Harmonic Oscillator Physics

Total Page:16

File Type:pdf, Size:1020Kb

Harmonic Oscillator Physics Physics 342 Lecture 9 Harmonic Oscillator Physics Lecture 9 Physics 342 Quantum Mechanics I Friday, February 12th, 2010 For the harmonic oscillator potential in the time-independent Schr¨odinger equation: 2 1 2 d (x) 2 2 2 −~ + m ! x (x) = E (x); (9.1) 2 m dx2 we found a ground state 2 − m ! x 0(x) = A e 2 ~ (9.2) 1 with energy E0 = 2 ~ !. Using the raising and lowering operators 1 a+ = p (−i p + m ! x) 2 m ! ~ (9.3) 1 a− = p (i p + m ! x); 2 ~ m ! we found we could construct additional solutions with increasing energy using a+, and we could take a state at a particular energy E and construct solutions with lower energy using a−. The existence of a minimum energy state ensured that no solutions could have negative energy and was used to define 1: 0 n 1 n a− 0 = 0 H (a+ 0) = + n ~ ! a+ 0: (9.4) 2 The operators a+ and a− are Hermitian conjugates of one another { for any 1I am leaving the \hats" off, from here on { we understand that H represents a differ- ` ~ @ ´ ential operator given by H x; i @x for a classical Hamiltonian. 1 of 10 9.1. NORMALIZATION Lecture 9 f(x) and g(x) (vanishing at spatial infinity), the inner product: Z 1 Z 1 ∗ ∗ @g(x) f(x) a± g(x) dx = f(x) ∓~ + m ! x g(x) dx −∞ −∞ @x Z 1 ∗ @f(x) ∗ = ±~ g(x) + f(x) m ! x g(x) dx −∞ @x Z 1 ∗ = (a∓ f(x)) g(x) dx; −∞ (9.5) (integration by parts) or, in words, we can \act on g(x) with a± or act on f(x) with a∓" in the inner product. 9.1 Normalization n The state n that comes from n applications of a+ is not normalized, nor does the eigenvalue form of the time-independent Schr¨odingerequation de- mand that it be. Normalization is the manifestation of our probabilistic interpretation of jΨ(x; t)j2. Consider the ground state, that has an undeter- mined constant A. If we want jΨ(x; t)j2 to represent a probability density, then Z 1 2 2 − m ! x A e ~ dx = 1; (9.6) −∞ and the left-hand side is a Gaussian integral: Z 1 2 r 2 − m ! x 2 π ~ A e ~ dx = A ; (9.7) −∞ m ! 1=4 so the normalization is A = m ! . Just because we have normalized the π ~ ground state does not mean that 1 ∼ a+ 0(x) is normalized. Indeed, we have to normalize each of the n(x) separately. Fortunately, this can be done once (and for all). R 1 2 Suppose we have a normalized set of n, i.e. −∞ n dx = 1 for all n = 0 −! 1. We know that n±1 = α± a± n where the goal is to find the constants α± associated with raising and lowering while keeping the wavefunctions normalized. Take the norm of the resulting raised or lowered state: Z 1 Z 1 2 2 ∗ j n±1j dx = α± (a± n(x)) (a± n(x)) dx −∞ −∞ Z 1 (9.8) 2 ∗ = α± (a∓ a± n(x)) n(x) dx; −∞ 2 of 10 9.2. ORTHONORMALITY Lecture 9 and the operator a∓ a± is related to the Hamiltonian, as we saw last time: 1 H = ~ ! a± a∓ ± 2 . Then H 1 1 1 a∓ a± n = ± n = + n ± n; (9.9) ~ ! 2 2 2 so (9.8) becomes Z 1 Z 1 2 ∗ 2 1 1 2 α± (a∓ a± n(x)) n(x) dx = α± + n ± j n(x)j dx: −∞ 2 2 −∞ (9.10) R 1 2 The integral −∞ j n(x)j dx = 1 by assumption, so we have 1 1 α+ = p α− = p ; (9.11) n + 1 n and our final relation is 1 1 n+1 = p a+ n n−1 = p a− n: (9.12) n + 1 n Starting from the ground state, for which we know the normalization, 1 = a+ 0 1 1 2 2 = p a+ 1 = p a+ 0 2 1 × 2 (9.13) 1 1 3 3 = p a+ 2 = p a+ 0: 3 1 × 2 × 3 The general case is 1 n n = p a+ 0 (9.14) n! for the appropriately normalized 0, 1=4 2 m ! − m ! x 0(x) = e 2 ~ : (9.15) π ~ 9.2 Orthonormality The states described by n are complete (we assume) and orthonormal { take our usual inner product for m and n: Z 1 Z ∗ 1 1 n ∗ m n · m = n(x) m(x) dx = p p (a+ 0) (a+ 0) dx: −∞ m! n! −∞ (9.16) 3 of 10 9.2. ORTHONORMALITY Lecture 9 Now, suppose m > n, then using the fact that a+ and a− are Hermitian m conjugates, we can flip the a+ onto the