Fire-Modified Meteorology in a Coupled Fire–Atmosphere Model

Total Page:16

File Type:pdf, Size:1020Kb

Fire-Modified Meteorology in a Coupled Fire–Atmosphere Model 704 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 54 Fire-Modified Meteorology in a Coupled Fire–Atmosphere Model MIKA PEACE Bushfire Cooperative Research Centre, Melbourne, Victoria, and Applied Mathematics, Adelaide University, and Bureau of Meteorology, Adelaide, South Australia, Australia TRENT MATTNER AND GRAHAM MILLS Applied Mathematics, Adelaide University, South Australia, Australia JEFFREY KEPERT Bureau of Meteorology, Adelaide, South Australia, and Bushfire Cooperative Research Centre, Melbourne, Victoria, Australia LACHLAN MCCAW Department of Parks and Wildlife, Manjimup, Western Australia, Australia (Manuscript received 19 March 2014, in final form 27 November 2014) ABSTRACT The coupled fire–atmosphere model consisting of the Weather and Forecasting (WRF) Model coupled with the fire-spread model (SFIRE) module has been used to simulate a bushfire at D’Estrees Bay on Kangaroo Island, South Australia, in December 2007. Initial conditions for the simulations were provided by two global analyses: the GFS operational analysis and ERA-Interim. For each NWP initialization, the simulations were run with and without feedback from the fire to the atmospheric model. The focus of this study was examining how the energy fluxes from the simulated fire modified the local meteorological environment. With feedback enabled, the propagation speed of the sea-breeze frontal line was faster and vertical motion in the frontal zone was enhanced. For one of the initial conditions with feedback on, a vortex developed adjacent to the head fire and remained present for over 5 h of simulation time. The vortex was not present without fire–atmosphere feedback. The results show that the energy fluxes released by a fire can effect significant changes on the surrounding mesoscale atmosphere. This has implications for the appropriate use of weather parameters extracted from NWP and used in prediction for fire operations. These meteorological modifications also have implications for anticipating likely fire behavior. 1. Introduction D’Estrees fire relative to the three other fires burning nearby. On the MODIS satellite image of the previous The D’Estrees fire was one of several fires ignited by afternoon (not shown), the smoke plumes from each of lightning on Kangaroo Island in early December 2007. the four fires were similar in size and opacity. Figure 1 shows the island’s location, off the coast of The heightened fire activity over the D’Estrees fire southern Australia. Figure 2 shows the fire activity on was explored in the case study by Peace and Mills 8 December. Figure 2 shows four fires burning on the (2012), who proposed that the increased fire activity at island; however, the D’Estrees fire, at the southeast the D’Estrees fire on this day was due to it being located corner of the island, has a smoke plume that is very in a sea-breeze convergence zone, and that interactions different from the other three fires: the plume is much between the fire and atmosphere played an important larger and more opaque. This event is of interest be- role in producing the extensive smoke plume. This study cause the smoke indicates increased fire activity at the explores the fire and atmosphere interaction processes by examining how the energy released by the D’Estrees Corresponding author address: Mika Peace, Bureau of Meteo- rology South Australia Regional Office, 25 College Rd., Kent fire modified the surrounding atmosphere. To address Town, Adelaide, SA 5071, Australia. the subject of fire–atmosphere feedback by examining E-mail: [email protected] observational data is challenging because of the DOI: 10.1175/JAMC-D-14-0063.1 Ó 2015 American Meteorological Society Unauthenticated | Downloaded 10/06/21 01:06 PM UTC MARCH 2015 P E A C E E T A L . 705 FIG. 1. Map of southern South Australia showing location of nested domains used in the WRF simulations over Kangaroo Island. Color shading is topography (m). difficulties involved in making comprehensive meteo- The premise underlying this study is that a fire can rological observations at a fire ground and of making modify the dynamical structure of the surrounding at- controlled experiments. However, an alternative ap- mosphere. This is consistent with observations from fire proach is examining the results of high-resolution cou- grounds, which frequently report local weather in the pled fire–atmosphere simulations, as these provide an vicinity of the fire as different from prevailing conditions opportunity for examining how a fire alters the structure in the broader area. This modification of local meteo- of the surrounding atmosphere. The aim of the current rology due to the fire’s influence includes elevated study is to use numerical simulations to better un- temperatures, as well as variation in both speed and derstand fire and atmosphere interactions in the context direction of wind in the vicinity of the fire, along with of the D’Estrees fire. pyrocumulus (or