2006-2363: A HYDRODYNAMIC FOR USE AS A TEACHING TOOL IN INSTRUMENTATION LABORATORY COURSES

David Bloomquist, University of Florida Michael McVay, University of Florida Scott Wasman, University of Florida Clinton Slatton, University of Florida Page 11.56.1

© American Society for Engineering Education, 2006 A HYDRODYNAMIC WHEATSTONE BRIDGE FOR USE AS A TEACHING TOOL IN INSTRUMENTATION LABORATORY COURSES

Abstract Undergraduateengineeringstudentsoftenfindsystemscomposedofelectricalcircuitsdifficult tograspbecausevariablessuchascurrent,,resistance,,andare noteasilyvisualizedastheiranalogsinmechanicalsystems.Thus,aHydrodynamicWheatstone bridge,usingtheanalogyofflowinpipes,wasdevelopedtoserveasateachingtoolinthe classroom.Aseriesoftestswereperformedtosimulate¼,½,full,andshuntedbridgecircuits, wheretheincreaseordecreaseinresistanceinthestraingageisanalogoustopartiallyclosingor openingavalveinapipenetwork.Thedifferenceinheadpotential(i.e., V)wasmeasuredwith manometerslocatedbetweenthevalves.Theresultsagreewiththe¼,½,full,andshunted Wheatstonebridgecircuits.Futureenhancementsincludetheadditionofflowmeterstorelate waterflowtocurrentflow,scaledfullturnvalvestomoreaccuratelyrepresentchanging resistances,andaflexibletubesection,inplaceofavalve,toreplicateastraingageintension.

Introduction In1994,CivilEngineeringprofessorsattheUniversityofFloridadevelopedanundergraduate course,"INSTRUMENTATIONFORENGINEERS",inwhichstudentsareexposedtothe fundamentalsofcircuitrythroughbasicanalysisofDCandACcircuits.Exerciseproblemsare routinelyperformedintheclassroomandgiventothestudentsforreinforcementthrough independentpractice.Accompanyingthecourseisaweeklytwohourlabwhichprovidesthe studentshandsonpracticewithcivilengineeringinstrumentation:e.g.,loadcells,displacement transducers(LVDT),accelerometers,andpressuretransducers.SincetheWheatstonebridge circuitisfrequentlyusedintheseinstruments,analysisofitisparamounttothestudents’success inthecourse.Unfortunately,thistopicisonethatcausesthemostangst(perhapssecondonlyto Thevenins!),andthuswefeltitwouldbehelpfultodevelopadevicethatwouldallowthe studentstoobservewhathappenstowaterpressureswhenflowingina“bridgecircuit”pipe network. Hence,usingtheanalogyofflowinpipes,abridgecircuitwasdevelopedasateachingtool. Thesimilaritybetweenhydrodynamics(flow,pressure,andvalveposition)toelectricity(current, voltage,andresistance)providesausefulanalogy.Forexample,astraingageinabridgecircuit canbemodeledwithaneedlevalveinapipenetworksothatanincreaseordecreasein resistance(viatensionorcompression)inthestraingageisanalogoustoclosingoropeninga valveinapipesystem.Thiswill,inturn,createa V(assuminga¼bridge)thatcanbe representedbyadifferenceinwaterheightsinmanometerslocatedatthemidpointsofthe “bridge”. Similarly,½,full,andshuntedbridgecircuitscanbemodeleddependingonthevalvesettings.

Forexample,thestudentscan'balance'thebridgebyadjustingthevalvesuntilthewaterheights Page 11.56.2 inthemanometersareequal.Then,byopening(lessresistance=compressionofagage)oneor morevalves,theycanseetheeffectthishasonthewaterlevels.Stoppingtheflowattheoutlet alsoshowsthatregardlessofthevalve(s)position,thewaterlevelsareequalfornoflow conditions. Instrument Description TheHydrodynamicWheatstoneBridge(HWB)showninFigure1,wasdesignedforuseasa handsonlabinstrument.Itutilizesa1000mLgraduatedcylinderfilledwithwaterandplaced adjacenttothebridgetocreatetheappliedpressure(voltage)tothepipenetwork(circuit). Swagelokvalvesrepresentthefourstraingagesinthelegsofthecircuit.Thevalvesare connectedby¼"ODtubingand45ºbrassfittings.Manometertubes,(Fig.2)arelocatedin betweenthevalves,allowingthestudentstomeasurethewatercolumnheightorhead(voltage) andthechangescausedbyopeningorclosingoneormorevalves.Thevalvescanbeadjustedto aprescribedsetting,simulatingthestrainingofthegage(s)( R).Themanometertubesserveas the“voltmeter”tomeasurethedifferenceinvoltageacrossthetwolegsofthebridge. Inelectricalcircuits,Wheatstonebridgesareoftenusedtomeasuremediumresistancevalues(1). Verysmallresistancesaredifficulttomeasurebecauseofthermoelectricgeneratedat thejunctionsofdissimilarmetalsandthermalheatingeffects.Verylargeresistancesaredifficult tomeasureaccuratelybecauseofleakagecurrents.Thereisnodirectanalogtothesetwo phenomenainthehydrodynamicWheatstonebridge.Whiletheopeningandclosingofvalvesis notaperfectanalogyforelectrical,thehydrodynamiccircuitdoesserveasanaccurate analogaslongasthevalvesarenotcompletelyclosedoropen. Thewaterinthehydrobridgecircuitispumpedintothegraduatedcylinderfromareservoir locatedbelowthecircuit(Fig1).Outflowfromthecircuitischanneledbackintothereservoirto maintainaconstantflowcondition.Tapwaterwithfooddyeservesasthefluidtohelpobserve waterheightsineachmanometer(Fig.2). Page 11.56.3 NEEDLE VALVE