other term: Z Z 1 1 n ∗ m 1 1 m n ∗ p p (a+ 0) (a+ 0) dx = p p (a− a+ 0) ( 0) dx; m! n! −∞ m! n! −∞ (9.17) n m and we know that a+ 0 ∼ n and a− n ∼ n−m { but for m > n, we m−n have a− 0 = 0, the defining property of the ground state. In the case n > m, we just use the conjugate in the other direction, and make the same argument: Z Z 1 1 n ∗ m 1 1 ∗ n m p p (a+ 0) (a+ 0) dx = p p ( 0) (a−a+ 0) dx = 0: m! n! −∞ m! n! −∞ (9.18) R 1 2 Only when m = n will we get a non-zero result, and of course, −∞ m dx = 1 by construction. So Z 1 ∗ n(x) m(x) dx = δmn: (9.19) −∞ 9.2.1 Hermite Polynomials The prescription for generating n does not provide a particularly easy way to obtain the functional form for an arbitrary n { we have to repeatedly apply the raising operator to the ground state. There is a connection between the Hermite polynomials and our procedure of \lifting up" the ground state. Using the Frobenius method, it is possible to solve Schr¨odinger'sequation as a power series expansion (described in Griffiths), and we won't re-live that argument (yet). But it is important to understand the connection between the algebraic, operational approach and the brute force series expansion. Starting from the ground state, let's act with a+ (call the normalization constant A again, just to make the expressions more compact): 2 1 @ − m ! x 1 = a+ 0 = p −~ + m ! x A e 2 ~ 2 m ! @x ~ (9.20) r 2 A m ! − m ! x = p 2 x e 2 ~ : 2 ~ 4 of 10 9.2. ORTHONORMALITY Lecture 9 Consider the second state, r 2 1 1 1 @ A m ! − m ! x 2 = p a+ 1 = p p −~ + m ! x p 2 x e 2 ~ 2 2 2 m ! ~ @x 2 ~ 2 A − m ! x @ 2 x = p e 2 ~ −~ 2 2 @x ~ r 2 1 m ! 1 @ A − m ! x + p 2 x p −~ + m ! x p e 2 ~ 2 ~ 2 m ! ~ @x 2 2 2 r 2 A − m ! x A m ! − m ! x = p e 2 ~ (−2) + p 2 x e 2 ~ 2 2 2 2 ~ 2 A m ! 2 − m ! x = p 4 x − 2 e 2 ~ : 2 2 ~ (9.21) The pattern continues { we always have some polynomial in x multiplying the exponential factor. That polynomial, for the nth wave function is called th p m ! Hn, the n Hermite polynomial. In the dimensionless variable ξ = x, 2 ~ we can read off the first two { H1(ξ) = 2 ξ, and H2(ξ) = 4 ξ −2. Normalized, we have the expression 1=4 2 m ! 1 − ξ n(x) = p Hn(ξ) e 2 (9.22) π ~ 2n n! with H0(ξ) = 1 H1(ξ) = 2 ξ 2 H2(ξ) = 4 ξ − 2 (9.23) 3 H3(ξ) = 8 ξ − 12 ξ . This set of polynomials is well-known, and they have a number of interesting recursion and orthogonality properties (many of which can be developed from the a+ and a− operators). One still needs a table of these in order to write down a particular n, but that's better than taking n successive derivatives of 0 { in essence, the Hermite polynomials have accomplished that procedure for you. Once again, we can plot the first few wavefunctions (see Figure 9.1), and as we increase in energy, we see a pattern similar to the infinite square well case (note that for the harmonic oscillator, we start with n = 0 as the ground state rather than 1). 5 of 10 9.3. EXPECTATION VALUES Lecture 9 n =3 n =2 Energy n =1 n =0 Figure 9.1: The first four stationary states: n(x) of the harmonic oscillator. 9.3 Expectation Values 9.3.1 Classical Case The classical motion for an oscillator that starts from rest at location x0 is x(t) = x0 cos(! t) : (9.24) The probability that the particle is at a particular x at a particular time t is given by ρ(x; t) = δ(x − x(t)), and we can perform the temporal average to get the spatial density. Our natural time scale for the averaging is a half π cycle, take t = 0 ! ! , π 1 Z ! ρ(x) = π δ(x − x0 cos(! t)) dt: (9.25) ! 0 We perform the change of variables to allow access to the δ, let y = x0 cos(! t) so that ! Z −x0 δ(x − y) ρ(x) = − dy π x0 x0 ! sin(! t) 1 Z x0 δ(x − y) = dy p 2 π −x0 x0 1 − cos (! t) (9.26) 1 Z x0 δ(x − y) = dy p 2 2 π −x0 x0 − y 1 = : p 2 2 π x0 − x 6 of 10 9.3.