pyrocumulonimbus) cloud formations. FIG. 2. NOAA MODIS Aqua satellite image from 1535 LT 8 Dec 2007. Red pixels show active fire area. Unauthenticated | Downloaded 10/06/21 01:06 PM UTC 706 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 54 The modification to local meteorology is driven by heat This paper documents the first of a series of three and water vapor released in the combustion process WRF and SFIRE simulations of Australian fire events. generating increased buoyancy in the near-fire environ- The two companion studies are of the Rocky River and ment. Potter (2005) describes interactions between a fire’s Layman fires. The meteorology of the events is described convection column and the surrounding atmosphere. in the case studies by Peace and Mills (2012) and Peace An extreme example of dynamical interactions be- et al. (2012). These three fires were selected because tween a fire and the surrounding atmosphere is the fire unusual fire behavior occurred at each one. Coupled tornado that developed at the 2003 Canberra bushfires. simulations have been used to examine the interactions The event is documented by McRae et al. (2013) and between the fire and surrounding environment and to test simulated in highly idealized form by Cunningham and the hypothesis developed in the meteorological case Reeder (2009). The D’Estrees fire simulated in this studies that fire–atmosphere interactions are a mecha- study is a much smaller fire than the Canberra event, nism for producing unexpected fire behavior. burning in more moderate meteorological conditions. We proceed by describing the WRF and SFIRE These simulations are an example of how a fire can model and the configuration used in our simulations, modify the local meteorology in a realistic (as opposed followed by the results. In the discussion we focus on the to idealized) atmosphere, and they provide insights into simulation results of development of a vortex and re- dynamic interaction processes that may occur during location of a sea-breeze wind change. To conclude, we a real event. discuss implications for fire weather forecasts and de- This study uses the coupled Weather Research and velopment of fire simulation models, as well as consid- Forecasting (WRF) Model and fire-spread model (SFIRE) ering some of the limitations of our approach. module, described in detail by Mandel et al. (2011).WRF and SFIRE couple the WRF Model with an implemen- 2. WRF and SFIRE tation of the Rothermel (1972) fire-spread equations. Coupled fire–atmosphere models have been used in Several models that integrate a fire simulation model a number of studies to show that dynamical feedback with an atmospheric model are in use, including Méso- processes, in particular the fire-modified winds, have an NH–‘‘ForeFire’’ (Filippi et al. 2011), ‘‘FIRETEC’’ important influence on how a fire perimeter evolves. (Linn et al. 2002), and Wildland-Urban Fire Dynamics Coupled simulations that examine the influence of Simulator (WFDS; Mell et al. 2010). The coupled model the fire-modified winds include Clark et al. [1996; using used in this study is WRF and SFIRE, chosen as it is ac- the Coupled Atmosphere–Wildland Fire–Environment cessible and well supported, and it provides the oppor- (CAWFE) model, the predecessor to WRF and SFIRE], tunity to examine in detail the meteorological dynamics Coen (2005), Coen et al. (2013), Coen and Riggan (2014), of a fire environment. The WRF Model, described by and Kochanski et al. (2013a), all using model releases of Skamarock et al. (2008),isanumericalweatherprediction WRF and SFIRE or wildland fire module WRF-Fire. model with a range of chemistry and physics extensions The focus of this study is somewhat different from and user-defined initialization options. WRF is widely previous coupled simulations, as the emphasis is on used for meteorological operational and research pur- examining how the fire modifies the surrounding meso- poses. The SFIRE model is a two-dimensional fire-spread scale atmosphere, rather than assessing how the in- model coupled to WRF, described by Mandel et al. (2011). clusion of fire–atmosphere feedback alters the predicted The simulations shown here were made with the most fire perimeter. The main objective of this study was to recent available model release, which at the time was WRF explore how the energy fluxes from the fire affected the and SFIRE, released by the SFIRE group and sourced in surrounding atmosphere. Our simulated fire spread was mid-2012 (the link that was used is no longer active; the intended to be a reasonable approximation of actual current version is https://github.com/jbeezley/wrf-fire). fire spread in order for the energy release to be realistic. A detailed description of how the fire model and at- However, we did not aim to reproduce observations of mospheric model interact is given in Mandel et al. fire perimeter or provide a detailed verification, since (2011). In summary, at each time step of the atmospheric observations of the event are very limited, thereby re- simulation, fire progression and fuel burnt are calculated stricting verification possibilities.
