Chapter 4 Time–Independent Schrödinger Equation

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Time–Independent Schrödinger Equation Chapter 4 Time{Independent Schr¨odinger Equation 4.1 Stationary States We consider again the time dependent Schr¨odingerequation (Prop. 2.1) @ 2 i (t; x) = − ~ ∆ + V (x) (t; x) = H (t; x) ; (4.1) ~ @t 2m where the potential in the Hamiltonian is assumed to be time independent V = V (x). We calculate the solutions of this equation by using the method of separation of variables, i.e. we make the following ansatz for the solution (t; x): (t; x) = (x) f(t) (4.2) and insert it into the time dependent Schr¨odingerequation, Eq. (4.1), @ f(t) 2 @2 (x) 1 i (x) = − ~ f(t) + V (x) (x)f(t) j · ~ @t 2m @x2 (x) f(t) 1 df(t) 2 1 d2 (x) i = − ~ + V (x) : (4.3) ~ f(t) dt 2m (x) dx2 Since now the left hand side in Eq. (4.3) is only dependent on t and the right hand side only on x, both sides must be equal to a constant, which we will call E, and we can thus solve each side independently. The left side yields 1 df(t) df i i~ = E ) = − E dt f(t) dt f ~ i ) ln(f) = − E t + const. ) f = const. e−i E t =~ : (4.4) ~ The constant in Eq. (4.4) will later on be absorbed into (x). 69 70 CHAPTER 4. TIME{INDEPENDENT SCHRODINGER¨ EQUATION Then multiplying the right side of Eq. (4.3) with (x) we get 2 1 d2 (x) 2 d2 (x) − ~ + V (x) = E ) − ~ + V (x) (x) = E (x) : (4.5) 2m (x) dx2 2m dx2 | {z } H (x) The operators on the left express the Hamiltonian H acting on (x), which represents the time independent Schr¨odingerequation. Theorem 4.1 (Time-independent Schr¨odingerequation) H (x) = E (x) 2 ~ where H = − 2m ∆ + V (x) is the Hamiltonian Definition 4.1 A state is called stationary, if it is represented by the wave function (t; x) = (x) e−i E t=~ . For such states the probability density is time independent j (t; x)j2 = ∗(x) (x) ei E t=~ e−i E t=~ = j (x)j2 : (4.6) | {z } 1 The expectation values of observables A(X; P ) are time independent as well Z @ h A(X; P ) i = dx ∗(x) ei E t=~ A(x; −i ) (x) e−i E t=~ ~@x Z @ = dx ∗(x) A(x; −i ) (x) : (4.7) ~@x Remark I: As a consequence, the eigenvalues of the Hamiltonian, which are the possible energy levels of the system, are clearly time independent. To see it, just take H(X; P ) instead of A(X; P ) in Eq. (4.7) and use the time- independent Schr¨odingerequation (Theorem 4.1) Z Z Z h H(X; P ) i = dx ∗(x) H (x) = dx ∗(x) E (x) = E dx ∗(x) (x) : (4.8) | {z } < 1 4.1. STATIONARY STATES 71 Remark II: The normalization of the wavefunction will restrict the possible values of the constant E, the energy of the system, in the Schr¨odingerequation. Two more interesting features about stationary states and the corresponding energies will be formulated here in the form of two lemmata, whose proofs we will leave as exercises. Lemma 4.1 For normalizable solutions (x) of the Schr¨odinger equation the energy E must be real, E 2 R. Lemma 4.2 Solutions (x) of the time-independent Schr¨odinger equation can always be chosen to be real. Definition 4.2 The parity operator P acting on a function f(x) changes the sign of its argument: P f(x) = f(−x) . We conclude that even and odd functions are eigenfunctions of the parity operator P even = + even P odd = − odd ; (4.9) which we will use in the following theorem that will be helpful later on. Theorem 4.2 For a symmetric potential V (x) = V (−x) a basis of states can be chosen, that consists entirely of even and odd functions. even(x) = (x) + (−x) odd(x) = (x) − (−x) The proof for this theorem will be left as an exercise too. 72 CHAPTER 4. TIME{INDEPENDENT SCHRODINGER¨ EQUATION 4.2 Schr¨odingerEquation as Eigenvalue Equation A subject concerning the time-independent Schr¨odingerequation we have not yet touched is its interpretation as an eigenvalue equation. Clearly, from its form we see that stationary states j i are eigenvectors/eigenfunctions of the Hamiltonian H with eigenvalues E H j i = E j i : (4.10) It implies the exact determination of the energy E. A stationary state has a precisely defined energy. Calculating the expectation value of the Hamiltonian for a stationary system just gives h H i = h