Download/TP53 Directsequencing IARC

Total Page:16

File Type:pdf, Size:1020Kb

Download/TP53 Directsequencing IARC Fröhlich et al. Cancer Cell Int (2016) 16:68 DOI 10.1186/s12935-016-0343-0 Cancer Cell International PRIMARY RESEARCH Open Access Molecular mechanism leading to SAHA‑induced autophagy in tumor cells: evidence for a p53‑dependent pathway Leopold F. Fröhlich1,2*†, Maria Mrakovcic3†, Claudia Smole1 and Kurt Zatloukal1 Abstract Background: Recent studies indicated that histone deacetylase inhibitors (HDACi), a class of anticancer agents, are in addition to their ability of apoptosis induction also capable of provoking autophagy. Promoted by the treatment of malignant uterine sarcoma cells with the HDACi suberoylanilide hydroxamic acid (SAHA), we previously demonstrated predominant dose-dependent activation of autophagy in ESS-1 cells, but prevalent induction of apoptosis in MES-SA cells. Methods: In order to extend our previous studies, SAHA-treated ESS-1 and MES-SA cells were monitored for protein expression to reveal differences in known markers of apoptosis explaining the different cytotoxic responses. Further analysis of the identified candidate protein included cell rescue experiments by gene transfer followed by subsequent screening of cells for induction of apoptosis and autophagy by immunoblotting, caspase activity as well as LC3 and MDC/PI staining. LDH release assays were performed to assess the amount of cell-mediated cytotoxicity. Results: In our search for responsible autophagic regulatory genes upstream of mammalian target of rapamycin (mTOR), we now discovered that, in contrast to MES-SA cells, a TP53-637C>T nonsense mutation located in the trans- activating domain of the oncogenic suppressor p53 causes loss of its protein and consequently reduced PUMA induc- tion in ESS-1 cells. Upon re-introduction of wild-type TP53, SAHA-treated ESS-1 cells underwent immediate apoptotic cell death as supported by upregulation of PUMA and caspase-9 as well as by activation of caspases-3 and -7 and PARP-1 cleavage. Concurrent downregulation of autophagy was noticed by upregulated mTor and phospho-mTOR expression as well as monitoring autophagosome formation employing LC3 and MDC staining. Previously, cytoplas- mic master regulatory activities of the oncogenic suppressor p53 in inhibiting autophagy and triggering apoptosis were unravelled. Accordingly, p53-deficiency could explain both, the previously documented apoptosis resistance and prevailing SAHA-induced autophagy in ESS-1 cells. Using MES-SA cells with RNAi-silenced p53 expression and several p53-deficient tumor cell lines undergoing SAHA-induced autophagy, we could generally validate our finding suggesting an inhibitory role for p53 in the autophagic pathway in response to SAHA treatment. Conclusions: Conclusively, these results could identify cytoplasmic p53 protein as a molecular switch that directly mediates the cytotoxic response of SAHA and thus open new therapeutic avenues. Keywords: HDACi, SAHA, Autophagy, Apoptosis, p53, HDACi, ESS-1, MES-SA, Tumor *Correspondence: [email protected] †Leopold F. Fröhlich and Maria Mrakovcic contributed equally to this work 2 Department of Cranio‑Maxillofacial Surgery, University of Münster, Albert‑Schweitzer‑Campus 1, 48149 Münster, Germany Full list of author information is available at the end of the article © 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Fröhlich et al. Cancer Cell Int (2016) 16:68 Page 2 of 15 Background conjugation to ubiquitin-like conjugation systems, cyto- HDACi are a well-characterized class of cancer therapeu- solic LC3 (termed LC3-I) gets incorporated to the grow- tic agents with promising clinical activity against hemato- ing autophagosome structure (then termed LC3-II) and logic and solid tumors at well tolerated doses by patients therefore acts as a marker [16, 17]. [1, 2]. HDAC expression is essential in the establishment Currently, molecular mechanisms by which SAHA of a transcriptionally inactive chromatin structure by modulates and thereby initiates autophagic induction posttranslationally modifying histone and nonhistone upstream of mTOR remain unknown. In the absence acetylation sites [3]. Counteracting the effects of HDACs of any observed transcriptional regulation of mTOR or by inhibition of HDAC activity therefore induces chro- upstream pathway components, the possibility remains matin relaxation which leads to altered expression of that SAHA suppresses mTOR by interfering with the only few but important genes involved in the regulation acetylation