Diptera: Sarcophagidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tachinid Times Issue 29
Walking in the Footsteps of American Frontiersman Daniel Boone The Tachinid Times Issue 29 Exploring Chile Curious case of Girschneria Kentucky tachinids Progress in Iran Tussling with New Zealand February 2016 Table of Contents ARTICLES Update on New Zealand Tachinidae 4 by F.-R. Schnitzler Teratological specimens and the curious case of Girschneria Townsend 7 by J.E. O’Hara Interim report on the project to study the tachinid fauna of Khuzestan, Iran 11 by E. Gilasian, J. Ziegler and M. Parchami-Araghi Tachinidae of the Red River Gorge area of eastern Kentucky 13 by J.E. O’Hara and J.O. Stireman III Landscape dynamics of tachinid parasitoids 18 by D.J. Inclán Tachinid collecting in temperate South America. 20 Expeditions of the World Tachinidae Project. Part III: Chile by J.O. Stireman III, J.E. O’Hara, P. Cerretti and D.J. Inclán 41 Tachinid Photo 42 Tachinid Bibliography 47 Mailing List 51 Original Cartoon 2 The Tachinid Times Issue 29, 2016 The Tachinid Times February 2016, Issue 29 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O’HARA This newsletter accepts submissions on all aspects of tach- InDesign Editor SHANNON J. HENDERSON inid biology and systematics. It is intentionally maintained as a non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful ISSN 1925-3435 (Print) editing and some are (informally) reviewed if the content is thought to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing. -
Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J
Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known. -
Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N. -
Genome and Ontogenetic-Based Transcriptomic Analyses of the Flesh Fly, Sarcophaga Bullata
GENOME REPORT Genome and Ontogenetic-Based Transcriptomic Analyses of the Flesh Fly, Sarcophaga bullata Ellen O. Martinson,*,1,2,3 Justin Peyton,†,2 Yogeshwar D. Kelkar,* Emily C. Jennings,‡ Joshua B. Benoit,‡ John H. Werren,*,4 and David L. Denlinger†,4 *Biology Department, University of Rochester, Rochester, NY 14627, †Departments of Evolution, Ecology and Organismal Biology and Entomology, Ohio State University, Columbus, OH 43210, and ‡Departments of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221 ORCID ID: 0000-0001-9757-6679 (E.O.M.) ABSTRACT The flesh fly, Sarcophaga bullata, is a widely-used model for examining the physiology of KEYWORDS insect diapause, development, stress tolerance, neurobiology, and host-parasitoid interactions. Flies in Diptera this taxon are implicated in myiasis (larval infection of vertebrates) and feed on carrion, aspects that are Sarcophaga important in forensic studies. Here we present the genome of S. bullata, along with developmental- and bullata reproduction-based RNA-Seq analyses. We predict 15,768 protein coding genes, identify orthology in diapause relation to closely related flies, and establish sex and developmental-specific gene sets based on our host-parasitoid RNA-Seq analyses. Genomic sequences, predicted genes, and sequencing data sets have been depos- interactions ited at the National Center for Biotechnology Information. Our results provide groundwork for genomic ontogenesis studies that will expand the flesh fly’s utility as a model system. forensics stress tolerance Sarcophaga bullata Parker (Diptera: Sarcophagidae), sometimes re- in the laboratory, making them useful models for diapause, cold ferred to as Neobellieria bullata (but see Stamper et al., 2012), is a flesh tolerance, and other stress responses. -
The Chemistry of Eavesdropping, Alarm, and Deceit (Semiochemicals/Insects/Parasitoids/Spiders/Tritrophic Interactions) MARK K