j H j i = h j E j i = E h j i = E: (4.11) Consequently, there is no energy uncertainty ∆E for these states q p ∆E = ∆H = h H2 i − h H i2 = E2 − E2 = 0 : (4.12) Generally eigenvalue equations for linear operators take the form A j φ i = a j φ i ; (4.13) where a is an eigenvalue of the linear operator A with corresponding eigenvector j φ i. For hermitian operators there exist important statements about their eigenvalues and eigenfunctions. Theorem 4.3 The eigenvalues of hermitian operators are real and the eigenvectors corre- sponding to different eigenvalues are orthogonal. The proof is easy and again left as an exercise. The above theorem is vitally important for the spectrum fEng of the Hamiltonian, which is thereby guaranteed to be real H j n i = En j n i : (4.14) Using our notation j n i ≡ j n i the orthogonality and completeness relations (re- member equations (3.25) and (3.26)) can be written as X h n j m i = δnm j n i h n j = 1 : (4.15) n 4.3. EXPANSION INTO STATIONARY STATES 73 4.3 Expansion into Stationary States Using the spectral theorem (Theorem 3.1) we can then expand a given state into a com- plete orthonormal system of energy eigenstates j n i exactly as outlined in Section 3.3.1 X j i = cn j n i cn = h n j i : (4.16) n By inserting a continous CONS of position eigenstates (Eq. (3.32)) into the transition amplidute the expansion coefficients cn can be rewritten as Z Z ∗ cn = h n j i = dx h n j x i h x j i = dx n(x) (x) : (4.17) We can now extend the expansion from the time independent case to the time depen- dent one. We just remember the time dependent Schr¨odingerequation @ i (t; x) = H (t; x) ; (4.18) ~ @t with a particular solution −i En t=~ n(t; x) = n(x) e : (4.19) The general solution is then a superposition of particular solutions X −i En t=~ (t; x) = cn n(x) e : (4.20) n The expansion coefficients can easily be computed by setting t = 0 and taking the scalar product with m(x) Z Z ∗ ∗ X −i En 0=~ dx (x) (0; x) = dx (x) cn n(x) e m m | {z } n 1 Z X ∗ h m j (t = 0) i = cn dx m(x) n(x) : n | {z } δmn Thus the expansion coefficients are given by cn = h n j (t = 0) i : (4.21) Physical interpretation of the expansion coefficients: Let's consider an observable A with eigenstates n and eigenvalues an A j n i = an j n i : (4.22) If a system is in an eigenstate of this observable the expectation value (in this state) is equal to the corresponding eigenvalue h A i = h n j A j n i = an h n j n i = an : (4.23) 74 CHAPTER 4. TIME{INDEPENDENT SCHRODINGER¨ EQUATION Thus a measurement of the observable always produces the result an which implies that the uncertainty of the observable vanishes for this state ∆A = 0. Furthermore the measurement leaves the state unchanged, the system remains in the eigenstate A j n i −! j n i : (4.24) If the system, however, is in a general state j i, which is a superposition of eigenstates, the expectation value is given by the sum of all eigenvalues, weighted with the modulus squared of the expansion coefficients X X h A i = h j A j i = h cm m j A j cn n i n m X X ∗ X 2 = cm cn an h m j n i = jcnj an : n m | {z } n δmn (4.25) The expansion coefficients cn = h n j i can thus be regarded as a probability am- plitude for the transition from a state to an eigenstate n when the corresponding observable is measured. The actual transition probability is given by its modulus squared 2 jcnj { the probability for measuring the result an { which also obeys X 2 jcnj = 1 : (4.26) n So a measurement of an observable in a general state changes the state to one of the eigenstates of the observable. This process is often called the reduction or collaps of the wave function A j i −! j n i : (4.27) 4.4 Infinite Potential Well Our goal in the next sections is to calculate the energy eigenvalues and eigenfunctions for several Hamiltonians, i.e. for several potentials. Let us begin with the infinite potential well, represented by the potential V (x), as illustrated in Fig. 4.1, such that 0 for x 2 [ 0 ;L ] V (x) = (4.28) 1 else This means that the quantum object is limited to a certain region between x = 0 and x = L where it moves freely but cannot ever leave.
