Three Puzzles About Bohr's Correspondence Principle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unit 1 Old Quantum Theory
UNIT 1 OLD QUANTUM THEORY Structure Introduction Objectives li;,:overy of Sub-atomic Particles Earlier Atom Models Light as clectromagnetic Wave Failures of Classical Physics Black Body Radiation '1 Heat Capacity Variation Photoelectric Effect Atomic Spectra Planck's Quantum Theory, Black Body ~diation. and Heat Capacity Variation Einstein's Theory of Photoelectric Effect Bohr Atom Model Calculation of Radius of Orbits Energy of an Electron in an Orbit Atomic Spectra and Bohr's Theory Critical Analysis of Bohr's Theory Refinements in the Atomic Spectra The61-y Summary Terminal Questions Answers 1.1 INTRODUCTION The ideas of classical mechanics developed by Galileo, Kepler and Newton, when applied to atomic and molecular systems were found to be inadequate. Need was felt for a theory to describe, correlate and predict the behaviour of the sub-atomic particles. The quantum theory, proposed by Max Planck and applied by Einstein and Bohr to explain different aspects of behaviour of matter, is an important milestone in the formulation of the modern concept of atom. In this unit, we will study how black body radiation, heat capacity variation, photoelectric effect and atomic spectra of hydrogen can be explained on the basis of theories proposed by Max Planck, Einstein and Bohr. They based their theories on the postulate that all interactions between matter and radiation occur in terms of definite packets of energy, known as quanta. Their ideas, when extended further, led to the evolution of wave mechanics, which shows the dual nature of matter -
Bohr's Correspondence Principle
Bohr’s Correspondence Principle Bohr's theory was deliberately incomplete so that he could find principles that would allow a systematic search for a “rational generalization” of classical electrodynamics. A major conceptual tool that characterized Bohr’s atomic work was the correspondence principle, his celebrated asymptotic consistency requirement between quantum theory and classical physics, that took various forms over the years and was often misunderstood by even his closest collaborators [312, p. 114], but guided his research and dominated quantum theory until the emergence of quantum mechanics in 1925-26 [419, p. 81]. It should be emphasized that the correspondence principle is not the elementary recognition that the results of classical and quantum physics converge in the limit ℎ → 0. Bohr said emphatically that this [420] See the print edition of The Quantum Measurement Problem for quotation. Instead, the correspondence principle is deeper and aims at the heart of the differences between quantum and classical physics. Even more than the previous fundamental work of Planck and Einstein on the quantum, Bohr’s atomic work marked a decisive break with classical physics. This was primarily because from the second postulate of Bohr’s theory there can be no relation between the light frequency (or color of the light) and the period of the electron, and thus the theory differed in principle from the classical picture. This disturbed many physicists at the time since experiments had confirmed the classical relation between the period of the waves and the electric currents. However, Bohr was able to show that if one considers increasingly larger orbits characterized by quantum number n, two neighboring orbits will have periods that approach a common value. -
Higher Order Schrödinger Equations Rémi Carles, Emmanuel Moulay
Higher order Schrödinger equations Rémi Carles, Emmanuel Moulay To cite this version: Rémi Carles, Emmanuel Moulay. Higher order Schrödinger equations. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2012, 45 (39), pp.395304. 10.1088/1751- 8113/45/39/395304. hal-00776157 HAL Id: hal-00776157 https://hal.archives-ouvertes.fr/hal-00776157 Submitted on 12 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HIGHER ORDER SCHRODINGER¨ EQUATIONS REMI´ CARLES AND EMMANUEL MOULAY Abstract. The purpose of this paper is to provide higher order Schr¨odinger equations from a finite expansion approach. These equations converge toward the semi-relativistic equation for particles whose norm of their velocity vector c is below √2 and are able to take into account some relativistic effects with a certain accuracy in a sense that we define. So, it is possible to take into account some relativistic effects by using Schr¨odinger form equations, even if they cannot be considered as relativistic wave equations. 1. Introduction In quantum mechanics, the Schr¨odinger equation is a fundamental non-relativistic quantum equation that describes how the wave-function of a physical system evolves over time. -
Quantum Mechanics in One Dimension