Recommended publications
  • Unit 1 Old Quantum Theory
    UNIT 1 OLD QUANTUM THEORY Structure Introduction Objectives li;,:overy of Sub-atomic Particles Earlier Atom Models Light as clectromagnetic Wave Failures of Classical Physics Black Body Radiation '1 Heat Capacity Variation Photoelectric Effect Atomic Spectra Planck's Quantum Theory, Black Body ~diation. and Heat Capacity Variation Einstein's Theory of Photoelectric Effect Bohr Atom Model Calculation of Radius of Orbits Energy of an Electron in an Orbit Atomic Spectra and Bohr's Theory Critical Analysis of Bohr's Theory Refinements in the Atomic Spectra The61-y Summary Terminal Questions Answers 1.1 INTRODUCTION The ideas of classical mechanics developed by Galileo, Kepler and Newton, when applied to atomic and molecular systems were found to be inadequate. Need was felt for a theory to describe, correlate and predict the behaviour of the sub-atomic particles. The quantum theory, proposed by Max Planck and applied by Einstein and Bohr to explain different aspects of behaviour of matter, is an important milestone in the formulation of the modern concept of atom. In this unit, we will study how black body radiation, heat capacity variation, photoelectric effect and atomic spectra of hydrogen can be explained on the basis of theories proposed by Max Planck, Einstein and Bohr. They based their theories on the postulate that all interactions between matter and radiation occur in terms of definite packets of energy, known as quanta. Their ideas, when extended further, led to the evolution of wave mechanics, which shows the dual nature of matter
    [Show full text]
  • Forced Mechanical Oscillations
    169 Carl von Ossietzky Universität Oldenburg – Faculty V - Institute of Physics Module Introductory laboratory course physics – Part I Forced mechanical oscillations Keywords: HOOKE's law, harmonic oscillation, harmonic oscillator, eigenfrequency, damped harmonic oscillator, resonance, amplitude resonance, energy resonance, resonance curves References: /1/ DEMTRÖDER, W.: „Experimentalphysik 1 – Mechanik und Wärme“, Springer-Verlag, Berlin among others. /2/ TIPLER, P.A.: „Physik“, Spektrum Akademischer Verlag, Heidelberg among others. /3/ ALONSO, M., FINN, E. J.: „Fundamental University Physics, Vol. 1: Mechanics“, Addison-Wesley Publishing Company, Reading (Mass.) among others. 1 Introduction It is the object of this experiment to study the properties of a „harmonic oscillator“ in a simple mechanical model. Such harmonic oscillators will be encountered in different fields of physics again and again, for example in electrodynamics (see experiment on electromagnetic resonant circuit) and atomic physics. Therefore it is very important to understand this experiment, especially the importance of the amplitude resonance and phase curves. 2 Theory 2.1 Undamped harmonic oscillator Let us observe a set-up according to Fig. 1, where a sphere of mass mK is vertically suspended (x-direc- tion) on a spring. Let us neglect the effects of friction for the moment. When the sphere is at rest, there is an equilibrium between the force of gravity, which points downwards, and the dragging resilience which points upwards; the centre of the sphere is then in the position x = 0. A deflection of the sphere from its equilibrium position by x causes a proportional dragging force FR opposite to x: (1) FxR ∝− The proportionality constant (elastic or spring constant or directional quantity) is denoted D, and Eq.