Recommended publications
  • Unit 1 Old Quantum Theory
    UNIT 1 OLD QUANTUM THEORY Structure Introduction Objectives li;,:overy of Sub-atomic Particles Earlier Atom Models Light as clectromagnetic Wave Failures of Classical Physics Black Body Radiation '1 Heat Capacity Variation Photoelectric Effect Atomic Spectra Planck's Quantum Theory, Black Body ~diation. and Heat Capacity Variation Einstein's Theory of Photoelectric Effect Bohr Atom Model Calculation of Radius of Orbits Energy of an Electron in an Orbit Atomic Spectra and Bohr's Theory Critical Analysis of Bohr's Theory Refinements in the Atomic Spectra The61-y Summary Terminal Questions Answers 1.1 INTRODUCTION The ideas of classical mechanics developed by Galileo, Kepler and Newton, when applied to atomic and molecular systems were found to be inadequate. Need was felt for a theory to describe, correlate and predict the behaviour of the sub-atomic particles. The quantum theory, proposed by Max Planck and applied by Einstein and Bohr to explain different aspects of behaviour of matter, is an important milestone in the formulation of the modern concept of atom. In this unit, we will study how black body radiation, heat capacity variation, photoelectric effect and atomic spectra of hydrogen can be explained on the basis of theories proposed by Max Planck, Einstein and Bohr. They based their theories on the postulate that all interactions between matter and radiation occur in terms of definite packets of energy, known as quanta. Their ideas, when extended further, led to the evolution of wave mechanics, which shows the dual nature of matter
    [Show full text]
  • Quantum Theory of the Hydrogen Atom
    Quantum Theory of the Hydrogen Atom Chemistry 35 Fall 2000 Balmer and the Hydrogen Spectrum n 1885: Johann Balmer, a Swiss schoolteacher, empirically deduced a formula which predicted the wavelengths of emission for Hydrogen: l (in Å) = 3645.6 x n2 for n = 3, 4, 5, 6 n2 -4 •Predicts the wavelengths of the 4 visible emission lines from Hydrogen (which are called the Balmer Series) •Implies that there is some underlying order in the atom that results in this deceptively simple equation. 2 1 The Bohr Atom n 1913: Niels Bohr uses quantum theory to explain the origin of the line spectrum of hydrogen 1. The electron in a hydrogen atom can exist only in discrete orbits 2. The orbits are circular paths about the nucleus at varying radii 3. Each orbit corresponds to a particular energy 4. Orbit energies increase with increasing radii 5. The lowest energy orbit is called the ground state 6. After absorbing energy, the e- jumps to a higher energy orbit (an excited state) 7. When the e- drops down to a lower energy orbit, the energy lost can be given off as a quantum of light 8. The energy of the photon emitted is equal to the difference in energies of the two orbits involved 3 Mohr Bohr n Mathematically, Bohr equated the two forces acting on the orbiting electron: coulombic attraction = centrifugal accelleration 2 2 2 -(Z/4peo)(e /r ) = m(v /r) n Rearranging and making the wild assumption: mvr = n(h/2p) n e- angular momentum can only have certain quantified values in whole multiples of h/2p 4 2 Hydrogen Energy Levels n Based on this model, Bohr arrived at a simple equation to calculate the electron energy levels in hydrogen: 2 En = -RH(1/n ) for n = 1, 2, 3, 4, .