of regulatory nonhistone proteins. In this of many disbalanced tumor cell processes as cell cycle regard, the transcription of LC3 itself was found to be arrest, differentiation, and apoptosis. In various tumor upregulated by SAHA, as well as downregulated by p53 cell lines, treatment with HDACi most frequently induces which seems to support cancer cell survival under star- apoptosis by sequential activation of a series of cysteine- vation conditions; nevertheless, LC3 itself is not capable dependent aspartate-directed proteases, called caspases of inducing autophagy [12, 18]. Previously, consistently [4, 5]. Nevertheless, their precise mode of function in detected upregulated expression of the class II enzyme, selectively eliminating malignant cells remains unclear. HDAC2, in endometrial stroma sarcoma (ESS) led us Suberoylanilide hydroxamic acid (SAHA), an inhibi- to study the therapeutic options of the HDACi SAHA tor of class I and II HDACs, was previously admitted for [19]. Our group verified that SAHA exerts cytotoxic- therapeutic treatment of cutaneous T cell lymphoma ity on uterine sarcoma cells and significantly prevented [6]. As a single molecule, SAHA has broad range effects tumor cell proliferation by increasing expression of which include the inhibition of cell proliferation by the cell cycle kinase p21WAF1 and decreasing expres- blocking cell cycle progression, the suppression of angio- sion of HDAC2 and 7 in vitro [10]. The number of cells genesis, the induction of cellular differentiation, as well as was decreased in a time- and dose-dependent manner apoptosis in tumor cells [7, 8]. Among other studies, we whereby an established working dose of 3 µM SAHA sig- previously demonstrated that SAHA can, in addition to nificantly reduced ESS-1 cells by 80 % and MES-SA cells mitochondria-mediated apoptosis, also promote caspase- by 48 % after 24 h of treatment, and inhibited the G1/S independent autophagic cell death [9–11] which offers transition [20]. Moreover, we documented pronounced an advantage in overcoming apoptotic resistant tumor activation of apoptosis in MES-SA uterine sarcoma cells. This coincided with decreased expression of the cells in xenografted tumors and in vitro [21], but pre- autophagic key molecular determinant mTOR, a master dominant SAHA-mediated dose-dependent autophagic regulator of cellular metabolism which is a therapeutic cell death in malignant ESS-1 cells accompanied by target for anticancer treatment. Furthermore, phospho- decreased expression of mTOR [10]. During further S6 ribosomal protein (S6rp) which controls cell cycle experiments with combined SAHA and tumor necrosis progression was found to be downregulated. The studies factor-related apoptosis-inducing ligand (TRAIL) treat- of Gammoh et al. supported SAHA-mediated suppres- ment, we noticed a rapidly enhanced cytotoxic effect sion of mTOR during activation of autophagy and further which led to complete cell death after 24 to 48 h. In both elaborated its downstream pathway [12]. It was found tumor cell lines, induction of combined SAHA- and that the nutrient-sensing kinase prevents the formation of TRAIL-induced apoptosis was accompanied by upregu- autophagy by phosphorylation and thereby inactivation lation of the intrinsic/mitochondrial apoptotic pathway of the ULK1 complex; the important role of this further [20]. In the present study, we wanted to further clarify central component in autophagy was previously demon- the cause for the different mode of cell death in both strated by ULK1-deficient cells. mTOR inactivation by sarcoma cell lines related to single SAHA treatment SAHA thus rescues ULK1 activation and thereby induces and thereby elucidate molecular mechanisms provoking autophagy. ULK1 (and PI3 K) complexes subsequentially SAHA-mediated autophagy. activate the proper autophagy-related proteins including the ATG12-ATG5 and LC3-phosphatidylethanolamine Methods complexes that are directly involved in formation of the Chemicals mature autophagosome [13, 14]. The later involves the SAHA was purchased from Alexis Biochemicals (Lausen, nucleation and elongation of the double-membrane vesi- Switzerland). A 10 mM stock solution was prepared cle and its fusion with the lysosome leading to the final with dimethyl sulfoxide (DMSO) and stored at −20 °C. degradation of the autophagosome content [15]. Upon DMSO never exceeded a concentration of 0006 % in Fröhlich et al. Cancer Cell Int (2016) 16:68 Page 3 of 15 any experiment and therefore did not interfere with cell (GATC Biotech AG; Cologne, Germany).