    [Show full text]
  • The Damped Harmonic Oscillator
    THE DAMPED HARMONIC OSCILLATOR Reading: Main 3.1, 3.2, 3.3 Taylor 5.4 Giancoli 14.7, 14.8 Free, undamped oscillators – other examples k m L No friction I C k m q 1 x m!x! = !kx q!! = ! q LC ! ! r; r L = θ Common notation for all g !! 2 T ! " # ! !!! + " ! = 0 m L 0 mg k friction m 1 LI! + q + RI = 0 x C 1 Lq!!+ q + Rq! = 0 C m!x! = !kx ! bx! ! r L = cm θ Common notation for all g !! ! 2 T ! " # ! # b'! !!! + 2"!! +# ! = 0 m L 0 mg Natural motion of damped harmonic oscillator Force = mx˙˙ restoring force + resistive force = mx˙˙ ! !kx ! k Need a model for this. m Try restoring force proportional to velocity k m x !bx! How do we choose a model? Physically reasonable, mathematically tractable … Validation comes IF it describes the experimental system accurately Natural motion of damped harmonic oscillator Force = mx˙˙ restoring force + resistive force = mx˙˙ !kx ! bx! = m!x! ! Divide by coefficient of d2x/dt2 ! and rearrange: x 2 x 2 x 0 !!+ ! ! + " 0 = inverse time β and ω0 (rate or frequency) are generic to any oscillating system This is the notation of TM; Main uses γ = 2β. Natural motion of damped harmonic oscillator 2 x˙˙ + 2"x˙ +#0 x = 0 Try x(t) = Ce pt C, p are unknown constants ! x˙ (t) = px(t), x˙˙ (t) = p2 x(t) p2 2 p 2 x(t) 0 Substitute: ( + ! + " 0 ) = ! 2 2 Now p is known (and p = !" ± " ! # 0 there are 2 p values) p t p t x(t) = Ce + + C'e " Must be sure to make x real! ! Natural motion of damped HO Can identify 3 cases " < #0 underdamped ! " > #0 overdamped ! " = #0 critically damped time ---> ! underdamped " < #0 # 2 !1 = ! 0 1" 2 ! 0 ! time ---> 2 2 p = !" ± " ! # 0 = !" ± i#1 x(t) = Ce"#t+i$1t +C*e"#t"i$1t Keep x(t) real "#t x(t) = Ae [cos($1t +%)] complex <-> amp/phase System oscillates at "frequency" ω1 (very close to ω0) ! - but in fact there is not only one single frequency associated with the motion as we will see.
    [Show full text]
  • VIBRATIONAL SPECTROSCOPY • the Vibrational Energy V(R) Can Be Calculated Using the (Classical) Model of the Harmonic Oscillator
    VIBRATIONAL SPECTROSCOPY • The vibrational energy V(r) can be calculated using the (classical) model of the harmonic oscillator: • Using this potential energy function in the Schrödinger equation, the vibrational frequency can be calculated: The vibrational frequency is increasing with: • increasing force constant f = increasing bond strength • decreasing atomic mass • Example: f cc > f c=c > f c-c Vibrational spectra (I): Harmonic oscillator model • Infrared radiation in the range from 10,000 – 100 cm –1 is absorbed and converted by an organic molecule into energy of molecular vibration –> this absorption is quantized: A simple harmonic oscillator is a mechanical system consisting of a point mass connected to a massless spring. The mass is under action of a restoring force proportional to the displacement of particle from its equilibrium position and the force constant f (also k in followings) of the spring. MOLECULES I: Vibrational We model the vibrational motion as a harmonic oscillator, two masses attached by a spring. nu and vee! Solving the Schrödinger equation for the 1 v h(v 2 ) harmonic oscillator you find the following quantized energy levels: v 0,1,2,... The energy levels The level are non-degenerate, that is gv=1 for all values of v. The energy levels are equally spaced by hn. The energy of the lowest state is NOT zero. This is called the zero-point energy. 1 R h Re 0 2 Vibrational spectra (III): Rotation-vibration transitions The vibrational spectra appear as bands rather than lines. When vibrational spectra of gaseous diatomic molecules are observed under high-resolution conditions, each band can be found to contain a large number of closely spaced components— band spectra.