    [Show full text]
  • The Concept of Quantum State : New Views on Old Phenomena Michel Paty
    The concept of quantum state : new views on old phenomena Michel Paty To cite this version: Michel Paty. The concept of quantum state : new views on old phenomena. Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner. Revisiting the Founda- tions of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, p. 451-478, 2003. halshs-00189410 HAL Id: halshs-00189410 https://halshs.archives-ouvertes.fr/halshs-00189410 Submitted on 20 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « The concept of quantum state: new views on old phenomena », in Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner (eds.), Revisiting the Foundations of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, 451-478. , 2003 The concept of quantum state : new views on old phenomena par Michel PATY* ABSTRACT. Recent developments in the area of the knowledge of quantum systems have led to consider as physical facts statements that appeared formerly to be more related to interpretation, with free options.
    [Show full text]
  • Vibrational Quantum Number
    Fundamentals in Biophotonics Quantum nature of atoms, molecules – matter Aleksandra Radenovic [email protected] EPFL – Ecole Polytechnique Federale de Lausanne Bioengineering Institute IBI 26. 03. 2018. Quantum numbers •The four quantum numbers-are discrete sets of integers or half- integers. –n: Principal quantum number-The first describes the electron shell, or energy level, of an atom –ℓ : Orbital angular momentum quantum number-as the angular quantum number or orbital quantum number) describes the subshell, and gives the magnitude of the orbital angular momentum through the relation Ll2 ( 1) –mℓ:Magnetic (azimuthal) quantum number (refers, to the direction of the angular momentum vector. The magnetic quantum number m does not affect the electron's energy, but it does affect the probability cloud)- magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field-Zeeman effect -s spin- intrinsic angular momentum Spin "up" and "down" allows two electrons for each set of spatial quantum numbers. The restrictions for the quantum numbers: – n = 1, 2, 3, 4, . – ℓ = 0, 1, 2, 3, . , n − 1 – mℓ = − ℓ, − ℓ + 1, . , 0, 1, . , ℓ − 1, ℓ – –Equivalently: n > 0 The energy levels are: ℓ < n |m | ≤ ℓ ℓ E E 0 n n2 Stern-Gerlach experiment If the particles were classical spinning objects, one would expect the distribution of their spin angular momentum vectors to be random and continuous. Each particle would be deflected by a different amount, producing some density distribution on the detector screen. Instead, the particles passing through the Stern–Gerlach apparatus are deflected either up or down by a specific amount.
    [Show full text]
  • Bouncing Oil Droplets, De Broglie's Quantum Thermostat And
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2018 doi:10.20944/preprints201808.0475.v1 Peer-reviewed version available at Entropy 2018, 20, 780; doi:10.3390/e20100780 Article Bouncing oil droplets, de Broglie’s quantum thermostat and convergence to equilibrium Mohamed Hatifi 1, Ralph Willox 2, Samuel Colin 3 and Thomas Durt 4 1 Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249,13013 Marseille, France; hatifi[email protected] 2 Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8914 Tokyo, Japan; [email protected] 3 Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150,22290-180, Rio de Janeiro – RJ, Brasil; [email protected] 4 Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249,13013 Marseille, France; [email protected] Abstract: Recently, the properties of bouncing oil droplets, also known as ‘walkers’, have attracted much attention because they are thought to offer a gateway to a better understanding of quantum behaviour. They indeed constitute a macroscopic realization of wave-particle duality, in the sense that their trajectories are guided by a self-generated surrounding wave. The aim of this paper is to try to describe walker phenomenology in terms of de Broglie-Bohm dynamics and of a stochastic version thereof. In particular, we first study how a stochastic modification of the de Broglie pilot-wave theory, à la Nelson, affects the process of relaxation to quantum equilibrium, and we prove an H-theorem for the relaxation to quantum equilibrium under Nelson-type dynamics.