Recommended publications
  • 2018 Natural Hazard Report 2018 Natural Hazard Report G January 2019
    2018 Natural Hazard Report 2018 Natural Hazard Report g January 2019 Executive Summary 2018 was an eventful year worldwide. Wildfires scorched the West Coast of the United States; Hurricanes Michael and Florence battered the Gulf and East Coast. Typhoons and cyclones alike devastated the Philippines, Hong Kong, Japan and Oman. Earthquakes caused mass casualties in Indonesia, business interruption in Japan and structure damage in Alaska. Volcanoes made the news in Hawaii, expanding the island’s terrain. 1,000-year flood events (or floods that are said statistically to have a 1 in 1,000 chance of occurring) took place in Maryland, North Carolina, South Carolina, Texas and Wisconsin once again. Severe convective storms pelted Dallas, Texas, and Colorado Springs, Colorado, with large hail while a rash of tornado outbreaks, spawning 82 tornadoes in total, occurred from Western Louisiana and Arkansas all the way down to Southern Florida and up to Western Virginia. According to the National Oceanic and Atmospheric Administration (NOAA)1, there were 11 weather and climate disaster events with losses exceeding $1 billion in the U.S. Although last year’s count of billion- dollar events is a decrease from the previous year, both 2017 and 2018 have tracked far above the 1980- 2017 annual average of $6 billion events. In this report, CoreLogic® takes stock of the 2018 events to protect homeowners and businesses from the financial devastation that often follows catastrophe. No one can stop a hurricane in its tracks or steady the ground from an earthquake, but with more information and an understanding of the risk, recovery can be accelerated and resiliency can be attained.
    [Show full text]
  • Review of Vortices in Wildland Fire
    Hindawi Publishing Corporation Journal of Combustion Volume 2011, Article ID 984363, 14 pages doi:10.1155/2011/984363 Review Article Review of Vortices in Wildland Fire Jason M. Forthofer1 and Scott L. Goodrick2 1 Rocky Mountain Research Station, USDA Forest Service, 5775 W US Highway 10, Missoula, MT 59808, USA 2 Southern Research Station, USDA Forest Service, 320 Green Street, Athens, GA 30602, USA Correspondence should be addressed to Jason M. Forthofer, [email protected] Received 30 December 2010; Accepted 15 March 2011 Academic Editor: D. Morvan Copyright © 2011 J. M. Forthofer and S. L. Goodrick. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Vortices are almost always present in the wildland fire environment and can sometimes interact with the fire in unpredictable ways, causing extreme fire behavior and safety concerns. In this paper, the current state of knowledge of the interaction of wildland fire and vortices is examined and reviewed. A basic introduction to vorticity is given, and the two common vortex forms in wildland fire are analyzed: fire whirls and horizontal roll vortices. Attention is given to mechanisms of formation and growth and how this information can be used by firefighters. 1. Introduction 2. Vorticity Basics Large fire whirls are often one of the more spectacular aspects Simply stated, vorticity is the measure of spin about an of fire behavior. Flames flow across the ground like water axis. That axis can be vertical, as in the case of a fire whirl, feeding into the base of the vortex, the lowest thousand feet of or horizontal for a roll vortex, or somewhere in between.