    [Show full text]
  • Harmonic Oscillator with Time-Dependent Effective-Mass And
    Harmonic oscillator with time-dependent effective-mass and frequency with a possible application to 'chirped tidal' gravitational waves forces affecting interferometric detectors Yacob Ben-Aryeh Physics Department, Technion-Israel Institute of Technology, Haifa,32000,Israel e-mail: [email protected] ; Fax: 972-4-8295755 Abstract The general theory of time-dependent frequency and time-dependent mass ('effective mass') is described. The general theory for time-dependent harmonic-oscillator is applied in the present research for studying certain quantum effects in the interferometers for detecting gravitational waves. When an astronomical binary system approaches its point of coalescence the gravitational wave intensity and frequency are increasing and this can lead to strong deviations from the simple description of harmonic oscillations for the interferometric masses on which the mirrors are placed. It is shown that under such conditions the harmonic oscillations of these masses can be described by mechanical harmonic-oscillators with time- dependent frequency and effective-mass. In the present theoretical model the effective- mass is decreasing with time describing pumping phenomena in which the oscillator amplitude is increasing with time. The quantization of this system is analyzed by the use of the adiabatic approximation. It is found that the increase of the gravitational wave intensity, within the adiabatic approximation, leads to squeezing phenomena where the quantum noise in one quadrature is increased and in the other quadrature it is decreased. PACS numbers: 04.80.Nn, 03.65.Bz, 42.50.Dv. Keywords: Gravitational waves, harmonic-oscillator with time-dependent effective- mass 1 1.Introduction The problem of harmonic-oscillator with time-dependent mass has been related to a quantum damped oscillator [1-7].
    [Show full text]
  • Quantum Mechanics in One Dimension
    Solved Problems on Quantum Mechanics in One Dimension Charles Asman, Adam Monahan and Malcolm McMillan Department of Physics and Astronomy University of British Columbia, Vancouver, British Columbia, Canada Fall 1999; revised 2011 by Malcolm McMillan Given here are solutions to 15 problems on Quantum Mechanics in one dimension. The solutions were used as a learning-tool for students in the introductory undergraduate course Physics 200 Relativity and Quanta given by Malcolm McMillan at UBC during the 1998 and 1999 Winter Sessions. The solutions were prepared in collaboration with Charles Asman and Adam Monaham who were graduate students in the Department of Physics at the time. The problems are from Chapter 5 Quantum Mechanics in One Dimension of the course text Modern Physics by Raymond A. Serway, Clement J. Moses and Curt A. Moyer, Saunders College Publishing, 2nd ed., (1997). Planck's Constant and the Speed of Light. When solving numerical problems in Quantum Mechanics it is useful to note that the product of Planck's constant h = 6:6261 × 10−34 J s (1) and the speed of light c = 2:9979 × 108 m s−1 (2) is hc = 1239:8 eV nm = 1239:8 keV pm = 1239:8 MeV fm (3) where eV = 1:6022 × 10−19 J (4) Also, ~c = 197:32 eV nm = 197:32 keV pm = 197:32 MeV fm (5) where ~ = h=2π. Wave Function for a Free Particle Problem 5.3, page 224 A free electron has wave function Ψ(x; t) = sin(kx − !t) (6) •Determine the electron's de Broglie wavelength, momentum, kinetic energy and speed when k = 50 nm−1.