    [Show full text]
  • The Quantum Mechanical Model of the Atom
    The Quantum Mechanical Model of the Atom Quantum Numbers In order to describe the probable location of electrons, they are assigned four numbers called quantum numbers. The quantum numbers of an electron are kind of like the electron’s “address”. No two electrons can be described by the exact same four quantum numbers. This is called The Pauli Exclusion Principle. • Principle quantum number: The principle quantum number describes which orbit the electron is in and therefore how much energy the electron has. - it is symbolized by the letter n. - positive whole numbers are assigned (not including 0): n=1, n=2, n=3 , etc - the higher the number, the further the orbit from the nucleus - the higher the number, the more energy the electron has (this is sort of like Bohr’s energy levels) - the orbits (energy levels) are also called shells • Angular momentum (azimuthal) quantum number: The azimuthal quantum number describes the sublevels (subshells) that occur in each of the levels (shells) described above. - it is symbolized by the letter l - positive whole number values including 0 are assigned: l = 0, l = 1, l = 2, etc. - each number represents the shape of a subshell: l = 0, represents an s subshell l = 1, represents a p subshell l = 2, represents a d subshell l = 3, represents an f subshell - the higher the number, the more complex the shape of the subshell. The picture below shows the shape of the s and p subshells: (notice the electron clouds) • Magnetic quantum number: All of the subshells described above (except s) have more than one orientation.
    [Show full text]
  • Entanglement of the Uncertainty Principle
    Open Journal of Mathematics and Physics | Volume 2, Article 127, 2020 | ISSN: 2674-5747 https://doi.org/10.31219/osf.io/9jhwx | published: 26 Jul 2020 | https://ojmp.org EX [original insight] Diamond Open Access Entanglement of the Uncertainty Principle Open Quantum Collaboration∗† August 15, 2020 Abstract We propose that position and momentum in the uncertainty principle are quantum entangled states. keywords: entanglement, uncertainty principle, quantum gravity The most updated version of this paper is available at https://osf.io/9jhwx/download Introduction 1. [1] 2. Logic leads us to conclude that quantum gravity–the theory of quan- tum spacetime–is the description of entanglement of the quantum states of spacetime and of the extra dimensions (if they really ex- ist) [2–7]. ∗All authors with their affiliations appear at the end of this paper. †Corresponding author: [email protected] | Join the Open Quantum Collaboration 1 Quantum Gravity 3. quantum gravity quantum spacetime entanglement of spacetime 4. Quantum spaceti=me might be in a sup=erposition of the extra dimen- sions [8]. Notation 5. UP Uncertainty Principle 6. UP= the quantum state of the uncertainty principle ∣ ⟩ = Discussion on the notation 7. The universe is mathematical. 8. The uncertainty principle is part of our universe, thus, it is described by mathematics. 9. A physical theory must itself be described within its own notation. 10. Thereupon, we introduce UP . ∣ ⟩ Entanglement 11. UP α1 x1p1 α2 x2p2 α3 x3p3 ... 12. ∣xi ⟩u=ncer∣tainty⟩ +in po∣ sitio⟩n+ ∣ ⟩ + 13. pi = uncertainty in momentum 14. xi=pi xi pi xi pi ∣ ⟩ = ∣ ⟩ ∣ ⟩ = ∣ ⟩ ⊗ ∣ ⟩ 2 Final Remarks 15.
