproductive behavior. Alternative model systems have been cially at the N- and C- termini, which are involved in crucial for understanding the plasticity of GnRH effects within receptor binding and activation [2,3]. GnRH genes encode an organismal context. For instance, GnRH signaling is under a preprohormone precursor (see glossary) that needs to be the control of seasonal cues in songbirds, whereas social cleaved and correctly folded before the peptide can signals regulate GnRH in cichlid fishes, with crucial become physiologically active [4]. Although peptide consequences for reproduction and behavior. Analyzing maturation has mostly been studied in cell lines, it is cellular signaling cascades within an organismic context is assumed that it is highly conserved across vertebrates. essential for an integrative understanding of GnRH function. Similar to other neuropeptide systems [5], a signal pep- tidase first removes the N-terminal sequence. The result- Addresses ing prohormone is then further processed at specific sites Harvard University, Bauer Center for Genomics Research, 7 Divinity Avenue, Cambridge, MA 02138, USA by prohormone convertases in conjunction with specific regulators, such as proSAAS and 7B2.
    [Show full text]