    [Show full text]
  • 22.51 Course Notes, Chapter 9: Harmonic Oscillator
    9. Harmonic Oscillator 9.1 Harmonic Oscillator 9.1.1 Classical harmonic oscillator and h.o. model 9.1.2 Oscillator Hamiltonian: Position and momentum operators 9.1.3 Position representation 9.1.4 Heisenberg picture 9.1.5 Schr¨odinger picture 9.2 Uncertainty relationships 9.3 Coherent States 9.3.1 Expansion in terms of number states 9.3.2 Non-Orthogonality 9.3.3 Uncertainty relationships 9.3.4 X-representation 9.4 Phonons 9.4.1 Harmonic oscillator model for a crystal 9.4.2 Phonons as normal modes of the lattice vibration 9.4.3 Thermal energy density and Specific Heat 9.1 Harmonic Oscillator We have considered up to this moment only systems with a finite number of energy levels; we are now going to consider a system with an infinite number of energy levels: the quantum harmonic oscillator (h.o.). The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of evenly spaced energy levels. The energy difference between two consecutive levels is ∆E. The number of levels is infinite, but there must exist a minimum energy, since the energy must always be positive. Given this spectrum, we expect the Hamiltonian will have the form 1 n = n + ~ω n , H | i 2 | i where each level in the ladder is identified by a number n. The name of the model is due to the analogy with characteristics of classical h.o., which we will review first. 9.1.1 Classical harmonic oscillator and h.o.
    [Show full text]
  • Class 2: Operators, Stationary States
    Class 2: Operators, stationary states Operators In quantum mechanics much use is made of the concept of operators. The operator associated with position is the position vector r. As shown earlier the momentum operator is −iℏ ∇ . The operators operate on the wave function. The kinetic energy operator, T, is related to the momentum operator in the same way that kinetic energy and momentum are related in classical physics: p⋅ p (−iℏ ∇⋅−) ( i ℏ ∇ ) −ℏ2 ∇ 2 T = = = . (2.1) 2m 2 m 2 m The potential energy operator is V(r). In many classical systems, the Hamiltonian of the system is equal to the mechanical energy of the system. In the quantum analog of such systems, the mechanical energy operator is called the Hamiltonian operator, H, and for a single particle ℏ2 HTV= + =− ∇+2 V . (2.2) 2m The Schrödinger equation is then compactly written as ∂Ψ iℏ = H Ψ , (2.3) ∂t and has the formal solution iHt Ψ()r,t = exp − Ψ () r ,0. (2.4) ℏ Note that the order of performing operations is important. For example, consider the operators p⋅ r and r⋅ p . Applying the first to a wave function, we have (pr⋅) Ψ=−∇⋅iℏ( r Ψ=−) i ℏ( ∇⋅ rr) Ψ− i ℏ( ⋅∇Ψ=−) 3 i ℏ Ψ+( rp ⋅) Ψ (2.5) We see that the operators are not the same. Because the result depends on the order of performing the operations, the operator r and p are said to not commute. In general, the expectation value of an operator Q is Q=∫ Ψ∗ (r, tQ) Ψ ( r , td) 3 r .
    [Show full text]
  • Exact Solution for the Nonlinear Pendulum (Solu¸C˜Aoexata Do Pˆendulon˜Aolinear)
    Revista Brasileira de Ensino de F¶³sica, v. 29, n. 4, p. 645-648, (2007) www.sb¯sica.org.br Notas e Discuss~oes Exact solution for the nonlinear pendulum (Solu»c~aoexata do p^endulon~aolinear) A. Bel¶endez1, C. Pascual, D.I. M¶endez,T. Bel¶endezand C. Neipp Departamento de F¶³sica, Ingenier¶³ade Sistemas y Teor¶³ade la Se~nal,Universidad de Alicante, Alicante, Spain Recebido em 30/7/2007; Aceito em 28/8/2007 This paper deals with the nonlinear oscillation of a simple pendulum and presents not only the exact formula for the period but also the exact expression of the angular displacement as a function of the time, the amplitude of oscillations and the angular frequency for small oscillations. This angular displacement is written in terms of the Jacobi elliptic function sn(u;m) using the following initial conditions: the initial angular displacement is di®erent from zero while the initial angular velocity is zero. The angular displacements are plotted using Mathematica, an available symbolic computer program that allows us to plot easily the function obtained. As we will see, even for amplitudes as high as 0.75¼ (135±) it is possible to use the expression for the angular displacement, but considering the exact expression for the angular frequency ! in terms of the complete elliptic integral of the ¯rst kind. We can conclude that for amplitudes lower than 135o the periodic motion exhibited by a simple pendulum is practically harmonic but its oscillations are not isochronous (the period is a function of the initial amplitude).