Solved Problems on Quantum Mechanics in One Dimension Charles Asman, Adam Monahan and Malcolm McMillan Department of Physics and Astronomy University of British Columbia, Vancouver, British Columbia, Canada Fall 1999; revised 2011 by Malcolm McMillan Given here are solutions to 15 problems on Quantum Mechanics in one dimension. The solutions were used as a learning-tool for students in the introductory undergraduate course Physics 200 Relativity and Quanta given by Malcolm McMillan at UBC during the 1998 and 1999 Winter Sessions. The solutions were prepared in collaboration with Charles Asman and Adam Monaham who were graduate students in the Department of Physics at the time. The problems are from Chapter 5 Quantum Mechanics in One Dimension of the course text Modern Physics by Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Saunders College Publishing, 2nd ed., (1997). Planck's Constant and the Speed of Light. When solving numerical problems in Quantum Mechanics it is useful to note that the product of Planck's constant h = 6:6261 × 10−34 J s (1) and the speed of light c = 2:9979 × 108 m s−1 (2) is hc = 1239:8 eV nm = 1239:8 keV pm = 1239:8 MeV fm (3) where eV = 1:6022 × 10−19 J (4) Also, ~c = 197:32 eV nm = 197:32 keV pm = 197:32 MeV fm (5) where ~ = h=2π. Wave Function for a Free Particle Problem 5.3, page 224 A free electron has wave function Ψ(x; t) = sin(kx − !t) (6) •Determine the electron's de Broglie wavelength, momentum, kinetic energy and speed when k = 50 nm−1. -
Class 2: Operators, Stationary States
Class 2: Operators, stationary states Operators In quantum mechanics much use is made of the concept of operators. The operator associated with position is the position vector r. As shown earlier the momentum operator is −iℏ ∇ . The operators operate on the wave function. The kinetic energy operator, T, is related to the momentum operator in the same way that kinetic energy and momentum are related in classical physics: p⋅ p (−iℏ ∇⋅−) ( i ℏ ∇ ) −ℏ2 ∇ 2 T = = = . (2.1) 2m 2 m 2 m The potential energy operator is V(r). In many classical systems, the Hamiltonian of the system is equal to the mechanical energy of the system. In the quantum analog of such systems, the mechanical energy operator is called the Hamiltonian operator, H, and for a single particle ℏ2 HTV= + =− ∇+2 V . (2.2) 2m The Schrödinger equation is then compactly written as ∂Ψ iℏ = H Ψ , (2.3) ∂t and has the formal solution iHt Ψ()r,t = exp − Ψ () r ,0. (2.4) ℏ Note that the order of performing operations is important. For example, consider the operators p⋅ r and r⋅ p . Applying the first to a wave function, we have (pr⋅) Ψ=−∇⋅iℏ( r Ψ=−) i ℏ( ∇⋅ rr) Ψ− i ℏ( ⋅∇Ψ=−) 3 i ℏ Ψ+( rp ⋅) Ψ (2.5) We see that the operators are not the same. Because the result depends on the order of performing the operations, the operator r and p are said to not commute. In general, the expectation value of an operator Q is Q=∫ Ψ∗ (r, tQ) Ψ ( r , td) 3 r . -
On a Classical Limit for Electronic Degrees of Freedom That Satisfies the Pauli Exclusion Principle
On a classical limit for electronic degrees of freedom that satisfies the Pauli exclusion principle R. D. Levine* The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel; and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 Contributed by R. D. Levine, December 10, 1999 Fermions need to satisfy the Pauli exclusion principle: no two can taken into account, this starting point is not necessarily a be in the same state. This restriction is most compactly expressed limitation. There are at least as many orbitals (or, strictly in a second quantization formalism by the requirement that the speaking, spin orbitals) as there are electrons, but there can creation and annihilation operators of the electrons satisfy anti- easily be more orbitals than electrons. There are usually more commutation relations. The usual classical limit of quantum me- states than orbitals, and in the model of quantum dots that chanics corresponds to creation and annihilation operators that motivated this work, the number of spin orbitals is twice the satisfy commutation relations, as for a harmonic oscillator. We number of sites. For the example of 19 sites, there are 38 discuss a simple classical limit for Fermions. This limit is shown to spin-orbitals vs. 2,821,056,160 doublet states. correspond to an anharmonic oscillator, with just one bound The point of the formalism is that it ensures that the Pauli excited state. The vibrational quantum number of this anharmonic exclusion principle is satisfied, namely that no more than one oscillator, which is therefore limited to the range 0 to 1, is the electron occupies any given spin-orbital. -
Schrödinger Correspondence Applied to Crystals Arxiv:1812.06577V1