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 23-28, January 1995 Colloquium Paper This paper was presented at a coUoquium entitled "Chemical Ecology: The Chemistry of Biotic Interaction, " organized by a committee chaired by Jerrold Meinwald and Thomas Eisner, held March 25 and 26, 1994, at the National Academy of Sciences, Washington, DC. The chemistry of eavesdropping, alarm, and deceit (semiochemicals/insects/parasitoids/spiders/tritrophic interactions) MARK K. STOWE*, TED C. J. TURLINGStt, JOHN H. LOUGHRINt§, W. JOE LEWISI, AND JAMES H. TUMLINSONtil tlnsect Attractants, Behavior, and Basic Biology Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, FL 32604; *Department of Zoology, University of Florida, Gainesville, FL 32611; and lAgricultural Research Service, U.S. Department of Agriculture, Georgia Coastal Plains Experiment Station, P.O. Box 748, Tifton, GA 31793 ABSTRACT Arthropods that prey on or parasitize other host that is the target of the parasitoid. When the target life arthropods frequently employ those chemical cues that reli- stage does not reveal itself by long-distance pheromonal ably indicate the presence of their prey or hosts. Eavesdrop- signals, predators and parasitoids have been forced to adopt ping on the sex pheromone signals emitted to attract mates other strategies. In some systems parasitoids or predators allows many predators and parasitoids to find and attack locate herbivorous prey by exploiting plant signals induced by adult insects. The sex pheromones are also useful signals for the herbivores (5-8). Thus, both the plants and the predators egg parasitoids since eggs are frequently deposited on nearby or parasitoids benefit from this interaction. -
Diversity of the Insect Visitors on Calluna Vulgaris (Ericaceae)
Journal of Insect Science SHORT COMMUNICATION Diversity of the Insect Visitors on Calluna vulgaris (Ericaceae) in Southern France Heathlands Charlotte Descamps,1 Laura Moquet,1 Marc Migon,2 and Anne-Laure Jacquemart1,3 1Research team (genetics, reproduction and populations), Earth and Life Institute, Universite´ catholique de Louvain, Croix du Sud 2 box L7.05.14, B-1348 Louvain-la-Neuve, Belgium. 2Earth and Life Institute, Universite´ catholique de Louvain, Croix du Sud 4-5 box L7.07.13, B-1348 Louvain-la-Neuve, Belgium. 3Corresponding author, e-mail: [email protected] Subject Editor: Johanne Brunet J. Insect Sci. (2015) 15(1): 130; DOI: 10.1093/jisesa/iev116 ABSTRACT. As part of an ongoing research project on the pollination networks in European heathlands, the objective of this study was to assess the insect visitor guild on Calluna vulgaris (L.) Hull (Ericaceae). We focused the study on a region renowned for its largely well-preserved heathlands, the Ce´vennes National Park, Southern France. In 2013, flower visitors were observed over 3 d per site, in four heathland sites at mont Loze`re. Honeybees (Apis mellifera L.) were the main visitors (62–88% of total visitors). Besides honeybees, a high diversity of visitors was detected with 57 different species identified (42 Diptera and 15 Hymenoptera). Hoverflies (Syrphidae, Diptera) visitors were abundant and diverse, especially individuals belonging to the genera Eristalis and Episyrphus. The reported diver- sity of visitors was probably due to the preservation of large heathland areas at mont Loze`re and to the generalist pollination system of C. vulgaris. -
Identification of a Death-Scene Maggot Using Standardized Molecular
orensi f F c R o e l s a e n r a r u Raghavendra et al. J Forensic Res 2011, 2:6 c o h J Journal of Forensic Research DOI: 10.4172/2157-7145.1000133 ISSN: 2157-7145 Reserch Article Open Access Identification of a Death-scene Maggot using Standardized Molecular Methods: Sarcophagabullata Parker 1916 (Sarcophagidae) Out-numbers Blowflies (Calliphoridae) on an Urban Cadaver in Southeastern Texas Rekha Raghavendra1, Christopher P. Randle2 and Sibyl Rae Bucheli2* 1School of Medicine Case Western Reserve University, Cleveland OH, USA 2Department of Biological Sciences Sam Houston State University, Huntsville, TX, USA Abstract In forensic entomology,fly data including maggot age are frequently used to help estimate the time since death.Accurate identification of the maggot to species is critical for time since death estimations. However, within a family, maggots are notoriously difficult to identify to species.In this study, we employ phylogenetic datafrom the mtDNAgenes COI and COII to identify an unknown maggot to species (member of the family Sarcophagidae) harvested from a cadaver in June 2009 in Harrison County, Texas. The most closely related species to our unknown maggot was SarcophagabullataParker 1916, a somewhat common carrion-feeding species in southeastern United States that is now gaininggreater recognition as a forensically significant species. Keywords: Forensic entomology; case study; Sarcophagidae; species were collected despite law enforcement agents reporting the Sarcophagabullata Parker 1916 remains to be in a state of fresh/bloated decomposition.The unknown maggots were identified as members of the family Sarcophagidae Introduction using standard morphological features of the spiracular complex but Decomposition of a large mammalian carcass is greatly accelerated could not be further identified (Peterson 1960). -
