Virtual Water Flow Pattern of Grain Trade and Its Benefits in China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region
sustainability Article Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region Meijia Xiao 1 , Qingwen Zhang 1,*, Liqin Qu 2, Hafiz Athar Hussain 1 , Yuequn Dong 1 and Li Zheng 1 1 Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; [email protected] (M.X.); [email protected] (H.A.H.); [email protected] (Y.D.); [email protected] (L.Z.) 2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-82106031 Received: 12 December 2018; Accepted: 31 January 2019; Published: 11 February 2019 Abstract: Sloping farmland is an essential type of the farmland resource in China. In the Sichuan province, livelihood security and social development are particularly sensitive to changes in the sloping farmland, due to the region’s large portion of hilly territory and its over-dense population. In this study, we focused on spatiotemporal change of the sloping farmland and its driving forces in the Sichuan province. Sloping farmland areas were extracted from geographic data from digital elevation model (DEM) and land use maps, and the driving forces of the spatiotemporal change were analyzed using a principal component analysis (PCA). The results indicated that, from 2000 to 2015, sloping farmland decreased by 3263 km2 in the Sichuan province. The area of gently sloping farmland (<10◦) decreased dramatically by 1467 km2, especially in the capital city, Chengdu, and its surrounding areas. -
Crop Systems on a County-Scale
Supporting information Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration Bing Gaoa,b, c, Tao Huangc,d, Xiaotang Juc*, Baojing Gue,f, Wei Huanga,b, Lilai Xua,b, Robert M. Reesg, David S. Powlsonh, Pete Smithi, Shenghui Cuia,b* a Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China b Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China c College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China d College of Geography Science, Nanjing Normal University, Nanjing 210046, China e Department of Land Management, Zhejiang University, Hangzhou, 310058, PR China f School of Agriculture and Food, The University of Melbourne, Victoria, 3010 Australia g SRUC, West Mains Rd. Edinburgh, EH9 3JG, Scotland, UK h Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, AL5 2JQ. UK i Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK Bing Gao & Tao Huang contributed equally to this work. Corresponding author: Xiaotang Ju and Shenghui Cui College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China. Phone: +86-10-62732006; Fax: +86-10-62731016. E-mail: [email protected] Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. Phone: +86-592-6190777; Fax: +86-592-6190977. E-mail: [email protected] S1. The proportions of the different cropping systems to national crop yields and sowing area Maize was mainly distributed in the “Corn Belt” from Northeastern to Southwestern China (Liu et al., 2016a). -
Gu Yuxuan, Shijiazhuang Foreign Language School Shijiazhuang, Hebei Province, China China, Factor 6: Sustainable Agriculture
Gu Yuxuan, Shijiazhuang Foreign Language School Shijiazhuang, HeBei Province, China China, Factor 6: Sustainable Agriculture China: Sustainable Land Use on Sanjiang Plain Located in the northeast corner of China, Sanjiang Plain is in the administrative divisions of Heilongjiang Province. Amur River, Ussuri River and Songhua River joining together, with their waves impacting the soil, formed this flat and fertile alluvial plain whose total area is 108,900 square kilometers. The surface is wet and always has surplus water because of the broad and flat terrain. The cold and wet climate condition causes heavy precipitations in summer and autumn. Rivers run slowly with sudden flood peak periods. Seasonal freezing-thawing soil covers the whole plain. All those account for large areas of swamp water and vegetation which involves 2.4 million hectares of swamp and marsh soil, ranking China’s largest swamp area. Ten wetland nature reserves were set up, attracting many international ecological and environmental protection organizations. The region, which is covered with 10 to 15 cm of water and the total quantity is 18.764 billion cubic meters, is home to many first-class national protected animals. For instance, the red-crowned cranes in the IUCN (World Conservation Union) red list, the Chinese merganser and the Siberian tiger all find their habit in this plain. Sod layer soils are thick, generally 30 to 40 cm. In the area lies the most fertile black earth in China, and it’s one of the three black earth terrains in the world. High in organic matter, the organic matter is 3% to 10%. -
Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes Within the Yangtze River Basin Michael V