Schr¨odingerCorrespondence Applied to Crystals Eric J. Heller∗,y,z and Donghwan Kimy yDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 zDepartment of Physics, Harvard University, Cambridge, MA 02138 E-mail: [email protected] arXiv:1812.06577v1 [cond-mat.other] 17 Dec 2018 1 Abstract In 1926, E. Schr¨odingerpublished a paper solving his new time dependent wave equation for a displaced ground state in a harmonic oscillator (now called a coherent state). He showed that the parameters describing the mean position and mean mo- mentum of the wave packet obey the equations of motion of the classical oscillator while retaining its width. This was a qualitatively new kind of correspondence princi- ple, differing from those leading up to quantum mechanics. Schr¨odingersurely knew that this correspondence would extend to an N-dimensional harmonic oscillator. This Schr¨odingerCorrespondence Principle is an extremely intuitive and powerful way to approach many aspects of harmonic solids including anharmonic corrections. 1 Introduction Figure 1: Photocopy from Schr¨odinger's1926 paper In 1926 Schr¨odingermade the connection between the dynamics of a displaced quantum ground state Gaussian wave packet in a harmonic oscillator and classical motion in the same harmonic oscillator1 (see figure 1). The mean position of the Gaussian (its guiding position center) and the mean momentum (its guiding momentum center) follows classical harmonic oscillator equations of motion, while the width of the Gaussian remains stationary if it initially was a displaced (in position or momentum or both) ground state. This classic \coherent state" dynamics is now very well known.2 Specifically, for a harmonic oscillator 2 2 1 2 2 with Hamiltonian H = p =2m + 2 m! q , a Gaussian wave packet that beginning as A0 2 i i (q; 0) = exp i (q − q0) + p0(q − q0) + s0 (1) ~ ~ ~ becomes, under time evolution, At 2 i i (q; t) = exp i (q − qt) + pt(q − qt) + st : (2) ~ ~ ~ where pt = p0 cos(!t) − m!q0 sin(!t) qt = q0 cos(!t) + (p0=m!) sin(!t) (3) (i.e. -
Wave Mechanics (PDF)
WAVE MECHANICS B. Zwiebach September 13, 2013 Contents 1 The Schr¨odinger equation 1 2 Stationary Solutions 4 3 Properties of energy eigenstates in one dimension 10 4 The nature of the spectrum 12 5 Variational Principle 18 6 Position and momentum 22 1 The Schr¨odinger equation In classical mechanics the motion of a particle is usually described using the time-dependent position ix(t) as the dynamical variable. In wave mechanics the dynamical variable is a wave- function. This wavefunction depends on position and on time and it is a complex number – it belongs to the complex numbers C (we denote the real numbers by R). When all three dimensions of space are relevant we write the wavefunction as Ψ(ix, t) C . (1.1) ∈ When only one spatial dimension is relevant we write it as Ψ(x, t) C. The wavefunction ∈ satisfies the Schr¨odinger equation. For one-dimensional space we write ∂Ψ 2 ∂2 i (x, t) = + V (x, t) Ψ(x, t) . (1.2) ∂t −2m ∂x2 This is the equation for a (non-relativistic) particle of mass m moving along the x axis while acted by the potential V (x, t) R. It is clear from this equation that the wavefunction must ∈ be complex: if it were real, the right-hand side of (1.2) would be real while the left-hand side would be imaginary, due to the explicit factor of i. Let us make two important remarks: 1 1. The Schr¨odinger equation is a first order differential equation in time. This means that if we prescribe the wavefunction Ψ(x, t0) for all of space at an arbitrary initial time t0, the wavefunction is determined for all times. -
The Time Evolution of a Wave Function
The Time Evolution of a Wave Function ² A \system" refers to an electron in a potential energy well, e.g., an electron in a one-dimensional in¯nite square well. The system is speci¯ed by a given Hamiltonian. ² Assume all systems are isolated. ² Assume all systems have a time-independent Hamiltonian operator H^ . ² TISE and TDSE are abbreviations for the time-independent SchrÄodingerequation and the time- dependent SchrÄodingerequation, respectively. P ² The symbol in all questions denotes a sum over a complete set of states. PART A ² Information for questions (I)-(VI) In the following questions, an electron is in a one-dimensional in¯nite square well of width L. (The q 2 n2¼2¹h2 stationary states are Ãn(x) = L sin(n¼x=L), and the allowed energies are En = 2mL2 , where n = 1; 2; 3:::) p (I) Suppose the wave function for an electron at time t = 0 is given by Ã(x; 0) = 2=L sin(5¼x=L). Which one of the following is the wave function at time t? q 2 (a) Ã(x; t) = sin(5¼x=L) cos(E5t=¹h) qL 2 ¡iE5t=¹h (b) Ã(x; t) = L sin(5¼x=L) e (c) Both (a) and (b) above are appropriate ways to write the wave function. (d) None of the above. q 2 (II) The wave function for an electron at time t = 0 is given by Ã(x; 0) = L sin(5¼x=L). Which one of the following is true about the probability density, jÃ(x; t)j2, after time t? 2 2 2 2 (a) jÃ(x; t)j = L sin (5¼x=L) cos (E5t=¹h). -