    [Show full text]
  • Solving the Harmonic Oscillator Equation
    Solving the Harmonic Oscillator Equation Morgan Root NCSU Department of Math Spring-Mass System Consider a mass attached to a wall by means of a spring. Define y=0 to be the equilibrium position of the block. y(t) will be a measure of the displacement from this equilibrium at a given time. Take dy(0) y(0) = y0 and dt = v0. Basic Physical Laws Newton’s Second Law of motion states tells us that the acceleration of an object due to an applied force is in the direction of the force and inversely proportional to the mass being moved. This can be stated in the familiar form: Fnet = ma In the one dimensional case this can be written as: Fnet = m&y& Relevant Forces Hooke’s Law (k is FH = −ky called Hooke’s constant) Friction is a force that FF = −cy& opposes motion. We assume a friction proportional to velocity. Harmonic Oscillator Assuming there are no other forces acting on the system we have what is known as a Harmonic Oscillator or also known as the Spring-Mass- Dashpot. Fnet = FH + FF or m&y&(t) = −ky(t) − cy&(t) Solving the Simple Harmonic System m&y&(t) + cy&(t) + ky(t) = 0 If there is no friction, c=0, then we have an “Undamped System”, or a Simple Harmonic Oscillator. We will solve this first. m&y&(t) + ky(t) = 0 Simple Harmonic Oscillator k Notice that we can take K = m and look at the system: &y&(t) = −Ky(t) We know at least two functions that will solve this equation.
    [Show full text]
  • On a Classical Limit for Electronic Degrees of Freedom That Satisfies the Pauli Exclusion Principle
    On a classical limit for electronic degrees of freedom that satisfies the Pauli exclusion principle R. D. Levine* The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel; and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095 Contributed by R. D. Levine, December 10, 1999 Fermions need to satisfy the Pauli exclusion principle: no two can taken into account, this starting point is not necessarily a be in the same state. This restriction is most compactly expressed limitation. There are at least as many orbitals (or, strictly in a second quantization formalism by the requirement that the speaking, spin orbitals) as there are electrons, but there can creation and annihilation operators of the electrons satisfy anti- easily be more orbitals than electrons. There are usually more commutation relations. The usual classical limit of quantum me- states than orbitals, and in the model of quantum dots that chanics corresponds to creation and annihilation operators that motivated this work, the number of spin orbitals is twice the satisfy commutation relations, as for a harmonic oscillator. We number of sites. For the example of 19 sites, there are 38 discuss a simple classical limit for Fermions. This limit is shown to spin-orbitals vs. 2,821,056,160 doublet states. correspond to an anharmonic oscillator, with just one bound The point of the formalism is that it ensures that the Pauli excited state. The vibrational quantum number of this anharmonic exclusion principle is satisfied, namely that no more than one oscillator, which is therefore limited to the range 0 to 1, is the electron occupies any given spin-orbital.
    [Show full text]
  • Notes on the Critically Damped Harmonic Oscillator Physics 2BL - David Kleinfeld
    Notes on the Critically Damped Harmonic Oscillator Physics 2BL - David Kleinfeld We often have to build an electrical or mechanical device. An understand- ing of physics may help in the design and tuning of such a device. Here, we consider a critically damped spring oscillator as a model design for the shock absorber of a car. We consider a mass, denoted m, that is connected to a spring with spring constant k, so that the restoring force is F =-kx, and which moves in a lossy manner so that the frictional force is F =-bv =-bx˙. Prof. Newton tells us that F = mx¨ = −kx − bx˙ (1) Thus k b x¨ + x + x˙ = 0 (2) m m The two reduced constants are the natural frequency k ω = (3) 0 m and the decay constant b α = (4) m so that we need to consider 2 x¨ + ω0x + αx˙ = 0 (5) The above equation describes simple harmonic motion with loss. It is dis- cussed in lots of text books, but I want to consider a formulation of the solution that is most natural for critical damping. We know that when the damping constant is zero, i.e., α = 0, the solution 2 ofx ¨ + ω0x = 0 is given by: − x(t)=Ae+iω0t + Be iω0t (6) where A and B are constants that are found from the initial conditions, i.e., x(0) andx ˙(0). In a nut shell, the system oscillates forever. 1 We know that when the the natural frequency is zero, i.e., ω0 = 0, the solution ofx ¨ + αx˙ = 0 is given by: x˙(t)=Ae−αt (7) and 1 − e−αt x(t)=A + B (8) α where A and B are constants that are found from the initial conditions.
    [Show full text]