The Calculus of Variations Lagrangian Mechanics and Optimal Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cloaking Via Change of Variables for Second Order Quasi-Linear Elliptic Differential Equations Maher Belgacem, Abderrahman Boukricha
Cloaking via change of variables for second order quasi-linear elliptic differential equations Maher Belgacem, Abderrahman Boukricha To cite this version: Maher Belgacem, Abderrahman Boukricha. Cloaking via change of variables for second order quasi- linear elliptic differential equations. 2017. hal-01444772 HAL Id: hal-01444772 https://hal.archives-ouvertes.fr/hal-01444772 Preprint submitted on 24 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cloaking via change of variables for second order quasi-linear elliptic differential equations Maher Belgacem, Abderrahman Boukricha University of Tunis El Manar, Faculty of Sciences of Tunis 2092 Tunis, Tunisia. Abstract The present paper introduces and treats the cloaking via change of variables in the framework of quasi-linear elliptic partial differential operators belonging to the class of Leray-Lions (cf. [14]). We show how a regular near-cloak can be obtained using an admissible (nonsingular) change of variables and we prove that the singular change- of variable-based scheme achieve perfect cloaking in any dimension d ≥ 2. We thus generalize previous results (cf. [7], [11]) obtained in the context of electric impedance tomography formulated by a linear differential operator in divergence form. -
CALCULUS of VARIATIONS and TENSOR CALCULUS
CALCULUS OF VARIATIONS and TENSOR CALCULUS U. H. Gerlach September 22, 2019 Beta Edition 2 Contents 1 FUNDAMENTAL IDEAS 5 1.1 Multivariable Calculus as a Prelude to the Calculus of Variations. 5 1.2 Some Typical Problems in the Calculus of Variations. ...... 6 1.3 Methods for Solving Problems in Calculus of Variations. ....... 10 1.3.1 MethodofFiniteDifferences. 10 1.4 TheMethodofVariations. 13 1.4.1 Variants and Variations . 14 1.4.2 The Euler-Lagrange Equation . 17 1.4.3 Variational Derivative . 20 1.4.4 Euler’s Differential Equation . 21 1.5 SolvedExample.............................. 24 1.6 Integration of Euler’s Differential Equation. ...... 25 2 GENERALIZATIONS 33 2.1 Functional with Several Unknown Functions . 33 2.2 Extremum Problem with Side Conditions. 38 2.2.1 HeuristicSolution. 40 2.2.2 Solution via Constraint Manifold . 42 2.2.3 Variational Problems with Finite Constraints . 54 2.3 Variable End Point Problem . 55 2.3.1 Extremum Principle at a Moment of Time Symmetry . 57 2.4 Generic Variable Endpoint Problem . 60 2.4.1 General Variations in the Functional . 62 2.4.2 Transversality Conditions . 64 2.4.3 Junction Conditions . 66 2.5 ManyDegreesofFreedom . 68 2.6 Parametrization Invariant Problem . 70 2.6.1 Parametrization Invariance via Homogeneous Function .... 71 2.7 Variational Principle for a Geodesic . 72 2.8 EquationofGeodesicMotion . 76 2.9 Geodesics: TheirParametrization.. 77 3 4 CONTENTS 2.9.1 Parametrization Invariance. 77 2.9.2 Parametrization in Terms of Curve Length . 78 2.10 Physical Significance of the Equation for a Geodesic . ....... 80 2.10.1 Freefloatframe ........................ -
FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality). -
1 Approximating Integrals Using Taylor Polynomials 1 1.1 Definitions
Seunghee Ye Ma 8: Week 7 Nov 10 Week 7 Summary This week, we will learn how we can approximate integrals using Taylor series and numerical methods. Topics Page 1 Approximating Integrals using Taylor Polynomials 1 1.1 Definitions . .1 1.2 Examples . .2 1.3 Approximating Integrals . .3 2 Numerical Integration 5 1 Approximating Integrals using Taylor Polynomials 1.1 Definitions When we first defined the derivative, recall that it was supposed to be the \instantaneous rate of change" of a function f(x) at a given point c. In other words, f 0 gives us a linear approximation of f(x) near c: for small values of " 2 R, we have f(c + ") ≈ f(c) + "f 0(c) But if f(x) has higher order derivatives, why stop with a linear approximation? Taylor series take this idea of linear approximation and extends it to higher order derivatives, giving us a better approximation of f(x) near c. Definition (Taylor Polynomial and Taylor Series) Let f(x) be a Cn function i.e. f is n-times continuously differentiable. Then, the n-th order Taylor polynomial of f(x) about c is: n X f (k)(c) T (f)(x) = (x − c)k n k! k=0 The n-th order remainder of f(x) is: Rn(f)(x) = f(x) − Tn(f)(x) If f(x) is C1, then the Taylor series of f(x) about c is: 1 X f (k)(c) T (f)(x) = (x − c)k 1 k! k=0 Note that the first order Taylor polynomial of f(x) is precisely the linear approximation we wrote down in the beginning. -