What Is a Photon? Foundations of Quantum Field Theory
What is a Photon? Foundations of Quantum Field Theory C. G. Torre June 16, 2018 2 What is a Photon? Foundations of Quantum Field Theory Version 1.0 Copyright c 2018. Charles Torre, Utah State University. PDF created June 16, 2018 Contents 1 Introduction 5 1.1 Why do we need this course? . 5 1.2 Why do we need quantum fields? . 5 1.3 Problems . 6 2 The Harmonic Oscillator 7 2.1 Classical mechanics: Lagrangian, Hamiltonian, and equations of motion . 7 2.2 Classical mechanics: coupled oscillations . 8 2.3 The postulates of quantum mechanics . 10 2.4 The quantum oscillator . 11 2.5 Energy spectrum . 12 2.6 Position, momentum, and their continuous spectra . 15 2.6.1 Position . 15 2.6.2 Momentum . 18 2.6.3 General formalism . 19 2.7 Time evolution . 20 2.8 Coherent States . 23 2.9 Problems . 24 3 Tensor Products and Identical Particles 27 3.1 Definition of the tensor product . 27 3.2 Observables and the tensor product . 31 3.3 Symmetric and antisymmetric tensors. Identical particles. 32 3.4 Symmetrization and anti-symmetrization for any number of particles . 35 3.5 Problems . 36 4 Fock Space 38 4.1 Definitions . 38 4.2 Occupation numbers. Creation and annihilation operators. 40 4.3 Observables. Field operators. 43 4.3.1 1-particle observables . 43 4.3.2 2-particle observables . 46 4.3.3 Field operators and wave functions . 47 4.4 Time evolution of the field operators . 49 4.5 General formalism . 51 3 4 CONTENTS 4.6 Relation to the Hilbert space of quantum normal modes . -
Negative Mass in Contemporary Physics and Its Application to Propulsion Geoffrey A
Negative Mass in Contemporary Physics and its Application to Propulsion Geoffrey A. Landis, NASA Glenn Research Center, Cleveland, Ohio, 44135 6th Interstellar Symposium, Wichita KS, Nov. 10-15 2019. 6th Interstellar Symposium, Wichita, Kansas 2019 What do we mean by Mass? Physicists mean several different things when we refer to “mass” • Inertial mass F=mia 2 • Active (source) gravitational mass g=GMg/r *(more complicated in General Relativity) • Passive gravitational mass Fg=mgg 2 2 2 • Schrödinger mass ihdψ/dt=-(h /2ms)d ψ/dx +V *(or the corresponding term in Dirac or relativistic Schrödinger equation) 2 • Conserved mass/energy equivalent of mass: mo=E/c *(relativistic 4-vector) 2 • Quantum number m (e.g., me-= 511 MeV/c ) 6th Interstellar Symposium, Wichita, Kansas 2019 These terms are related by constitutive relations Inertial mass=gravitational mass Equivalence principle Active gravitational mass = Passive gravitational mass: Newton’s third law Schrödinger mass= inertial mass: correspondence principle Energy equivalent mass= inertial mass: special relativity Quantum number quantum indistinguishability 6th Interstellar Symposium, Wichita, Kansas 2019 Can mass ever be negative? • Einstein put “energy condition” into general relativity that energy must be positive. • E=Mc2; so positive energy = positive mass • Condition added to avoid “absurd” solutions to field equations • Many possible formulations: null, weak, strong, dominant energy condition; averaged null, weak, strong, dominant energy condition • Bondi pointed out that negative -
Schrödinger's Wave Equation
Schrödinger’s wave equation We now have a set of individual operators that can extract dynamical quantities of interest from the wave function, but how do we find the wave function in the first place? The free particle wave function was easy, but what about for a particle under the influence of a potential V(x,t)? Let us use the correspondence principle and classical physics to lead us to a general equation that dictates the form of the wave function, and thus tells us about the dynamics of the system. We know that the total energy for a (non- relativistic) particle is given by E = T +V. We now turn to the operators that we just discovered and replace the quantities in the energy equation by their respective operators: E = T + V ⇒ ∂ 2 ∂ 2 i = − h + V h ∂t 2m ∂x 2 This is an operator equation, and doesn’t really make much sense until we take it and operate on a wave function: 2 2 ∂Ψ()x,t h ∂ Ψ()x,t ih = − 2 + V ()x,t Ψ(x,t) ∂t 2m ∂x Of course, we really only get our expectation values of the quantities when we multiply (from the left) by Ψ* and integrate over all space. But, in order for that to give us reasonable quantities that describe the (quantum mechanical) motion of a particle, the wave function must obey this differential equation. This is Schrödinger’s Equation, and you will spend much of the rest of this semester finding solution to it, assuming different potentials.