Recommended publications
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy
    cancers Review Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy Mohammed I. Y. Elmallah 1,2,* and Olivier Micheau 1,* 1 INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France 2 Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt * Correspondence: [email protected] (M.I.Y.E.); [email protected] (O.M.) Received: 23 May 2019; Accepted: 18 June 2019; Published: 19 June 2019 Abstract: One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression.
    [Show full text]
  • Cigarette Smoking-Induced Endothelial Dysfunction: Molecular Mechanisms and Therapeutic Approaches
    Cigarette Smoking-Induced Endothelial Dysfunction: Molecular Mechanisms and Therapeutic Approaches DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Tamer M. Abdelghany Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2013 Dissertation Committee: Dr. Jay L. Zweier, MD, Advisor Dr. Arthur Strauch III, PhD Dr. Amal Amer, MD PhD Copyright by Tamer M. Abdelghany 2013 Abstract Cigarette smoking (CS) remains the single largest preventable cause of death. Worldwide, smoking causes more than five million deaths annually and, according to the current trends, smoking may cause up to 10 million annual deaths by 2030. In the U.S. alone, approximately half a million adults die from smoking-related illnesses each year which represents ~ 19% of all deaths in the U.S., and among them 50,000 are killed due to exposure to secondhand smoke (SHS). Smoking is a major risk factor for cardiovascular disease (CVD). The crucial event of The CVD is the endothelial dysfunction (ED). Despite of the vast number of studies conducted to address this significant health problem, the exact mechanism by which CS induces ED is not fully understood. The ultimate goal of this thesis; therefore, is to study the mechanisms by which CS induces ED, aiming at the development of new therapeutic strategies that can be used in protection and/or reversal of CS-induced ED. In the first part of this study, we developed a well-characterized animal model for chronic secondhand smoke exposure (SHSE) to study the onset and severity of the disease.
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors After Cerebral Ischemia: Facts and Hypotheses
    International Journal of Molecular Sciences Review The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors after Cerebral Ischemia: Facts and Hypotheses Svetlana Demyanenko 1,* and Svetlana Sharifulina 1,2 1 Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia; [email protected] 2 Neuroscience Center HiLife, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 Helsinki, Finland * Correspondence: [email protected]; Tel.: +7-918-5092185; Fax: +7-863-2230837 Abstract: Histone deacetylase (HDAC) and histone acetyltransferase (HAT) regulate transcription and the most important functions of cells by acetylating/deacetylating histones and non-histone proteins. These proteins are involved in cell survival and death, replication, DNA repair, the cell cycle, and cell responses to stress and aging. HDAC/HAT balance in cells affects gene expression and cell signaling. There are very few studies on the effects of stroke on non-histone protein acetylation/deacetylation in brain cells. HDAC inhibitors have been shown to be effective in protecting the brain from ischemic damage. However, the role of different HDAC isoforms in the survival and death of brain cells after stroke is still controversial. HAT/HDAC activity depends on the acetylation site and the acetylation/deacetylation of the main proteins (c-Myc, E2F1, p53, Citation: Demyanenko, S.; ERK1/2, Akt) considered in this review, that are involved in the regulation of cell fate decisions. Sharifulina, S. The Role of Post-Translational Acetylation and Our review aims to analyze the possible role of the acetylation/deacetylation of transcription factors Deacetylation of Signaling Proteins and signaling proteins involved in the regulation of survival and death in cerebral ischemia.
    [Show full text]
  • Histone Deacetylase Inhibitors As Anticancer Drugs
    International Journal of Molecular Sciences Review Histone Deacetylase Inhibitors as Anticancer Drugs Tomas Eckschlager 1,*, Johana Plch 1, Marie Stiborova 2 and Jan Hrabeta 1 1 Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84/1, Prague 5 CZ-150 06, Czech Republic; [email protected] (J.P.); [email protected] (J.H.) 2 Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030/8, Prague 2 CZ-128 43, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +42-060-636-4730 Received: 14 May 2017; Accepted: 27 June 2017; Published: 1 July 2017 Abstract: Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed.