    [Show full text]
  • Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers
    United States Department of Agriculture Synthesis of Knowledge of Forest Service Pacific Northwest Extreme Fire Behavior: Research Station General Technical Volume I for Fire Managers Report PNW-GTR-854 November 2011 Paul A. Werth, Brian E. Potter, Craig B. Clements, Mark A. Finney, Scott L. Goodrick, Martin E. Alexander, Miguel G. Cruz, Jason A. Forthofer, and Sara S. McAllister A SUMMARY OF KNOWLEDGE FROM THE The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the national forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD).
    [Show full text]
  • Micrometeorological Observations of Fire-Atmosphere Interactions and Fire Behavior on a Simple Slope" (2018)
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2018 Micrometeorological Observations of Fire- Atmosphere Interactions and Fire Behavior on a Simple Slope Jonathan Marc Contezac San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Contezac, Jonathan Marc, "Micrometeorological Observations of Fire-Atmosphere Interactions and Fire Behavior on a Simple Slope" (2018). Master's Theses. 4934. DOI: https://doi.org/10.31979/etd.d7nc-77e4 https://scholarworks.sjsu.edu/etd_theses/4934 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. MICROMETEOROLOGICAL OBSERVATIONS OF FIRE-ATMOSPHERE INTERACTIONS AND FIRE BEHAVIOR ON A SIMPLE SLOPE A Thesis Presented to The Faculty of the Department of Meteorology and Climate Science San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Jonathan M. Contezac August 2018 © 2018 Jonathan M. Contezac ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled MICROMETEOROLOGICAL OBSERVATIONS OF FIRE-ATMOSPHERE INTERACTIONS AND FIRE BEHAVIOR ON A SIMPLE SLOPE by Jonathan M. Contezac APPROVED FOR THE DEPARTMENT OF METEOROLOGY AND CLIMATE SCIENCE SAN JOSÉ STATE UNIVERSITY August 2018 Dr. Craig B. Clements Department of Meteorology and Climate Science Dr. Sen Chiao Department of Meteorology and Climate Science Dr. Neil Lareau Department of Meteorology and Climate Science ABSTRACT by Jonathan M.
    [Show full text]
  • Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers Paul A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln JFSP Research Project Reports U.S. Joint Fire Science Program 2011 Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers Paul A. Werth Northwest Interagency Coordination Center Brian E. Potter Forest Service Craig B. Clements San Jose State University Mark. A. Finney U.S. Department of Agriculture Scott L. Goodrick U.S. Department of Agriculture See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/jfspresearch Part of the Forest Biology Commons, Forest Management Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Other Forestry and Forest Sciences Commons, Sustainability Commons, and the Wood Science and Pulp, Paper Technology Commons Werth, Paul A.; Potter, Brian E.; Clements, Craig B.; Finney, Mark. A.; Goodrick, Scott L.; Alexander, Martin E.; Cruz, Miguel G.; Forthofer, Jason A.; and McAllister, Sara S., "Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers" (2011). JFSP Research Project Reports. 75. http://digitalcommons.unl.edu/jfspresearch/75 This Article is brought to you for free and open access by the U.S. Joint Fire Science Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in JFSP Research Project Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Paul A. Werth, Brian E. Potter, Craig B. Clements, Mark. A. Finney, Scott L. Goodrick, Martin E. Alexander, Miguel G. Cruz, Jason A. Forthofer, and Sara S. McAllister This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/jfspresearch/75 United States Department of Agriculture Synthesis of Knowledge of Forest Service Pacific Northwest Extreme Fire Behavior: Research Station General Technical Volume I for Fire Managers Report PNW-GTR-854 November 2011 Paul A.