Boise State University ScholarWorks Geosciences Faculty Publications and Presentations Department of Geosciences 4-5-2016 Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin Michael V. Schaefer Stanford University Samantha C. Ying University of California - Riverside Shawn G. Benner Boise State University Yanhua Duan China University of Geosciences Yanxin Wang China University of Geosciences See next page for additional authors This document was originally published in Environmental Science & Technology by the American Chemical Society under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html). Copyright restrictions may apply. doi: 10.1021/acs.est.5b04986 Authors Michael V. Schaefer, Samantha C. Ying, Shawn G. Benner, Yanhua Duan, Yanxin Wang, and Scott eF ndorf This article is available at ScholarWorks: http://scholarworks.boisestate.edu/geo_facpubs/298 This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article pubs.acs.org/est Aquifer Arsenic Cycling Induced by Seasonal Hydrologic Changes within the Yangtze River Basin † ‡ § ∥ ∥ Michael V. Schaefer, Samantha C. Ying, Shawn G. Benner, Yanhua Duan, Yanxin Wang, † and Scott Fendorf*, † Earth System Science Department, Stanford University, Stanford, California 94305, United States ‡ Environmental Sciences Department, University of California - Riverside, Riverside, California 92521, United States § Department of Geosciences, Boise State University, Boise, Idaho 83725, United States ∥ State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China *S Supporting Information ABSTRACT: Consumption of groundwater containing >10 μgL−1 arsenic (As) adversely impacts more than 100 million people worldwide. -
2 Days Leshan Giant Buddha and Mount Emei Tour
[email protected] +86-28-85593923 2 days Leshan Giant Buddha and Mount Emei tour https://windhorsetour.com/emei-leshan-tour/leshan-emei-2-day-tour Chengdu Mount Emei Leshan Chengdu A classic trip to Leshan and Mount Emei only takes 2 days. Leshan Grand Buddha is the biggest sitting Buddha in the world and Mount Emei is one of the four Buddhist Mountains in China. Type Private Duration 2 days Theme Culture and Heritage Trip code WS-302 From £ 214 per person £ 195 you save £ 19 (10%) Itinerary Mt.Emei lies in the southern area of Sichuan basin. It is one of the four sacred Buddhist Mountains in China. It is towering, beautiful, old and mysterious and is like a huge green screen standing in the southwest of the Chengdu Plain. Its main peak, the Golden Summit, is 3099 meters above the sea level, seemingly reaching the sky. Standing on the top of it, you can enjoy the snowy mountains in the west and the vast plain in the east. In addition in Golden Summit there are four spectacles: clouds sea, sunrise, Buddha rays and saint lamps. Leshan Grand Buddha is the biggest sitting Buddha in the world. It was begun to built in 713AD in Tang Dynasty, took more than 90 years to finish this huge statue. And it sits at Lingyue Mountain, at the Giant Buddha Cliff, you will find out a lot of stunning small buddha caves, you will be astonished by this human project. Leshan Grand Buddha and Mt.Emei both were enlisted in the world natural and cultural heritage by the UNESCO in 1996. -
Holocene Environmental Archaeology of the Yangtze River Valley in China: a Review
land Review Holocene Environmental Archaeology of the Yangtze River Valley in China: A Review Li Wu 1,2,*, Shuguang Lu 1, Cheng Zhu 3, Chunmei Ma 3, Xiaoling Sun 1, Xiaoxue Li 1, Chenchen Li 1 and Qingchun Guo 4 1 Provincial Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; [email protected] (S.L.); [email protected] (X.S.); [email protected] (X.L.); [email protected] (C.L.) 2 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China 3 School of Geograpy and Ocean Science, Nanjing University, Nanjing 210023, China; [email protected] (C.Z.); [email protected] (C.M.) 4 School of Environment and Planning, Liaocheng University, Liaocheng 252000, China; [email protected] * Correspondence: [email protected] Abstract: The Yangtze River Valley is an important economic region and one of the cradles of human civilization. It is also the site of frequent floods, droughts, and other natural disasters. Conducting Holocene environmental archaeology research in this region is of great importance when studying the evolution of the relationship between humans and the environment and the interactive effects humans had on the environment from 10.0 to 3.0 ka BP, for which no written records exist. This Citation: Wu, L.; Lu, S.; Zhu, C.; review provides a comprehensive summary of materials that have been published over the past Ma, C.; Sun, X.; Li, X.; Li, C.; Guo, Q. -
Dissertation: Chapter One (Draft Four)