Chapter 8 Change of Variables, Parametrizations, Surface Integrals
Chapter 8 Change of Variables, Parametrizations, Surface Integrals x0. The transformation formula In evaluating any integral, if the integral depends on an auxiliary function of the variables involved, it is often a good idea to change variables and try to simplify the integral. The formula which allows one to pass from the original integral to the new one is called the transformation formula (or change of variables formula). It should be noted that certain conditions need to be met before one can achieve this, and we begin by reviewing the one variable situation. Let D be an open interval, say (a; b); in R , and let ' : D! R be a 1-1 , C1 mapping (function) such that '0 6= 0 on D: Put D¤ = '(D): By the hypothesis on '; it's either increasing or decreasing everywhere on D: In the former case D¤ = ('(a);'(b)); and in the latter case, D¤ = ('(b);'(a)): Now suppose we have to evaluate the integral Zb I = f('(u))'0(u) du; a for a nice function f: Now put x = '(u); so that dx = '0(u) du: This change of variable allows us to express the integral as Z'(b) Z I = f(x) dx = sgn('0) f(x) dx; '(a) D¤ where sgn('0) denotes the sign of '0 on D: We then get the transformation formula Z Z f('(u))j'0(u)j du = f(x) dx D D¤ This generalizes to higher dimensions as follows: Theorem Let D be a bounded open set in Rn;' : D! Rn a C1, 1-1 mapping whose Jacobian determinant det(D') is everywhere non-vanishing on D; D¤ = '(D); and f an integrable function on D¤: Then we have the transformation formula Z Z Z Z ¢ ¢ ¢ f('(u))j det D'(u)j du1::: dun = ¢ ¢ ¢ f(x) dx1::: dxn: D D¤ 1 Of course, when n = 1; det D'(u) is simply '0(u); and we recover the old formula. -
A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx. -
Operations on Power Series Related to Taylor Series
Operations on Power Series Related to Taylor Series In this problem, we perform elementary operations on Taylor series – term by term differen tiation and integration – to obtain new examples of power series for which we know their sum. Suppose that a function f has a power series representation of the form: 1 2 X n f(x) = a0 + a1(x − c) + a2(x − c) + · · · = an(x − c) n=0 convergent on the interval (c − R; c + R) for some R. The results we use in this example are: • (Differentiation) Given f as above, f 0(x) has a power series expansion obtained by by differ entiating each term in the expansion of f(x): 1 0 X n−1 f (x) = a1 + a2(x − c) + 2a3(x − c) + · · · = nan(x − c) n=1 • (Integration) Given f as above, R f(x) dx has a power series expansion obtained by by inte grating each term in the expansion of f(x): 1 Z a1 a2 X an f(x) dx = C + a (x − c) + (x − c)2 + (x − c)3 + · · · = C + (x − c)n+1 0 2 3 n + 1 n=0 for some constant C depending on the choice of antiderivative of f. Questions: 1. Find a power series representation for the function f(x) = arctan(5x): (Note: arctan x is the inverse function to tan x.) 2. Use power series to approximate Z 1 2 sin(x ) dx 0 (Note: sin(x2) is a function whose antiderivative is not an elementary function.) Solution: 1 For question (1), we know that arctan x has a simple derivative: , which then has a power 1 + x2 1 2 series representation similar to that of , where we subsitute −x for x. -
Introduction to the Modern Calculus of Variations
MA4G6 Lecture Notes Introduction to the Modern Calculus of Variations Filip Rindler Spring Term 2015 Filip Rindler Mathematics Institute University of Warwick Coventry CV4 7AL United Kingdom [email protected] http://www.warwick.ac.uk/filiprindler Copyright ©2015 Filip Rindler. Version 1.1. Preface These lecture notes, written for the MA4G6 Calculus of Variations course at the University of Warwick, intend to give a modern introduction to the Calculus of Variations. I have tried to cover different aspects of the field and to explain how they fit into the “big picture”. This is not an encyclopedic work; many important results are omitted and sometimes I only present a special case of a more general theorem. I have, however, tried to strike a balance between a pure introduction and a text that can be used for later revision of forgotten material. The presentation is based around a few principles: • The presentation is quite “modern” in that I use several techniques which are perhaps not usually found in an introductory text or that have only recently been developed. • For most results, I try to use “reasonable” assumptions, not necessarily minimal ones. • When presented with a choice of how to prove a result, I have usually preferred the (in my opinion) most conceptually clear approach over more “elementary” ones. For example, I use Young measures in many instances, even though this comes at the expense of a higher initial burden of abstract theory. • Wherever possible, I first present an abstract result for general functionals defined on Banach spaces to illustrate the general structure of a certain result. -