    [Show full text]
  • Twisters, Waterspouts and Fire Whirls the Kids Book About Tornadoes: Twisters, Waterspouts and Fire Whirls
    [PDF-860]The Kids Book About Tornadoes: Twisters, Waterspouts and Fire Whirls The Kids Book About Tornadoes: Twisters, Waterspouts and Fire Whirls HUGE FIRE TORNADO CAUGHT ON CAMERA - real or fake? WATCH: Fire Tornado Captured in Rare Video Fire Whirl, Tornado, or Both? A Spectacular Vortex Has ... Sun, 11 Nov 2018 06:15:00 GMT HUGE FIRE TORNADO CAUGHT ON CAMERA - real or fake? According to Wikipedia Fire Whirls are not that big and never get to tornado strength… What I was watching in this video was not small and looked more like real Tornandoe! WATCH: Fire Tornado Captured in Rare Video Fire tornadoes, also known as fire whirls, fire devils, or even firenados, are a common occurrence, but because they typically only last for a few minutes, they’re rarely captured on video. This footage of a 3,000-foot-high fire tornado was captured in Western Australia by the Department of Parks and Wildlife. (Free) The Kids Book About Tornadoes: Twisters, Waterspouts and Fire Whirls Fire Whirl, Tornado, or Both? A Spectacular Vortex Has ... Fire whirls sometimes spin out ahead of fire fronts before they dissipate, but this vortex remained in sync with the fire front and the pyroCB above for the better part of an hour. pdf Download Waterspout - Wikipedia "Tornadic waterspouts", also accurately referred to as "tornadoes over water", are formed from mesocyclonic action in a manner essentially identical to land-based tornadoes in connection with severe thunderstorms, but simply occurring over water. Fri, 02 Nov 2018 07:02:00 GMT Tornado - A tornado near Anadarko, Oklahoma.
    [Show full text]
  • Weather Radar Insights Into the Turbulent Dynamics of a Wildfire
    RESEARCH ARTICLE Weather Radar Insights Into the Turbulent Dynamics 10.1029/2018JD029986 of a Wildfire‐Triggered Supercell Thunderstorm Key Points: Alex Terrasson1,2, Nicholas McCarthy3, Andrew Dowdy4 , Harald Richter4, • Genesis, growth, and decay of a 3 2,5 pyroconvective thunderstorm are Hamish McGowan , and Adrien Guyot studied combining ground weather 1 2 radar, atmospheric profiling, and Laboratoire de Mécanique des Fluides et d'Acoustique, Ecole Centrale de Lyon, Ecully, France, School of Civil micrometeorological observations Engineering, University of Queensland, Brisbane, Queensland, Australia, 3Atmospheric Observations Research Group, • fi ‐ Observations of re atmosphere School of Earth and Environmental Sciences, University of Queensland, Brisbane, Queensland, Australia, 4Bureau of interactions enable quantification of Meteorology, Melbourne, Victoria, Australia, 5Department of Civil Engineering, Monash University, Melbourne, Victoria, pyroconvective thunderstorm turbulence and kilometer‐scale Australia vortices • An “optimal” window of conditions is identified for a fire to trigger Abstract Understanding wildfire‐atmosphere interactions is key to improved accuracy of predictions of thunderstorm genesis and generate wildfire behavior. This is needed for improved preparedness to mitigate loss of life and property during lightning that can ignite new fires wildfire events, particularly for situations with strong fire‐atmosphere coupling. Here we present fi Supporting Information: observations from the passage of a cold front over the Sir Ivan Dougherty wild re on February 2017 in • Supporting Information SI eastern Australia. We demonstrate that an increase in near‐surface atmosphere moisture associated with the cold front, when combined with changes in fire behavior at that time, led to reduced thermodynamic stability that helped to trigger a thunderstorm. This fire‐trigged supercell thunderstorm produced lightning, Correspondence to: while radar observations identified a mesocyclonic circulation within the pyrocumulonimbus, similar to a A.