POLITICAL ECONOMY OF VILLAGE GOVERNANCE IN CONTEMPORARY CHINA Jianxun Wang Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Political Science Indiana University April 2006 UMI Number: 3210048 Copyright 2006 by Wang, Jianxun All rights reserved. UMI Microform 3210048 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _____________________________ Elinor Ostrom, Ph.D., Chair _____________________________ Norman Furniss, Ph.D. Doctoral Committee ______________________________ Scott Kennedy, Ph.D. ______________________________ Vincent Ostrom, Ph.D. March 10, 2006 ______________________________ Amos Sawyer, Ph.D. ii © 2006 Jianxun Wang ALL RIGHTS RESERVED iii ACKNOWLEDGEMENTS When I first read Tocqueville’s Democracy in America over ten years ago, I dreamed of coming to America to learn from the “great experiment.” Two distinguished scholars and mentors, Elinor and Vincent Ostrom, made my dream come true in 2000. My deepest appreciation goes to Lin and Vincent for their intellectual cultivation and enlightenment. Lin’s mentorship and guidance has been constant and invaluable during my graduate study in Bloomington. She has always been helpful in getting me through every stage of my program. As a hardworking, rigorous, and responsible scholar, Lin sets an outstanding example for me to follow. Vincent is an unparalleled teacher, and his thinking has the greatest influence on me during my doctoral study. -
Space-Time Variation and Spatial Differentiation of COVID-19
International Journal of Geo-Information Article Space-Time Variation and Spatial Differentiation of COVID-19 Confirmed Cases in Hubei Province Based on Extended GWR Yanwen Liu 1,2 , Zongyi He 1,* and Xia Zhou 2 1 School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China; [email protected] 2 School of Resources and Environment Science and Engineering, Hubei University of Science and Technology, Xianning 437100, China; [email protected] * Correspondence: [email protected] Received: 30 July 2020; Accepted: 3 September 2020; Published: 8 September 2020 Abstract: Clarifying the regional transmission mechanism of COVID-19 has practical significance for effective protection. Taking 103 county-level regions of Hubei Province as an example, and taking the fastest-spreading stage of COVID-19, which lasted from 29 January 2020, to 29 February 2020, as the research period, we systematically analyzed the population migration, spatio-temporal variation pattern of COVID-19, with emphasis on the spatio-temporal differences and scale effects of related factors by using the daily sliding, time-ordered data analysis method, combined with extended geographically weighted regression (GWR). The results state that: Population migration plays a two-way role in COVID-19 variation. The emigrants’ and immigrants’ population of Wuhan city accounted for 3.70% and 73.05% of the total migrants’ population respectively; the restriction measures were not only effective in controlling the emigrants, but also effective in preventing immigrants. COVID-19 has significant spatial autocorrelation, and spatio-temporal differentiation has an effect on COVID-19. Different factors have different degrees of effect on COVID-19, and similar factors show different scale effects. -
Report on the State of the Environment in China 2016
2016 The 2016 Report on the State of the Environment in China is hereby announced in accordance with the Environmental Protection Law of the People ’s Republic of China. Minister of Ministry of Environmental Protection, the People’s Republic of China May 31, 2017 2016 Summary.................................................................................................1 Atmospheric Environment....................................................................7 Freshwater Environment....................................................................17 Marine Environment...........................................................................31 Land Environment...............................................................................35 Natural and Ecological Environment.................................................36 Acoustic Environment.........................................................................41 Radiation Environment.......................................................................43 Transport and Energy.........................................................................46 Climate and Natural Disasters............................................................48 Data Sources and Explanations for Assessment ...............................52 2016 On January 18, 2016, the seminar for the studying of the spirit of the Sixth Plenary Session of the Eighteenth CPC Central Committee was opened in Party School of the CPC Central Committee, and it was oriented for leaders and cadres at provincial and ministerial -
Assessment and Analysis of Groundwater Overexploitation in China