Insect Timing and Succession on Buried Carrion in East Lansing, Michigan
INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE Entomology 2012 ABSTRACT INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula This study examined pig carcasses buried at two different depths, 30 and 60 cm, to determine if insects are able to colonize buried carcasses, when they arrive at each depth, and what fauna are present over seven sampling dates to establish an insect succession database on buried carrion in East Lansing, Michigan. Thirty-eight pigs were buried, 18 at 30 cm and 20 at 60 cm. Four control carcasses were placed on the soil surface. Three replicates at each depth were exhumed after 3 days, 7 days, 14 days, 21 days, 30 days, and 60 days. One pig was also exhumed from 60 cm after 90 days and another after 120 days. Sarcophaga bullata (Diptera: Sarcophagidae) and Hydrotaea sp. (Diptera: Muscidae) were found colonizing buried carrion 5 days after burial at 30 cm. Insect succession at 30 cm proceeded with flesh and muscid flies being the first to colonize, followed by blow flies. Insects were able to colonize carcasses at 60 cm and Hydrotaea sp. and Megaselia scalaris (Diptera: Phoridae), were collected 7 days after burial. Insect succession at 60 cm did not proceed similarly as predicted, instead muscid and coffin flies were the only larvae collected. Overall these results reveal post-burial interval (PBI) estimates for forensic investigations in mid-Michigan during the summer, depending on climatic and soil conditions. -
Information on Tachinid Fauna (Diptera, Tachinidae) of the Phasiinae Subfamily in the Far East of Russia
International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019 Information on Tachinid Fauna (Diptera, Tachinidae) Of the Phasiinae Subfamily in the Far East of Russia Markova T.O., Repsh N.V., Belov A.N., Koltun G.G., Terebova S.V. Abstract: For the first time, a comparative analysis of the For example, for the Hemyda hertingi Ziegler et Shima tachinid fauna of the Phasiinae subfamily of the Russian Far species described in the Primorsky Krai in 1996 for the first East with the fauna of neighboring regions has been presented. time the data on findings in Western, Southern Siberia and The Phasiinae fauna of the Primorsky Krai (Far East of Russia) is characterized as peculiar but closest to the fauna of the Khabarovsk Krai were given. For the first time, southern part of Khabarovsk Krai, Amur Oblast and Eastern Redtenbacheria insignis Egg. for Eastern Siberia and the Siberia. The following groups of regions have been identified: Kuril Islands, Phasia barbifrons (Girschn.) for Western Southern, Western and Eastern Siberia; Amur Oblast and Siberia, and Elomya lateralis (Mg.) and Phasia hemiptera Primorsky Krai, which share many common Holarctic and (F.) were indicated.At the same time, the following species Transpalaearctic species.Special mention should be made of the have been found in the Primorsky Krai, previously known in fauna of the Khabarovsk Krai, Sakhalin Oblast, which are characterized by poor species composition and Japan (having a Russia only in the south of Khabarovsk Krai and in the subtropical appearance). Amur Oblast (Markova, 1999): Phasia aurigera (Egg.), Key words: Diptera, Tachinidae, Phasiinae, tachinid, Phasia zimini (D.-M.), Leucostoma meridianum (Rond.), Russian Far East, fauna. -
Diptera: Sarcophagidae) and Its Phylogenetic Implications