    [Show full text]
  • Fire Whirls in California…A Fireman's Perspective
    Fire Whirls In California…A Firefighter’s Perspective Royal Burnett March 15, 2008 Fire whirls are one of the most visual and least understood aspects of extreme fire behavior. Many a good plan has been wrecked and lots of firefighters have been burned over as a result of these events. Fire whirls used to be considered rare occurrences, but with the advent of a multiple year drought, increased communications and digital cameras, fire whirls are reported on a more routine basis. Fire whirls happen infrequently for a brief duration. There is no recording system. The event happens in terrain that varies from flat to very broken mountains, in conditions of no wind to moderate and perhaps high winds, in fuels that vary from light to heavy, so it is nearly impossible to define the conditions under which fire whirls can appear. We know that fire whirls can develop from energy release or from wind shear caused by the wind interacting with topographic features. Occasionally the convection column is strong enough to form an obstacle to the prevailing wind and fire whirls will develop in the lee of the column. For those reasons I define 4 separate types of fire whirls: Fig 1. Typical thermal or energy release fire whirl 1 1.Thermally Driven fire whirl… The most common fire whirl we encounter as wildland firefighters is the thermally driven or energy release fire whirl. They are similar to dust devils and may rise to heights of 100 feet or more. They are usually short lived and will dissipate when the heat source is removed or they cross the fireline.
    [Show full text]
  • The Carr Fire Vortex: a Case of Pyrotornadogenesis? 10.1029/2018GL080667 N
    Geophysical Research Letters RESEARCH LETTER The Carr Fire Vortex: A Case of Pyrotornadogenesis? 10.1029/2018GL080667 N. P. Lareau1 , N. J. Nauslar2, and J. T. Abatzoglou3 Key Points: 1Department of Physics, University of Nevada, Reno, Reno, NV, USA, 2Storm Prediction Center, NCEP, NWS, NOAA, Norman, • fi A re-generated vortex produced 3 tornado-strength winds, extreme fire OK, USA, Department of Geography, University of Idaho, Moscow, ID, USA behavior, and devastated parts of Redding, California • The vortex exhibited tornado-like Abstract Radar and satellite observations document the evolution of a destructive fire-generated vortex dynamics, emerging from a shear during the Carr fire on 26 July 2018 near Redding, California. The National Weather Service estimated that zone during the rapid development of a pyrocumulonimbus surface wind speeds in the vortex were in excess of 64 m/s, equivalent to an EF-3 tornado. Radar data show that the vortex formed within an antecedent region of cyclonic wind shear along the fire perimeter and immediately following rapid vertical development of the convective plume, which grew from 6 to 12 km aloft Supporting Information: • Supporting Information S1 in just 15 min. The rapid plume development was linked to the release of moist instability in a • Movie S1 pyrocumulonimbus (pyroCb). As the cloud grew, the vortex intensified and ascended, eventually reaching an • Movie S2 altitude of 5,200 m. The role of the pyroCb in concentrating near-surface vorticity distinguishes this event from other fire-generated vortices and suggests dynamical similarities to nonmesocyclonic tornadoes. Correspondence to: N. P. Lareau, Plain Language Summary A tornado-strength fire-generated vortex devastated portions of [email protected] Redding, California, during the Carr fire on 26 July 2018.