    [Show full text]
  • Path Integral for the Hydrogen Atom
    Path Integral for the Hydrogen Atom Solutions in two and three dimensions Vägintegral för Väteatomen Lösningar i två och tre dimensioner Anders Svensson Faculty of Health, Science and Technology Physics, Bachelor Degree Project 15 ECTS Credits Supervisor: Jürgen Fuchs Examiner: Marcus Berg June 2016 Abstract The path integral formulation of quantum mechanics generalizes the action principle of classical mechanics. The Feynman path integral is, roughly speaking, a sum over all possible paths that a particle can take between fixed endpoints, where each path contributes to the sum by a phase factor involving the action for the path. The resulting sum gives the probability amplitude of propagation between the two endpoints, a quantity called the propagator. Solutions of the Feynman path integral formula exist, however, only for a small number of simple systems, and modifications need to be made when dealing with more complicated systems involving singular potentials, including the Coulomb potential. We derive a generalized path integral formula, that can be used in these cases, for a quantity called the pseudo-propagator from which we obtain the fixed-energy amplitude, related to the propagator by a Fourier transform. The new path integral formula is then successfully solved for the Hydrogen atom in two and three dimensions, and we obtain integral representations for the fixed-energy amplitude. Sammanfattning V¨agintegral-formuleringen av kvantmekanik generaliserar minsta-verkanprincipen fr˚anklassisk meka- nik. Feynmans v¨agintegral kan ses som en summa ¨over alla m¨ojligav¨agaren partikel kan ta mellan tv˚a givna ¨andpunkterA och B, d¨arvarje v¨agbidrar till summan med en fasfaktor inneh˚allandeden klas- siska verkan f¨orv¨agen.Den resulterande summan ger propagatorn, sannolikhetsamplituden att partikeln g˚arfr˚anA till B.
    [Show full text]
  • Analysis of Nonlinear Dynamics in a Classical Transmon Circuit
    Analysis of Nonlinear Dynamics in a Classical Transmon Circuit Sasu Tuohino B. Sc. Thesis Department of Physical Sciences Theoretical Physics University of Oulu 2017 Contents 1 Introduction2 2 Classical network theory4 2.1 From electromagnetic fields to circuit elements.........4 2.2 Generalized flux and charge....................6 2.3 Node variables as degrees of freedom...............7 3 Hamiltonians for electric circuits8 3.1 LC Circuit and DC voltage source................8 3.2 Cooper-Pair Box.......................... 10 3.2.1 Josephson junction.................... 10 3.2.2 Dynamics of the Cooper-pair box............. 11 3.3 Transmon qubit.......................... 12 3.3.1 Cavity resonator...................... 12 3.3.2 Shunt capacitance CB .................. 12 3.3.3 Transmon Lagrangian................... 13 3.3.4 Matrix notation in the Legendre transformation..... 14 3.3.5 Hamiltonian of transmon................. 15 4 Classical dynamics of transmon qubit 16 4.1 Equations of motion for transmon................ 16 4.1.1 Relations with voltages.................. 17 4.1.2 Shunt resistances..................... 17 4.1.3 Linearized Josephson inductance............. 18 4.1.4 Relation with currents................... 18 4.2 Control and read-out signals................... 18 4.2.1 Transmission line model.................. 18 4.2.2 Equations of motion for coupled transmission line.... 20 4.3 Quantum notation......................... 22 5 Numerical solutions for equations of motion 23 5.1 Design parameters of the transmon................ 23 5.2 Resonance shift at nonlinear regime............... 24 6 Conclusions 27 1 Abstract The focus of this thesis is on classical dynamics of a transmon qubit. First we introduce the basic concepts of the classical circuit analysis and use this knowledge to derive the Lagrangians and Hamiltonians of an LC circuit, a Cooper-pair box, and ultimately we derive Hamiltonian for a transmon qubit.