E3S Web of Conferences 228, 01008 (2021) https://doi.org/10.1051/e3sconf/202122801008 CCGEES 2020 Assessment and analysis of groundwater overexploitation in China Zepeng Li1, Xin He1, *, Chuiyu Lu1 1China Institute of Water Resources and Hydropower Research, Beijing 100038, China Abstract: As an important water resource, groundwater has been unreasonably developed for a long time in our country, causing a lot of problems. This paper combines the data from the national groundwater monitoring stations and the groundwater depth data collected locally to statistics and analysis of groundwater overexploitation across the country. Especially in key plains, through the water level variation method. The research results are compared and verified with national authoritative data such as Groundwater Dynamics Monthly Report and predecessors' records in the literature, revealing the current key areas of groundwater overexploitation, and clarifying the importance and urgency of groundwater governance in the future. This study also put forward some suggestions of groundwater overexploitation. groundwater monitoring data recorded in the China 1 Introduction Geological Environment Monitoring Groundwater Yearbook (hereinafter referred to as the yearbook) in 2006 Groundwater resources play an indispensable role in and 2016[6]. The groundwater monitoring wells in the social and economic development, food security, and Yearbook are spatially uneven in terms of regional drinking water safety. In China water resources are distribution. This spatial distribution is directly related to unevenly distributed in the north and south, and the total the utilization of groundwater in the local area: Areas amount of water resources is deficient seriously. As a where groundwater is used frequently are also densely reliable source of water supply, groundwater plays an distributed with observation wells. -
The Neolithic Ofsouthern China-Origin, Development, and Dispersal
The Neolithic ofSouthern China-Origin, Development, and Dispersal ZHANG CHI AND HSIAO-CHUN HUNG INTRODUCTION SANDWICHED BETWEEN THE YELLOW RIVER and Mainland Southeast Asia, southern China1 lies centrally within eastern Asia. This geographical area can be divided into three geomorphological terrains: the middle and lower Yangtze allu vial plain, the Lingnan (southern Nanling Mountains)-Fujian region,2 and the Yungui Plateau3 (Fig. 1). During the past 30 years, abundant archaeological dis coveries have stimulated a rethinking of the role ofsouthern China in the prehis tory of China and Southeast Asia. This article aims to outline briefly the Neolithic cultural developments in the middle and lower Yangtze alluvial plain, to discuss cultural influences over adjacent regions and, most importantly, to examine the issue of southward population dispersal during this time period. First, we give an overview of some significant prehistoric discoveries in south ern China. With the discovery of Hemudu in the mid-1970s as the divide, the history of archaeology in this region can be divided into two phases. The first phase (c. 1920s-1970s) involved extensive discovery, when archaeologists un earthed Pleistocene human remains at Yuanmou, Ziyang, Liujiang, Maba, and Changyang, and Palaeolithic industries in many caves. The major Neolithic cul tures, including Daxi, Qujialing, Shijiahe, Majiabang, Songze, Liangzhu, and Beiyinyangying in the middle and lower Yangtze, and several shell midden sites in Lingnan, were also discovered in this phase. During the systematic research phase (1970s to the present), ongoing major ex cavation at many sites contributed significantly to our understanding of prehis toric southern China. Additional early human remains at Wushan, Jianshi, Yun xian, Nanjing, and Hexian were recovered together with Palaeolithic assemblages from Yuanmou, the Baise basin, Jianshi Longgu cave, Hanzhong, the Li and Yuan valleys, Dadong and Jigongshan. -
The Spatio-Temporal Dynamic Pattern of Rural Residential Land in China in the 1990S Using Landsat TM Images and GIS
Environ Manage (2007) 40:803–813 DOI 10.1007/s00267-006-0048-6 The Spatio-Temporal Dynamic Pattern of Rural Residential Land in China in the 1990s Using Landsat TM Images and GIS Guangjin Tian Æ Zhifeng Yang Æ Yaoqi Zhang Received: 8 February 2006 / Accepted: 2 February 2007 Ó Springer Science+Business Media, LLC 2007 Abstract Through interpreting Landsat TM images, this Keywords Rural residential land Á Spatio-temporal study analyzes the spatial distribution of rural settlements pattern Á Land-use change Á Remote sensing Á GIS Á in China in 2000. It calculates rural residential land per- China centage for every 1-km2 cell. The entire country is divided into 33 regions to investigate the spatio-temporal dynamic patterns of rural residential land during the 1990s. Introduction According to the remote sensing survey, the rural resi- dential land increased by 7.88 · 105 ha in the 1990s. The Although China has witnessed a rapid urbanization process increment of rural residential land was 0.55 million ha in after the late 1970s, 63.78% of the total population still live 1990–1995 and 0.23 million ha in 1995–2000. In 1990– in rural areas in 2000. Nearly 0.81 billion people are dis- 1995, rural residential land increased dramatically in the tributed in 0.73 million administrative villages (NSBC eastern regions such as the Yangtze River Delta, Pearl 2001). The rural residential land is the built-up area for River Delta, and North China Plain, accounting for 80.80% rural settlements. It includes buildings, roads, huts, vege- of the national growth; the expansion in the western table gardens, thickets, livestock enclosures, bare lands regions was much more moderate.