    [Show full text]
  • Analytic Studies on Detection of Severe, Two-Cell Tornadoes Satellite
    NASA Contractor Report 3127 Analytic Studies on Satellite Detection of Severe, Two-Cell Tornadoes George F. Carrier, Paul Dergarabedian, and Francis E. Fendell CONTRACT NASl-14578 APRIL 1979 TECH LIBRARY KAFB, NM NASA Contractor Report 3127 Analytic Studies on Satellite Detection of Severe, Two-Cell Tornadoes George F. Carrier, Paul Dergarabedian, and Francis E. Fendell TRW Systems and Euergy Redondo Beach, California Prepared for Langley Research Center under Contract NASl-14578 National Aeronautics and Space Administration Scientific and Technical Information Office 1979 CONTENTS Page SUMMARY................................ 1 INTRODUCTION ............................. 2 SYMBOLS ................................ 7 ANTICIPATION OF TORNADOGENESIS .................... 10 TORNADOMODELING: METHODOLOGY,AND A PROPOSEDSTRUCTURE ....... 11 THE LOW-LEVEL INFLOW LAYER ...................... 13 PRELIMINARY REMARKSON THE TURNAROUNDREGION ............. 16 A BOUNDARY-VALUEPROBLEM FOR THE TURNAROUND.............. 18 TREATMENT OF A SEPARATED LAYER WITHOUT STRUCTURE ........... 23 A MARCHING-TYPE TREATMENT OF THE TURNAROUNDWITH STRUCTURE ...... 29 CONCLUDING REMARKS .......................... 43 REFERENCES .............................. 47 iii SUMMARY In previous work the authors have emphasized, from funnel-cloud-length interpretation, that the exceptionally severe tornado is characterized by peak swirl speed relative to the axis of rotation on the order of 90 m/s, with 100 m/s being close to an upper bound. Further, they have emphasized that the thermohydrodynamic
    [Show full text]
  • Fire Tornado
    Fire Tornado FIRE TORNADO Péter Mészáros Mobilis Science Center, Győr, Hungary, [email protected] Physics Education PhD program, Eötvös University, Budapest ABSTRACT The fire tornado is a special natural phenomenon that can be produced artificially, too. It is significant in the science centres because it is really spectacular and easy to show. Moreover, it models a large range of phenomena in physics, technology and chemistry. Therefore, it can be applied in experiments as well as in study groups. A popular device modelling the fire tornado has been developed by the Mobilis Science Center. The phenomenon can be presented in several ways. We can demonstrate the turbocharger, the gas turbine, the conditions of burning, and the chemistry of flame testing with it. A simplified explanation of the complex hydrodynamic processes taking place in a fire tornado will be also presented. 1. NATURAL PHENOMENON Fire tornadoes are vertical fire whirls which can be observed in wildland, urban, and oil spill fires and volcanic eruptions. Fire whirls have also been called fire devils, fire tornadoes, and even firenadoes. Their size extends from 1 meter to 3 km in diameter. They can be observed easily due to the burning gases, ash and smoke. Fire whirls are rare but often devastating forms of fire which may occur for example when a stronger convection blows into a forest fire [1]. Due to the convection the fire is often transformed into a several meter high, rotating fire column. Fire whirls accelerate combustion, produce significant suction pressures and lifting forces, and can carry burning debris. Studying them is very important because of their great potential for damage when occurring in nature [2, 3].
    [Show full text]
  • Inducing Swirl Flow Within Stationary Cylindrical Split Channel
    Inducing Swirl Flow within Stationary Cylindrical Split Channel A dissertation submitted by SAFIA R. AL-ATRESH B.sc. Eng., M.sc. Eng. For the award of the degree of Doctor of philosophy Computational Engineering and Science research Centre Faculty of Health, Engineering and Sciences 2015 Abstract There are many free sources of energy around the globe. By investing in them, the world can reduce its dependence on fossil fuels and improve the quality of the environment. Waste heat is considered a hidden energy source and waste heat recovery creates a green energy source with low cost. In addition, natural thermal energy, such as geothermal and solar energy, is a low-cost sustainable heat source with large amounts emitted and produced annually. The stationary cylindrical split channel (where the cylinder is sliced in half along the axis and the two c-shaped halves are translated laterally), commonly used to induce a fire-whirl in the laboratory, is one device that can utilise these heat sources. This research investigates inducing swirl flow within a stationary cylindrical split channel with two identical slots (without using moving parts) using a hot air flow inlet at its base. The objectives of this research are: Firstly, to examine the generation of swirl flow in the split channel when the used heat source is a hot air flow inlet instead of fire. Secondly, to study the effect of possible design parameters on specific variables, including the conversion efficiency of thermal energy to kinetic energy, to determine some possible applications of the new, naturally-induced swirl generator. This research was divided into experimental and computational components to accomplish the above objectives.
    [Show full text]