    [Show full text]
  • The Camp Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain
    antioxidants Article The cAMP Inducers Modify N-Acetylaspartate Metabolism in Wistar Rat Brain Robert Kowalski 1,† , Piotr Pikul 2, Krzysztof Lewandowski 1,3, Monika Sakowicz-Burkiewicz 4 , Tadeusz Pawełczyk 4 and Marlena Zy´sk 4,*,† 1 University Clinical Center in Gdansk, 80-952 Gdansk, Poland; [email protected] (R.K.); [email protected] (K.L.) 2 Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland; [email protected] 3 Department of Laboratory Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland 4 Department of Molecular Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; [email protected] (M.S.-B.); [email protected] (T.P.) * Correspondence: [email protected]; Tel.: +48-58-349-27-59 † Authors contribute equally in experiment performance. Abstract: Neuronal N-acetylaspartate production appears in the presence of aspartate N-acetyltransferase (NAT8L) and binds acetyl groups from acetyl-CoA with aspartic acid. Further N-acetylaspartate pathways are still being elucidated, although they seem to involve neuron-glia crosstalk. Together with N-acetylaspartate, NAT8L takes part in oligoglia and astroglia cell maturation, myelin pro- duction, and dopamine-dependent brain signaling. Therefore, understanding N-acetylaspartate metabolism is an emergent task in neurobiology. This project used in in vitro and in vivo approaches in order to establish the impact of maturation factors and glial cells on N-acetylaspartate metabolism. Citation: Kowalski, R.; Pikul, P.; Embryonic rat neural stem cells and primary neurons were maturated with either nerve growth factor, Lewandowski, K.; Sakowicz- trans Burkiewicz, M.; Pawełczyk, T.; Zy´sk, -retinoic acid or activators of cAMP-dependent protein kinase A (dibutyryl-cAMP, forskolin, M.
    [Show full text]
  • Temozolomide Use in IDH-Mutant Gliomas
    cells Review From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas Xueyuan Sun and Sevin Turcan * Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; [email protected] * Correspondence: [email protected] Abstract: In this review, we discuss the use of the alkylating agent temozolomide (TMZ) in the treatment of IDH-mutant gliomas. We describe the challenges associated with TMZ in clinical (drug resistance and tumor recurrence) and preclinical settings (variabilities associated with in vitro models) in treating IDH-mutant glioma. Lastly, we summarize the emerging therapeutic targets that can potentially be used in combination with TMZ. Keywords: IDH-mutant glioma; TMZ; combination therapy 1. Introduction Gliomas are the most common primary malignant tumors in the central nervous system. Grade 2 and 3 gliomas are referred to as lower grade gliomas (LGG) and harbor mutations in the isocitrate dehydrogenase (IDH) gene [1]. IDH-mutant gliomas have a slower growth rate and longer survival than IDH wild type (IDH-wt) tumors [1,2]. IDH- Citation: Sun, X.; Turcan, S. From mutant gliomas are classified into two subgroups based on the presence (astrocytoma) or Laboratory Studies to Clinical Trials: absence (oligodendroglioma) of chromosome arms 1p/19q [3] and histological criteria [4]. Temozolomide Use in IDH-Mutant Recently, the European Association of Neuro-Oncology (EANO) stratified IDH-mutant Gliomas. Cells 2021, 10, 1225. gliomas into three WHO grades: oligodendroglioma, WHO grade 2 or 3; astrocytoma, https://doi.org/10.3390/cells10051225 WHO grade 2 or 3; astrocytoma, WHO grade 4 [5].