First mitogenome for the subfamily Miltogramminae (Diptera: Sarcophagidae) and its phylogenetic implications Yan, Liping; Zhang, Ming; Gao, Yunyun; Pape, Thomas; Zhang, Dong Published in: European Journal of Entomology DOI: 10.14411/eje.2017.054 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Yan, L., Zhang, M., Gao, Y., Pape, T., & Zhang, D. (2017). First mitogenome for the subfamily Miltogramminae (Diptera: Sarcophagidae) and its phylogenetic implications. European Journal of Entomology, 114, 422-429. https://doi.org/10.14411/eje.2017.054 Download date: 24. Sep. 2021 EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 422–429, 2017 http://www.eje.cz doi: 10.14411/eje.2017.054 ORIGINAL ARTICLE First mitogenome for the subfamily Miltogramminae (Diptera: Sarcophagidae) and its phylogenetic implications LIPING YAN 1, 2, MING ZHANG 1, YUNYUN GAO 1, THOMAS PAPE 2 and DONG ZHANG 1, * 1 School of Nature Conservation, Beijing Forestry University, Beijing, China; e-mails: [email protected], [email protected], [email protected], [email protected] 2 Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; e-mail: [email protected] Key words. Diptera, Calyptratae, Sarcophagidae, Miltogramminae, mitogenome, fl esh fl y, phylogeny Abstract. The mitochondrial genome of Mesomelena mesomelaena (Loew, 1848) is the fi rst to be sequenced in the fl esh fl y subfamily Miltogramminae (Diptera: Sarcophagidae). The 14,559 bp mitogenome contains 37 typical metazoan mitochondrial genes: 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes, with the same locations as in the insect ground plan. -
Morphological and Molecular Techniques for the Differentiation of Myiasis-Causing Sarcophagidae Jeffery T
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Morphological and molecular techniques for the differentiation of myiasis-causing Sarcophagidae Jeffery T. Alfred Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Entomology Commons Recommended Citation Alfred, Jeffery T., "Morphological and molecular techniques for the differentiation of myiasis-causing Sarcophagidae" (2011). Graduate Theses and Dissertations. 10390. https://lib.dr.iastate.edu/etd/10390 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Morphological and molecular techniques for the differentiation of myiasis-causing Sarcophagidae by Jeffery T. Alfred A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Entomology Program of Study Committee: Lyric Bartholomay, Major Professor Kenneth Holscher James Mertins Christine Petersen Iowa State University Ames, Iowa 2011 ii Table of Contents Chapter 1. Introduction 1 Chapter 2. Morphological identification of myiasis-causing sarcophagids of North America north of Mexico 7 Literature Review 7 Methods and Procedures 20 Results 25 Discussion 46 Chapter 3. Molecular identification of myiasis-causing sarcophagids of North America north of Mexico 48 Literature Review 48 Methods and Procedures 50 Results 52 Discussion 56 References Cited 58 Appendix 1. -
Natural History of the Gila Symposium October 14–16, 2010 Western New Mexico University Silver City, New Mexico
the new mexico botanist Special Issue Number 3 October 2012 proceedings of the third Natural History of the Gila Symposium October 14–16, 2010 Western New Mexico University Silver City, New Mexico edited by William Norris Department of Natural Sciences, Western New Mexico University Richard Felger University of Arizona Herbarium and Department of Soil, Water and Environmental Science, University of Arizona 2012 Proceedings of the Third Natural History of the Gila Symposium, October 2010 / The New Mexico Botanist, Special Issue No. 3, October 2012 Contents Introduction .................................................................................................. 1 Some Things Going On in the Gila National Forest That You May Find Interesting Richard Markley .............................................................................................. 2 For Birds: Dale and Marian Zimmerman Gene Jercinovic ............................................................................................... 6 Visions of Dulcinea Mike Fugagli .................................................................................................15 Box Canyon Road Sharman Apt Russell ........................................................................................17 Exploring the Late Prehistoric Occupation of the Upper Gila Region Through Preservation Archaeology Katherine Dungan, Deborah Huntley, Jeffery Clark, Robert Jones, and Andrew Laurenzi ..............20 Review of Tachinid Fly Diversity in the Gila National Forest, New Mexico James E.