1000mlGRADUATED CYLINDER

Ho

MANOMETERS

HB HI

HA HF

2 VALVE S 1 3 4

WATER RESERVOIR PUMP TANK

Figure1.HydrodynamicWheatstoneBridge

Page 11.56.4

Figure2.HydrodynamicBridgeCircuit

Test Setup Afterconstruction,aseriesoftestswereconductedtoverifytheconcept.Thetestswereplanned tosimulate¼,½,Full,andshuntedbridgecircuits.Table1providesthedetailsofeachtest,i.e., valvesettings.

Page 11.56.5 Table1.TestSimulations Bridge Configuration ¼ ½ Full Shunt (Valve 2) Valve Settings Valve1 ½Open ¼Open ¼Open ½Open

Valve2 ½Open ½Open ¾Open 9/16 Open Valve3 ¼Open ¼Open ¼Open ½Open Valve4 ½Open ½Open ¾Open ½Open Thereadingsofthemanometertubesforthedifferentvalveconfigurationsarethemeasured watercolumnheights.Settingallthevalvestothesameopenposition(e.g.½open)representsa balancedbridgeinwhichallthestraingagesareorientedinthesamedirectionwithequal resistances.Thisscenarioproduceszerovoltagedifferencebetweenthelegs,henceVA–V Bor V=0(RefertoFigure3.below).AbalancedWheatstonebridgeconditioncanbedescribedby Equation1. i 1 + i 2 VI

R1 R 2

+ i 1 i2 VO VA VB _ i3 i4

R4 R 3

VF

V Figure3.WheatstoneBridgeCircuit

R1 R2 = Eq.1 R4 R3 InthecaseoftheHydrodynamicbridge,settingvalves1and4tothesamesettingandvalves2 and3toadifferent,butequalsetting,alsoresultsinabalancedbridge(V=0).Itwas Page 11.56.6 anticipatedthatmanometersH AandHBwouldbeequalandhalfoftheinitialmanometer(HI) waterheight.Openingeachvalvetoadifferentsettingresultsinanunbalancedbridge( V≠0), inwhichcasemanometerheightsHAandHBwouldbedifferent. Fora¼bridge,asinglegageisstrainedincompressionortension.Thestrainingincreasesor decreasestheresistance(R),whichifhigherordertermsareneglected,producesadifferencein voltage,describedbyequation2. GF V = ε V Eq.2 4 o where: GFisthegagefactor, εthestrainandV o,the excitationvoltage Forthe½bridgecircuit,twogages(R 1andR 3)arestrainedincompressionortension,resulting inavoltagedifferencetwicethatofthe¼bridge.Thechangeinvoltageisdescribedby equation3. (GF ) ε V = V Eq.3 2 o Therefore,itwasexpectedthatthedifferenceinreadingsbetweenH AandH Bwouldproduce similarresults,assumingequallengthsofthetubinginthecircuit. Tosimulateashuntedcircuit,weadjustedthevalvesettingtoreplicatetheparallelcombination ofR 2andashunt,R S.ThehighresistanceofR ScombinedwiththeresistanceofR 2 resultsinavaluethatisslightlylessthanR 2.Therefore,valve2wasopenedslightlymorethan theothervalves.ThesettingfortheothervalvesisdescribedinTable1.Asaresult,thereisa smallincreaseinV Band V(i.e.,VA–V B).Thiswasobservedinthemanometerreadingsof HAandHBaswell. Test Results TestswereperformedontheHWBtosimulate¼,½,full,andshuntedbridgecircuit configurations.TheresultsofeachtestarepresentedinTables25.