    [Show full text]
  • 5.1 Two-Particle Systems
    5.1 Two-Particle Systems We encountered a two-particle system in dealing with the addition of angular momentum. Let's treat such systems in a more formal way. The w.f. for a two-particle system must depend on the spatial coordinates of both particles as @Ψ well as t: Ψ(r1; r2; t), satisfying i~ @t = HΨ, ~2 2 ~2 2 where H = + V (r1; r2; t), −2m1r1 − 2m2r2 and d3r d3r Ψ(r ; r ; t) 2 = 1. 1 2 j 1 2 j R Iff V is independent of time, then we can separate the time and spatial variables, obtaining Ψ(r1; r2; t) = (r1; r2) exp( iEt=~), − where E is the total energy of the system. Let us now make a very fundamental assumption: that each particle occupies a one-particle e.s. [Note that this is often a poor approximation for the true many-body w.f.] The joint e.f. can then be written as the product of two one-particle e.f.'s: (r1; r2) = a(r1) b(r2). Suppose furthermore that the two particles are indistinguishable. Then, the above w.f. is not really adequate since you can't actually tell whether it's particle 1 in state a or particle 2. This indeterminacy is correctly reflected if we replace the above w.f. by (r ; r ) = a(r ) (r ) (r ) a(r ). 1 2 1 b 2 b 1 2 The `plus-or-minus' sign reflects that there are two distinct ways to accomplish this. Thus we are naturally led to consider two kinds of identical particles, which we have come to call `bosons' (+) and `fermions' ( ).
    [Show full text]
  • 8 the Variational Principle
    8 The Variational Principle 8.1 Approximate solution of the Schroedinger equation If we can’t find an analytic solution to the Schroedinger equation, a trick known as the varia- tional principle allows us to estimate the energy of the ground state of a system. We choose an unnormalized trial function Φ(an) which depends on some variational parameters, an and minimise hΦ|Hˆ |Φi E[a ] = n hΦ|Φi with respect to those parameters. This gives an approximation to the wavefunction whose accuracy depends on the number of parameters and the clever choice of Φ(an). For more rigorous treatments, a set of basis functions with expansion coefficients an may be used. The proof is as follows, if we expand the normalised wavefunction 1/2 |φ(an)i = Φ(an)/hΦ(an)|Φ(an)i in terms of the true (unknown) eigenbasis |ii of the Hamiltonian, then its energy is X X X ˆ 2 2 E[an] = hφ|iihi|H|jihj|φi = |hφ|ii| Ei = E0 + |hφ|ii| (Ei − E0) ≥ E0 ij i i ˆ where the true (unknown) ground state of the system is defined by H|i0i = E0|i0i. The inequality 2 arises because both |hφ|ii| and (Ei − E0) must be positive. Thus the lower we can make the energy E[ai], the closer it will be to the actual ground state energy, and the closer |φi will be to |i0i. If the trial wavefunction consists of a complete basis set of orthonormal functions |χ i, each P i multiplied by ai: |φi = i ai|χii then the solution is exact and we just have the usual trick of expanding a wavefunction in a basis set.
    [Show full text]
  • Path Integrals in Quantum Mechanics
    Path Integrals in Quantum Mechanics Emma Wikberg Project work, 4p Department of Physics Stockholm University 23rd March 2006 Abstract The method of Path Integrals (PI’s) was developed by Richard Feynman in the 1940’s. It offers an alternate way to look at quantum mechanics (QM), which is equivalent to the Schrödinger formulation. As will be seen in this project work, many "elementary" problems are much more difficult to solve using path integrals than ordinary quantum mechanics. The benefits of path integrals tend to appear more clearly while using quantum field theory (QFT) and perturbation theory. However, one big advantage of Feynman’s formulation is a more intuitive way to interpret the basic equations than in ordinary quantum mechanics. Here we give a basic introduction to the path integral formulation, start- ing from the well known quantum mechanics as formulated by Schrödinger. We show that the two formulations are equivalent and discuss the quantum mechanical interpretations of the theory, as well as the classical limit. We also perform some explicit calculations by solving the free particle and the harmonic oscillator problems using path integrals. The energy eigenvalues of the harmonic oscillator is found by exploiting the connection between path integrals, statistical mechanics and imaginary time. Contents 1 Introduction and Outline 2 1.1 Introduction . 2 1.2 Outline . 2 2 Path Integrals from ordinary Quantum Mechanics 4 2.1 The Schrödinger equation and time evolution . 4 2.2 The propagator . 6 3 Equivalence to the Schrödinger Equation 8 3.1 From the Schrödinger equation to PI’s . 8 3.2 From PI’s to the Schrödinger equation .
    [Show full text]