    [Show full text]
  • Review Article Epigenetics and Oxidative Stress in Aging
    Hindawi Oxidative Medicine and Cellular Longevity Volume 2017, Article ID 9175806, 8 pages https://doi.org/10.1155/2017/9175806 Review Article Epigenetics and Oxidative Stress in Aging 1 2 3 4 Amy Guillaumet-Adkins, Yania Yañez, Manuel D. Peris-Diaz, Ines Calabria, 3 3,5 Cora Palanca-Ballester, and Juan Sandoval 1CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain 2Pediatric Oncology Unit, Hospital Universitari i Politècnic La Fe, Avda Fernando Abril Martorell, 46026 Valencia, Spain 3Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Avda Fernando Abril Martorell, 46026 Valencia, Spain 4Genomics Unit, Health Research Institute La Fe, Avda Fernando Abril Martorell, 46026 Valencia, Spain 5Epigenomics Core Facility, Health Research Institute La Fe, Avda Fernando Abril Martorell, 46026 Valencia, Spain Correspondence should be addressed to Juan Sandoval; [email protected] Received 21 March 2017; Revised 24 May 2017; Accepted 12 June 2017; Published 20 July 2017 Academic Editor: Monica A. Sato Copyright © 2017 Amy Guillaumet-Adkins et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aging is a multifactorial process characterized by the progressive loss of physiological functions, leading to an increased vulnerability to age-associated diseases and finally to death. Several theories have been proposed to explain the nature of aging. One of the most known identifies the free radicals produced by the mitochondrial metabolism as the cause of cellular and DNA damage. However, there are also several evidences supporting that epigenetic modifications, such as DNA methylation, noncoding RNAs, and histone modifications, play a critical role in the molecular mechanism of aging.
    [Show full text]
  • Histone Deacetylase Inhibitors for the Treatment of Breast Cancer: Recent Trial Data
    Review: Clinical Trial Outcomes Histone deacetylase inhibitors for the treatment of breast cancer: recent trial data Clin. Invest. (2013) 3(6), 557–569 Epigenetic modification has recently been recognized as an important Thach-Giao Truong & factor in the development of therapy resistance in cancer. Hence, Pamela Munster* histone deacetylase inhibitors as potential epigenetic modifiers are an University of California, San Francisco, Division emerging class of novel cancer therapeutics and have been extensively of Hematology and Oncology, UCSF Helen Diller Cancer Center, 1600 Divisadero Street, MZ Bldg studied. Here, we review the role of histone deacetylase inhibitors in the A, Room A722, Mailbox 1770, San Francisco, treatment of breast cancer as single agents as well as in combination with CA 94143, USA chemotherapeutic, hormonal, and targeted agents. *Author for correspondence: E-mail: [email protected] Keywords: breast cancer • entinostat • epigenetics • HDAC • histone deacetylase inhibitors • histone deacetylases • valproic acid • vorinostat Despite the recent introduction of several promising novel therapies, breast cancer is the most common cancer among women and remains a leading cause of cancer death for them, second only to lung cancer. In 2012, an estimated 229,060 women in the USA were diagnosed with breast cancer and 39,920 succumbed to the disease [1] . Drug development in breast cancer continues to explore strategies utilizing chemo- therapy with novel mechanisms as well as targeted biologics directed towards signaling pathways that contribute to the disease, such as the estrogen receptor (ER) or HER2. A recent emerging field of interest involves modalities that target the epigenome. The most extensively studied representative compounds are the histone deacetylase (HDAC) inhibitors and demethylation agents.
    [Show full text]
  • Characterizing the Roles of Exit Tunnel Residues in Ligand Binding
    CHARACTERIZING THE ROLES OF EXIT TUNNEL RESIDUES IN LIGAND BINDING AND CATALYSIS OF HISTONE DEACETYLASE-8 A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Ruchi Gupta In Partial Fulfillment for the Degree of MASTER OF SCIENCE Major Department: Chemistry and Biochemistry March 2014 Fargo, North Dakota North Dakota State University Graduate School Title Characterizing the Roles of Exit Tunnel Residues in Ligand Binding and Catalysis of Histone Deacetylase-8 By Ruchi Gupta The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. D.K. Srivastava Chair Dr. Gregory Cook Dr. Stuart Haring Dr. Jane Schuh Approved: 03/26/2014 Gregory Cook Date Department Chair ABSTRACT Histone deacetylases are an important class of enzymes that catalyze the hydrolysis of acetyl-L-lysine side chains in histone and non-histone proteins to yield L-lysine and acetate, effecting the epigenetic regulation of gene expression. In addition to the active site pocket, the enzyme harbors an internal cavity for the release of acetate by-product. To probe the role of highly conserved amino acid residues lining this exit tunnel, site-directed alanine substitutions were made at tyrosine-18, tyrosine-20 and histidine-42 positions. These mutants were characterized by various biochemical and biophysical techniques to define the effect of mutations on ligand binding and catalysis of the enzyme. The mutations altered the catalytic activity of HDAC8 significantly. Y18A mutation dramatically impaired the structural-functional aspects of the enzymatic reaction.
    [Show full text]