¼ Bridge ThedifferenceinwaterheightsofHAandHBwas4.1cm.ConsideringOhm'slaw(V=IR),for constantcurrent,astheresistanceincreasessodoesthevoltagedropordifference.Forthese tests,thewaterflowwasmaintainedataconstant,lowrate.InthecaseoftheHWB,headloss duetotheflowpath(pipefriction,fittinglossesetc.fromthesourcetothefirstmanometer)was negligible.Wemeasureda0.5cm.difference(orloss)betweenthesetwopoints.Itisimportant tonotethattheflowratehadtobeadjustedinorderforthebridgetoworkproperly.Thiswas donebytrialanderrorandonceset,theremainderofthetestsworkedproperly.Whilewedid nothaveaflowmetersensitiveenoughtomeasureit,weplantoincorporatearotameterto monitortheflowinthenextmodel. Page 11.56.7 Table2.Resultsofthe¼BridgeSimulation Valve Source Head (36 cm) Manometer Reading Settings

Valve1 ½Open HI 35.5cm

Valve2 ½Open HB 30.2cm

Valve3 ¼Open HF 0cm

Valve4 ½Open HA 26.1cm

Figure4.ManometerHI

Page 11.56.8 ½ Bridge Theexpectedresultsofthe½bridgesimulationwasadifferenceinheadbetweenH AandH B approximatelytwicethatofthe¼bridge.Table3presentsthetestresults.Weseethat Hwas closeto2xthe¼bridgesetup. Table3.Resultsof½BridgeSimulation Valve Source Head (36 cm) Manometer Reading Settings

Valve1 ¼Open HI 35.7cm

Valve2 ½Open HB 30.4cm

Valve3 ¼Open HF 0cm

Valve4 ½Open HA 22.5cm

Full Bridge InTable4theresultsofthefullbridgesimulationareshown.Asexpected,theheightdifference wasapproximately16.9cmor4.12timesthe¼bridgedifference(asopposedto4).Again,the flowratehasasubstantialeffectontheheightsanditwasnecessarytoreduceittoaminimumin ordertomaintainthecorrectbridgeoutputeffects. Table4.ResultsoftheFullBridgeSimulation Valve Source Head (36 cm) Manometer Reading Settings

Valve1 ¼Open HI 34.6cm

Valve2 ¾Open HB 28.6cm

Valve3 ¼Open HF 0cm

Valve4 ¾Open HA 11.7cm

Page 11.56.9

Shunted Bridge Table5presentstheresultsoftheshuntsimulationforvalve2.ThereadingsofHAandH B indicateasmalldifference,approximately0.4cm.Thisagreeswiththetrendwhenshuntinga bridgewithalargekiloohmresistorinparallelwithoneofthestandardgages(120or350ohms). Aspreviouslydiscussed,thedifferencebetweenV AandV Bwassmallduetotheparallel combinationofR 2andR S. Table5.ResultsoftheShuntSimulation Valve Source Head (36 cm) Manometer Reading Settings

Valve1 ½Open HI 34.3cm

Valve2 9/16 Open HB 14.6cm

Valve3 ½Open HF 0cm

Valve4 ½Open HA 14.2cm

Conclusions TheresultsfromtheseHydrodynamicbridgetestsagreereasonablywellwith¼,½,full,and shuntedWheatstonebridgecircuits.Whilethisinstrumentisaprototype,itdoesperformas anticipated.Weplantoutilizeitthissemesterandseeifitaidsthestudents’understandingof bridgecircuits. Futureenhancementswillincludeaddingaflowmetertoeachleginordertomeasurewaterflow andattempttorelateittocurrentflow.Inaddition,thevalveswillbereplacedwithfullturn valvesandscalednumbersrepresentinggageresistances.Thiswillallowstudentstosetthe valvesmoreaccuratelyandalsoseehowchangingthe“resistance”from120 to119.5 affectsthewaterlevel(voltagebalance). Finally,weplantoinsertaflexibletubesectiontoreplaceoneofthevalves.Thiswillallowus tostretchitandhopefullyreplicateastraingagewireintension(Fig.5).Inthecaseofwire,the resistancechangesduetoitsdeformation(describedinEquation4below).Forlongitudinal straining(tension)ofawire,itisapparentthattheareabecomessmalleras δLincreases.This resultsinincreasedresistance.Wewillattempttoutilizethiseffecttoforma¼bridge“active gage”.Itisdoubtfulthatwewillbeabletomimiccompressionwiththissetup. Page 11.56.10 Figure5.LongitudinalStrainofWire ρL R = a Eq.4 where: R=resistance,ρ,theresistivityofthematerial, L,lengthanda,crosssectionalarea Itisthegoaloftheauthorstofurtherdevelopthisandotherinstrumentsforclassroomandlab use.Forexample,wearedesigningan“AC”waterflowcircuitandhopetosimulatecapacitors andinductors.Flowanalogiesinengineeringeducationarevaluablebecauseofthetransparency andrelationshiptoelectricity.Webelievebasicelectricalcircuitknowledgeisessentialfor practicingengineersandhence,whateverteachingtoolshelptoachievethisunderstandingis warranted.Thecontributionoftheseinstrumentswillhopefullyincreasestudents’performance intheclassroomandthattheconceptswillremainlongaftertheyhavegraduated. Bibliography

1. Nilsson,JamesW.andRiedel,SusanA., Electrical Circuits ,5 th ed.,AddisonWesley,1996. Page 11.56.11