Derivative of Power Series and Complex Exponential
LECTURE 4: DERIVATIVE OF POWER SERIES AND COMPLEX EXPONENTIAL The reason of dealing with power series is that they provide examples of analytic functions. P1 n Theorem 1. If n=0 anz has radius of convergence R > 0; then the function P1 n F (z) = n=0 anz is di®erentiable on S = fz 2 C : jzj < Rg; and the derivative is P1 n¡1 f(z) = n=0 nanz : Proof. (¤) We will show that j F (z+h)¡F (z) ¡ f(z)j ! 0 as h ! 0 (in C), whenever h ¡ ¢ n Pn n k n¡k jzj < R: Using the binomial theorem (z + h) = k=0 k h z we get F (z + h) ¡ F (z) X1 (z + h)n ¡ zn ¡ hnzn¡1 ¡ f(z) = a h n h n=0 µ ¶ X1 a Xn n = n ( hkzn¡k) h k n=0 k=2 µ ¶ X1 Xn n = a h( hk¡2zn¡k) n k n=0 k=2 µ ¶ X1 Xn¡2 n = a h( hjzn¡2¡j) (by putting j = k ¡ 2): n j + 2 n=0 j=0 ¡ n ¢ ¡n¡2¢ By using the easily veri¯able fact that j+2 · n(n ¡ 1) j ; we obtain µ ¶ F (z + h) ¡ F (z) X1 Xn¡2 n ¡ 2 j ¡ f(z)j · jhj n(n ¡ 1)ja j( jhjjjzjn¡2¡j) h n j n=0 j=0 X1 n¡2 = jhj n(n ¡ 1)janj(jzj + jhj) : n=0 P1 n¡2 We already know that the series n=0 n(n ¡ 1)janjjzj converges for jzj < R: Now, for jzj < R and h ! 0 we have jzj + jhj < R eventually. -
7. Transformations of Variables
Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 7. Transformations of Variables Basic Theory The Problem As usual, we start with a random experiment with probability measure ℙ on an underlying sample space. Suppose that we have a random variable X for the experiment, taking values in S, and a function r:S→T . Then Y=r(X) is a new random variabl e taking values in T . If the distribution of X is known, how do we fin d the distribution of Y ? This is a very basic and important question, and in a superficial sense, the solution is easy. 1. Show that ℙ(Y∈B) = ℙ ( X∈r −1( B)) for B⊆T. However, frequently the distribution of X is known either through its distribution function F or its density function f , and we would similarly like to find the distribution function or density function of Y . This is a difficult problem in general, because as we will see, even simple transformations of variables with simple distributions can lead to variables with complex distributions. We will solve the problem in various special cases. Transformed Variables with Discrete Distributions 2. Suppose that X has a discrete distribution with probability density function f (and hence S is countable). Show that Y has a discrete distribution with probability density function g given by g(y)=∑ f(x), y∈T x∈r −1( y) 3. Suppose that X has a continuous distribution on a subset S⊆ℝ n with probability density function f , and that T is countable. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
Linear Spaces
Chapter 2 Linear Spaces Contents FieldofScalars ........................................ ............. 2.2 VectorSpaces ........................................ .............. 2.3 Subspaces .......................................... .............. 2.5 Sumofsubsets........................................ .............. 2.5 Linearcombinations..................................... .............. 2.6 Linearindependence................................... ................ 2.7 BasisandDimension ..................................... ............. 2.7 Convexity ............................................ ............ 2.8 Normedlinearspaces ................................... ............... 2.9 The `p and Lp spaces ............................................. 2.10 Topologicalconcepts ................................... ............... 2.12 Opensets ............................................ ............ 2.13 Closedsets........................................... ............. 2.14 Boundedsets......................................... .............. 2.15 Convergence of sequences . ................... 2.16 Series .............................................. ............ 2.17 Cauchysequences .................................... ................ 2.18 Banachspaces....................................... ............... 2.19 Completesubsets ....................................... ............. 2.19 Transformations ...................................... ............... 2.21 Lineartransformations.................................. ................ 2.21